featurizeImage:機器學習影像特徵化轉換
使用預先定型的深度類神經網路模型將影像特徵化。
使用方式
featurizeImage(var, outVar = NULL, dnnModel = "Resnet18")
引數
var
包含擷取像素值的輸入變數。
outVar
包含影像功能的輸出變數前置詞。 如果為 null,則會使用輸入變數名稱。 預設值是 NULL
。
dnnModel
預先訓練的深度神經網路。 可能的選項包括:
"resnet18"
"resnet50"
"resnet101"
"alexnet"
預設值是"resnet18"
。 如需關於 ResNet 的詳細資料,請參閱Deep Residual Learning for Image Recognition
。
詳細資料
featurizeImage
會使用特定預先訓練的深度神經網路模型將影像特徵化。 此轉換的輸入變數必須是擷取的像素值。
值
定義轉換的 maml
物件。
作者
Microsoft Corporation Microsoft Technical Support
範例
train <- data.frame(Path = c(system.file("help/figures/RevolutionAnalyticslogo.png", package = "MicrosoftML")), Label = c(TRUE), stringsAsFactors = FALSE)
# Loads the images from variable Path, resizes the images to 1x1 pixels and trains a neural net.
model <- rxNeuralNet(
Label ~ Features,
data = train,
mlTransforms = list(
loadImage(vars = list(Features = "Path")),
resizeImage(vars = "Features", width = 1, height = 1, resizing = "Aniso"),
extractPixels(vars = "Features")
),
mlTransformVars = "Path",
numHiddenNodes = 1,
numIterations = 1)
# Featurizes the images from variable Path using the default model, and trains a linear model on the result.
model <- rxFastLinear(
Label ~ Features,
data = train,
mlTransforms = list(
loadImage(vars = list(Features = "Path")),
resizeImage(vars = "Features", width = 224, height = 224), # If dnnModel == "AlexNet", the image has to be resized to 227x227.
extractPixels(vars = "Features"),
featurizeImage(var = "Features")
),
mlTransformVars = "Path")