Copy data from Azure Blob to Azure SQL Database using Azure Data Factory
APPLIES TO: Azure Data Factory Azure Synapse Analytics
Tip
Try out Data Factory in Microsoft Fabric, an all-in-one analytics solution for enterprises. Microsoft Fabric covers everything from data movement to data science, real-time analytics, business intelligence, and reporting. Learn how to start a new trial for free!
In this tutorial, you create a Data Factory pipeline that copies data from Azure Blob Storage to Azure SQL Database. The configuration pattern in this tutorial applies to copying from a file-based data store to a relational data store. For a list of data stores supported as sources and sinks, see supported data stores and formats.
You take the following steps in this tutorial:
- Create a data factory.
- Create Azure Storage and Azure SQL Database linked services.
- Create Azure Blob and Azure SQL Database datasets.
- Create a pipeline contains a Copy activity.
- Start a pipeline run.
- Monitor the pipeline and activity runs.
This tutorial uses .NET SDK. You can use other mechanisms to interact with Azure Data Factory; refer to samples under Quickstarts.
If you don't have an Azure subscription, create a free Azure account before you begin.
Prerequisites
- Azure Storage account. You use the blob storage as source data store. If you don't have an Azure storage account, see Create a general-purpose storage account.
- Azure SQL Database. You use the database as sink data store. If you don't have a database in Azure SQL Database, see the Create a database in Azure SQL Database.
- Visual Studio. The walkthrough in this article uses Visual Studio 2019.
- Azure SDK for .NET.
- Microsoft Entra application. If you don't have a Microsoft Entra application, see the Create a Microsoft Entra application section of How to: Use the portal to create a Microsoft Entra application. Copy the following values for use in later steps: Application (client) ID, authentication key, and Directory (tenant) ID. Assign the application to the Contributor role by following the instructions in the same article.
Create a blob and a SQL table
Now, prepare your Azure Blob and Azure SQL Database for the tutorial by creating a source blob and a sink SQL table.
Create a source blob
First, create a source blob by creating a container and uploading an input text file to it:
Open Notepad. Copy the following text and save it locally to a file named inputEmp.txt.
John|Doe Jane|Doe
Use a tool such as Azure Storage Explorer to create the adfv2tutorial container, and to upload the inputEmp.txt file to the container.
Create a sink SQL table
Next, create a sink SQL table:
Use the following SQL script to create the dbo.emp table in your Azure SQL Database.
CREATE TABLE dbo.emp ( ID int IDENTITY(1,1) NOT NULL, FirstName varchar(50), LastName varchar(50) ) GO CREATE CLUSTERED INDEX IX_emp_ID ON dbo.emp (ID);
Allow Azure services to access SQL Database. Ensure that you allow access to Azure services in your server so that the Data Factory service can write data to SQL Database. To verify and turn on this setting, do the following steps:
Go to the Azure portal to manage your SQL server. Search for and select SQL servers.
Select your server.
Under the SQL server menu's Security heading, select Firewalls and virtual networks.
In the Firewall and virtual networks page, under Allow Azure services and resources to access this server, select ON.
Create a Visual Studio project
Using Visual Studio, create a C# .NET console application.
- Open Visual Studio.
- In the Start window, select Create a new project.
- In the Create a new project window, choose the C# version of Console App (.NET Framework) from the list of project types. Then select Next.
- In the Configure your new project window, enter a Project name of ADFv2Tutorial. For Location, browse to and/or create the directory to save the project in. Then select Create. The new project appears in the Visual Studio IDE.
Install NuGet packages
Next, install the required library packages using the NuGet package manager.
In the menu bar, choose Tools > NuGet Package Manager > Package Manager Console.
In the Package Manager Console pane, run the following commands to install packages. For information about the Azure Data Factory NuGet package, see Microsoft.Azure.Management.DataFactory.
Install-Package Microsoft.Azure.Management.DataFactory Install-Package Microsoft.Azure.Management.ResourceManager -PreRelease Install-Package Microsoft.IdentityModel.Clients.ActiveDirectory
Create a data factory client
Follow these steps to create a data factory client.
Open Program.cs, then overwrite the existing
using
statements with the following code to add references to namespaces.using System; using System.Collections.Generic; using System.Linq; using Microsoft.Rest; using Microsoft.Rest.Serialization; using Microsoft.Azure.Management.ResourceManager; using Microsoft.Azure.Management.DataFactory; using Microsoft.Azure.Management.DataFactory.Models; using Microsoft.IdentityModel.Clients.ActiveDirectory;
Add the following code to the
Main
method that sets variables. Replace the 14 placeholders with your own values.To see the list of Azure regions in which Data Factory is currently available, see Products available by region. Under the Products drop-down list, choose Browse > Analytics > Data Factory. Then in the Regions drop-down list, choose the regions that interest you. A grid appears with the availability status of Data Factory products for your selected regions.
Note
Data stores, such as Azure Storage and Azure SQL Database, and computes, such as HDInsight, that Data Factory uses can be in other regions than what you choose for Data Factory.
// Set variables string tenantID = "<your tenant ID>"; string applicationId = "<your application ID>"; string authenticationKey = "<your authentication key for the application>"; string subscriptionId = "<your subscription ID to create the factory>"; string resourceGroup = "<your resource group to create the factory>"; string region = "<location to create the data factory in, such as East US>"; string dataFactoryName = "<name of data factory to create (must be globally unique)>"; // Specify the source Azure Blob information string storageAccount = "<your storage account name to copy data>"; string storageKey = "<your storage account key>"; string inputBlobPath = "adfv2tutorial/"; string inputBlobName = "inputEmp.txt"; // Specify the sink Azure SQL Database information string azureSqlConnString = "Server=tcp:<your server name>.database.windows.net,1433;" + "Database=<your database name>;" + "User ID=<your username>@<your server name>;" + "Password=<your password>;" + "Trusted_Connection=False;Encrypt=True;Connection Timeout=30"; string azureSqlTableName = "dbo.emp"; string storageLinkedServiceName = "AzureStorageLinkedService"; string sqlDbLinkedServiceName = "AzureSqlDbLinkedService"; string blobDatasetName = "BlobDataset"; string sqlDatasetName = "SqlDataset"; string pipelineName = "Adfv2TutorialBlobToSqlCopy";
Add the following code to the
Main
method that creates an instance ofDataFactoryManagementClient
class. You use this object to create a data factory, linked service, datasets, and pipeline. You also use this object to monitor the pipeline run details.// Authenticate and create a data factory management client var context = new AuthenticationContext("https://login.windows.net/" + tenantID); ClientCredential cc = new ClientCredential(applicationId, authenticationKey); AuthenticationResult result = context.AcquireTokenAsync( "https://management.azure.com/", cc ).Result; ServiceClientCredentials cred = new TokenCredentials(result.AccessToken); var client = new DataFactoryManagementClient(cred) { SubscriptionId = subscriptionId };
Create a data factory
Add the following code to the Main
method that creates a data factory.
// Create a data factory
Console.WriteLine("Creating a data factory " + dataFactoryName + "...");
Factory dataFactory = new Factory
{
Location = region,
Identity = new FactoryIdentity()
};
client.Factories.CreateOrUpdate(resourceGroup, dataFactoryName, dataFactory);
Console.WriteLine(
SafeJsonConvert.SerializeObject(dataFactory, client.SerializationSettings)
);
while (
client.Factories.Get(
resourceGroup, dataFactoryName
).ProvisioningState == "PendingCreation"
)
{
System.Threading.Thread.Sleep(1000);
}
Create linked services
In this tutorial, you create two linked services for the source and sink, respectively.
Create an Azure Storage linked service
Add the following code to the Main
method that creates an Azure Storage linked service. For information about supported properties and details, see Azure Blob linked service properties.
// Create an Azure Storage linked service
Console.WriteLine("Creating linked service " + storageLinkedServiceName + "...");
LinkedServiceResource storageLinkedService = new LinkedServiceResource(
new AzureStorageLinkedService
{
ConnectionString = new SecureString(
"DefaultEndpointsProtocol=https;AccountName=" + storageAccount +
";AccountKey=" + storageKey
)
}
);
client.LinkedServices.CreateOrUpdate(
resourceGroup, dataFactoryName, storageLinkedServiceName, storageLinkedService
);
Console.WriteLine(
SafeJsonConvert.SerializeObject(storageLinkedService, client.SerializationSettings)
);
Create an Azure SQL Database linked service
Add the following code to the Main
method that creates an Azure SQL Database linked service. For information about supported properties and details, see Azure SQL Database linked service properties.
// Create an Azure SQL Database linked service
Console.WriteLine("Creating linked service " + sqlDbLinkedServiceName + "...");
LinkedServiceResource sqlDbLinkedService = new LinkedServiceResource(
new AzureSqlDatabaseLinkedService
{
ConnectionString = new SecureString(azureSqlConnString)
}
);
client.LinkedServices.CreateOrUpdate(
resourceGroup, dataFactoryName, sqlDbLinkedServiceName, sqlDbLinkedService
);
Console.WriteLine(
SafeJsonConvert.SerializeObject(sqlDbLinkedService, client.SerializationSettings)
);
Create datasets
In this section, you create two datasets: one for the source, the other for the sink.
Create a dataset for source Azure Blob
Add the following code to the Main
method that creates an Azure blob dataset. For information about supported properties and details, see Azure Blob dataset properties.
You define a dataset that represents the source data in Azure Blob. This Blob dataset refers to the Azure Storage linked service you create in the previous step, and describes:
- The location of the blob to copy from:
FolderPath
andFileName
- The blob format indicating how to parse the content:
TextFormat
and its settings, such as column delimiter - The data structure, including column names and data types, which map in this example to the sink SQL table
// Create an Azure Blob dataset
Console.WriteLine("Creating dataset " + blobDatasetName + "...");
DatasetResource blobDataset = new DatasetResource(
new AzureBlobDataset
{
LinkedServiceName = new LinkedServiceReference {
ReferenceName = storageLinkedServiceName
},
FolderPath = inputBlobPath,
FileName = inputBlobName,
Format = new TextFormat { ColumnDelimiter = "|" },
Structure = new List<DatasetDataElement>
{
new DatasetDataElement { Name = "FirstName", Type = "String" },
new DatasetDataElement { Name = "LastName", Type = "String" }
}
}
);
client.Datasets.CreateOrUpdate(
resourceGroup, dataFactoryName, blobDatasetName, blobDataset
);
Console.WriteLine(
SafeJsonConvert.SerializeObject(blobDataset, client.SerializationSettings)
);
Create a dataset for sink Azure SQL Database
Add the following code to the Main
method that creates an Azure SQL Database dataset. For information about supported properties and details, see Azure SQL Database dataset properties.
You define a dataset that represents the sink data in Azure SQL Database. This dataset refers to the Azure SQL Database linked service you created in the previous step. It also specifies the SQL table that holds the copied data.
// Create an Azure SQL Database dataset
Console.WriteLine("Creating dataset " + sqlDatasetName + "...");
DatasetResource sqlDataset = new DatasetResource(
new AzureSqlTableDataset
{
LinkedServiceName = new LinkedServiceReference
{
ReferenceName = sqlDbLinkedServiceName
},
TableName = azureSqlTableName
}
);
client.Datasets.CreateOrUpdate(
resourceGroup, dataFactoryName, sqlDatasetName, sqlDataset
);
Console.WriteLine(
SafeJsonConvert.SerializeObject(sqlDataset, client.SerializationSettings)
);
Create a pipeline
Add the following code to the Main
method that creates a pipeline with a copy activity. In this tutorial, this pipeline contains one activity: CopyActivity
, which takes in the Blob dataset as source and the SQL dataset as sink. For information about copy activity details, see Copy activity in Azure Data Factory.
// Create a pipeline with copy activity
Console.WriteLine("Creating pipeline " + pipelineName + "...");
PipelineResource pipeline = new PipelineResource
{
Activities = new List<Activity>
{
new CopyActivity
{
Name = "CopyFromBlobToSQL",
Inputs = new List<DatasetReference>
{
new DatasetReference() { ReferenceName = blobDatasetName }
},
Outputs = new List<DatasetReference>
{
new DatasetReference { ReferenceName = sqlDatasetName }
},
Source = new BlobSource { },
Sink = new SqlSink { }
}
}
};
client.Pipelines.CreateOrUpdate(resourceGroup, dataFactoryName, pipelineName, pipeline);
Console.WriteLine(
SafeJsonConvert.SerializeObject(pipeline, client.SerializationSettings)
);
Create a pipeline run
Add the following code to the Main
method that triggers a pipeline run.
// Create a pipeline run
Console.WriteLine("Creating pipeline run...");
CreateRunResponse runResponse = client.Pipelines.CreateRunWithHttpMessagesAsync(
resourceGroup, dataFactoryName, pipelineName
).Result.Body;
Console.WriteLine("Pipeline run ID: " + runResponse.RunId);
Monitor a pipeline run
Now insert the code to check pipeline run states and to get details about the copy activity run.
Add the following code to the
Main
method to continuously check the statuses of the pipeline run until it finishes copying the data.// Monitor the pipeline run Console.WriteLine("Checking pipeline run status..."); PipelineRun pipelineRun; while (true) { pipelineRun = client.PipelineRuns.Get( resourceGroup, dataFactoryName, runResponse.RunId ); Console.WriteLine("Status: " + pipelineRun.Status); if (pipelineRun.Status == "InProgress") System.Threading.Thread.Sleep(15000); else break; }
Add the following code to the
Main
method that retrieves copy activity run details, such as the size of the data that was read or written.// Check the copy activity run details Console.WriteLine("Checking copy activity run details..."); RunFilterParameters filterParams = new RunFilterParameters( DateTime.UtcNow.AddMinutes(-10), DateTime.UtcNow.AddMinutes(10) ); ActivityRunsQueryResponse queryResponse = client.ActivityRuns.QueryByPipelineRun( resourceGroup, dataFactoryName, runResponse.RunId, filterParams ); if (pipelineRun.Status == "Succeeded") { Console.WriteLine(queryResponse.Value.First().Output); } else Console.WriteLine(queryResponse.Value.First().Error); Console.WriteLine("\nPress any key to exit..."); Console.ReadKey();
Run the code
Build the application by choosing Build > Build Solution. Then start the application by choosing Debug > Start Debugging, and verify the pipeline execution.
The console prints the progress of creating a data factory, linked service, datasets, pipeline, and pipeline run. It then checks the pipeline run status. Wait until you see the copy activity run details with the data read/written size. Then, using tools such as SQL Server Management Studio (SSMS) or Visual Studio, you can connect to your destination Azure SQL Database and check whether the destination table you specified contains the copied data.
Sample output
Creating a data factory AdfV2Tutorial...
{
"identity": {
"type": "SystemAssigned"
},
"location": "East US"
}
Creating linked service AzureStorageLinkedService...
{
"properties": {
"type": "AzureStorage",
"typeProperties": {
"connectionString": {
"type": "SecureString",
"value": "DefaultEndpointsProtocol=https;AccountName=<accountName>;AccountKey=<accountKey>"
}
}
}
}
Creating linked service AzureSqlDbLinkedService...
{
"properties": {
"type": "AzureSqlDatabase",
"typeProperties": {
"connectionString": {
"type": "SecureString",
"value": "Server=tcp:<servername>.database.windows.net,1433;Database=<databasename>;User ID=<username>@<servername>;Password=<password>;Trusted_Connection=False;Encrypt=True;Connection Timeout=30"
}
}
}
}
Creating dataset BlobDataset...
{
"properties": {
"type": "AzureBlob",
"typeProperties": {
"folderPath": "adfv2tutorial/",
"fileName": "inputEmp.txt",
"format": {
"type": "TextFormat",
"columnDelimiter": "|"
}
},
"structure": [
{
"name": "FirstName",
"type": "String"
},
{
"name": "LastName",
"type": "String"
}
],
"linkedServiceName": {
"type": "LinkedServiceReference",
"referenceName": "AzureStorageLinkedService"
}
}
}
Creating dataset SqlDataset...
{
"properties": {
"type": "AzureSqlTable",
"typeProperties": {
"tableName": "dbo.emp"
},
"linkedServiceName": {
"type": "LinkedServiceReference",
"referenceName": "AzureSqlDbLinkedService"
}
}
}
Creating pipeline Adfv2TutorialBlobToSqlCopy...
{
"properties": {
"activities": [
{
"type": "Copy",
"typeProperties": {
"source": {
"type": "BlobSource"
},
"sink": {
"type": "SqlSink"
}
},
"inputs": [
{
"type": "DatasetReference",
"referenceName": "BlobDataset"
}
],
"outputs": [
{
"type": "DatasetReference",
"referenceName": "SqlDataset"
}
],
"name": "CopyFromBlobToSQL"
}
]
}
}
Creating pipeline run...
Pipeline run ID: 1cd03653-88a0-4c90-aabc-ae12d843e252
Checking pipeline run status...
Status: InProgress
Status: InProgress
Status: Succeeded
Checking copy activity run details...
{
"dataRead": 18,
"dataWritten": 28,
"rowsCopied": 2,
"copyDuration": 2,
"throughput": 0.01,
"errors": [],
"effectiveIntegrationRuntime": "DefaultIntegrationRuntime (East US)",
"usedDataIntegrationUnits": 2,
"billedDuration": 2
}
Press any key to exit...
Related content
The pipeline in this sample copies data from one location to another location in an Azure blob storage. You learned how to:
- Create a data factory.
- Create Azure Storage and Azure SQL Database linked services.
- Create Azure Blob and Azure SQL Database datasets.
- Create a pipeline containing a copy activity.
- Start a pipeline run.
- Monitor the pipeline and activity runs.
Advance to the following tutorial to learn about copying data from on-premises to cloud: