bag_unpack plugin
Applies to: ✅ Microsoft Fabric ✅ Azure Data Explorer
The bag_unpack
plugin unpacks a single column of type dynamic
, by treating each property bag top-level slot as a column. The plugin is invoked with the evaluate
operator.
Syntax
T |
evaluate
bag_unpack(
Column [,
OutputColumnPrefix ] [,
columnsConflict ] [,
ignoredProperties ] )
[:
OutputSchema]
Learn more about syntax conventions.
Parameters
Name | Type | Required | Description |
---|---|---|---|
T | string |
✔️ | The tabular input whose column Column is to be unpacked. |
Column | dynamic |
✔️ | The column of T to unpack. |
OutputColumnPrefix | string |
A common prefix to add to all columns produced by the plugin. | |
columnsConflict | string |
The direction for column conflict resolution. Valid values: error - Query produces an error (default)replace_source - Source column is replacedkeep_source - Source column is kept |
|
ignoredProperties | dynamic |
An optional set of bag properties to be ignored. } | |
OutputSchema | The names and types for the expected columns of the bag_unpack plugin output. Specifying the expected schema optimizes query execution by not having to first run the actual query to explore the schema. For syntax information, see Output schema syntax. |
Output schema syntax
(
ColumnName :
ColumnType [,
...] )
To add all columns of the input table to the plugin output, use a wildcard *
as the first parameter, as follows:
(
*
,
ColumnName :
ColumnType [,
...] )
Returns
The bag_unpack
plugin returns a table with as many records as its tabular input (T). The schema of the table is the same as the schema of its tabular input with the following modifications:
- The specified input column (Column) is removed.
- The schema is extended with as many columns as there are distinct slots in
the top-level property bag values of T. The name of each column corresponds
to the name of each slot, optionally prefixed by OutputColumnPrefix. Its
type is either the type of the slot, if all values of the same slot have the
same type, or
dynamic
, if the values differ in type.
Note
If the OutputSchema is not specified, the plugin's output schema varies according to the input data values. Therefore, multiple executions of the plugin using different data inputs, may produce different output schema.
Note
The input data to the plugin must be such that the output schema follows all the rules for a tabular schema. In particular:
An output column name can't be the same as an existing column in the tabular input T, unless it's the column to be unpacked (Column), since that will produce two columns with the same name.
All slot names, when prefixed by OutputColumnPrefix, must be valid entity names and follow the identifier naming rules.
Examples
Expand a bag
datatable(d:dynamic)
[
dynamic({"Name": "John", "Age":20}),
dynamic({"Name": "Dave", "Age":40}),
dynamic({"Name": "Jasmine", "Age":30}),
]
| evaluate bag_unpack(d)
Output
Age | Name |
---|---|
20 | John |
40 | Dave |
30 | Jasmine |
Expand a bag with OutputColumnPrefix
Expand a bag and use the OutputColumnPrefix
option to produce column names that begin with the prefix 'Property_'.
datatable(d:dynamic)
[
dynamic({"Name": "John", "Age":20}),
dynamic({"Name": "Dave", "Age":40}),
dynamic({"Name": "Jasmine", "Age":30}),
]
| evaluate bag_unpack(d, 'Property_')
Output
Property_Age | Property_Name |
---|---|
20 | John |
40 | Dave |
30 | Jasmine |
Expand a bag with columnsConflict
Expand a bag and use the columnsConflict
option to resolve conflicts between existing columns and columns produced by the bag_unpack()
operator.
datatable(Name:string, d:dynamic)
[
'Old_name', dynamic({"Name": "John", "Age":20}),
'Old_name', dynamic({"Name": "Dave", "Age":40}),
'Old_name', dynamic({"Name": "Jasmine", "Age":30}),
]
| evaluate bag_unpack(d, columnsConflict='replace_source') // Use new name
Output
Age | Name |
---|---|
20 | John |
40 | Dave |
30 | Jasmine |
datatable(Name:string, d:dynamic)
[
'Old_name', dynamic({"Name": "John", "Age":20}),
'Old_name', dynamic({"Name": "Dave", "Age":40}),
'Old_name', dynamic({"Name": "Jasmine", "Age":30}),
]
| evaluate bag_unpack(d, columnsConflict='keep_source') // Keep old name
Output
Age | Name |
---|---|
20 | Old_name |
40 | Old_name |
30 | Old_name |
Expand a bag with ignoredProperties
Expand a bag and use the ignoredProperties
option to ignore certain properties in the property bag.
datatable(d:dynamic)
[
dynamic({"Name": "John", "Age":20, "Address": "Address-1" }),
dynamic({"Name": "Dave", "Age":40, "Address": "Address-2"}),
dynamic({"Name": "Jasmine", "Age":30, "Address": "Address-3"}),
]
// Ignore 'Age' and 'Address' properties
| evaluate bag_unpack(d, ignoredProperties=dynamic(['Address', 'Age']))
Output
Name |
---|
John |
Dave |
Jasmine |
Expand a bag with a query-defined OutputSchema
Expand a bag and use the OutputSchema
option to allow various optimizations to be evaluated before running the actual query.
datatable(d:dynamic)
[
dynamic({"Name": "John", "Age":20}),
dynamic({"Name": "Dave", "Age":40}),
dynamic({"Name": "Jasmine", "Age":30}),
]
| evaluate bag_unpack(d) : (Name:string, Age:long)
Output
Name | Age |
---|---|
John | 20 |
Dave | 40 |
Jasmine | 30 |
Expand a bag and use the OutputSchema
option to allow various optimizations to be evaluated before running the actual query. Use a wildcard *
to return all columns of the input table.
datatable(d:dynamic, Description: string)
[
dynamic({"Name": "John", "Age":20}), "Student",
dynamic({"Name": "Dave", "Age":40}), "Teacher",
dynamic({"Name": "Jasmine", "Age":30}), "Student",
]
| evaluate bag_unpack(d) : (*, Name:string, Age:long)
Output
Description | Name | Age |
---|---|---|
Student | John | 20 |
Teacher | Dave | 40 |
Student | Jasmine | 30 |