Comparteix a través de


Inicio rápido: Configuración del seguimiento corporal de Azure Kinect

Este inicio rápido le guiará a través del proceso de ejecución del seguimiento corporal en Azure Kinect DK.

Requisitos del sistema

El SDK de Body Tracking requiere una GPU NVIDIA instalada en el equipo host. El requisito de equipo host de seguimiento corporal recomendado se describe en la página de requisitos del sistema.

Instalación del software

Instalación del controlador NVIDIA más reciente

Descargue e instale el controlador NVIDIA más reciente de la tarjeta gráfica. Es posible que los controladores antiguos no sean compatibles con los archivos binarios de CUDA redistribuidos con el SDK de Body Tracking.

Visual C++ Redistributable para Visual Studio 2015

Descargue e instale Visual C++ Redistributable para Visual Studio 2015.

Configuración del hardware

Configuración de Azure Kinect DK

Inicie el visor de Azure Kinect para comprobar que Azure Kinect DK está configurado correctamente.

Descarga del SDK de Body Tracking

  1. Seleccione el vínculo para descargar el SDK de Body Tracking.
  2. Instale el SDK de Body Tracking en el equipo.

Comprobación del seguimiento corporal

Inicie el visor de seguimiento corporal de Azure Kinect para comprobar que el SDK de Body Tracking está configurado correctamente. El visor se instala con el instalador MSI del SDK. Puede encontrarlo en el menú Inicio o en <SDK Installation Path>\tools\k4abt_simple_3d_viewer.exe.

Si no dispone de una GPU con suficiente potencia pero quiere probar el resultado, puede iniciar el visor de seguimiento corporal de Azure Kinect en la línea de comandos con el comando <SDK Installation Path>\tools\k4abt_simple_3d_viewer.exe CPU.

Si todo está configurado correctamente, aparecerá una ventana con una nube de puntos 3D y los cuerpos que se han seguido.

Visor 3D de seguimiento corporal

Especificar el entorno de ejecución en tiempo de ejecución de ONNX

El SDK de seguimiento de cuerpos es compatible con los entornos de ejecución de CPU, CUDA, DirectML (solo Windows) y TensorRT para inferir el modelo de estimación de supuestos. De K4ABT_TRACKER_PROCESSING_MODE_GPU forma predeterminada, la ejecución de CUDA en Linux y DirectML se ejecuta en Windows. Se han agregado tres modos adicionales para seleccionar entornos de ejecución específicos: K4ABT_TRACKER_PROCESSING_MODE_GPU_CUDA, K4ABT_TRACKER_PROCESSING_MODE_GPU_DIRECTML y K4ABT_TRACKER_PROCESSING_MODE_GPU_TENSORRT.

Nota

El tiempo de ejecución de ONNX muestra advertencias de códigos de tiempo que no se aceleran. Se pueden omitir sin ningún problema.

El tiempo de ejecución de ONNX incluye variables de entorno para controlar el almacenamiento en caché del modelo TensorRT. Los valores recomendados son:

  • ORT_TENSORRT_ENGINE_CACHE_ENABLE=1
  • ORT_TENSORRT_CACHE_PATH="pathname"

La carpeta debe crearse antes de iniciar el seguimiento del cuerpo.

Importante

TensorRT procesa previamente el modelo antes de la inferencia, lo que genera tiempos de inicio extendidos en comparación con otros entornos de ejecución. El almacenamiento en caché del motor limita esto a la primera ejecución, pero es experimental y es específica del modelo, la versión del Runtime de ONNX, la versión de TensorRT y el modelo de GPU.

El entorno de ejecución de TensorRT admite tanto FP32 (predeterminado) como FP16. El FP16 ofrece un aumento de rendimiento de ~2 veces a cambio de una disminución mínima de la precisión. Para especificar FP16:

  • ORT_TENSORRT_FP16_ENABLE=1

Archivos DLL necesarios para entornos de ejecución en tiempo de ejecución de ONNX

Mode ORT 1.10 CUDA 11.4.3 CUDNN==8.2.2.26 TensorRT 8.0.3.4
CPU msvcp140 - - -
onnxruntime
CUDA msvcp140 cudart64_110 cudnn64_8 -
onnxruntime cufft64_10 cudnn_ops_infer64_8
onnxruntime_providers_cuda cublas64_11 cudnn_cnn_infer64_8
onnxruntime_providers_shared cublasLt64_11
DirectML msvcp140 - - -
onnxruntime
DirectML
TensorRT msvcp140 cudart64_110 - nvinfer
onnxruntime cufft64_10 nvinfer_plugin
onnxruntime_providers_cuda cublas64_11
onnxruntime_providers_shared cublasLt64_11
onnxruntime_providers_tensorrt nvrtc64_112_0
nvrtc-builtins64_114

Ejemplos

Aquí puede encontrar los ejemplos sobre cómo usar el SDK de seguimiento corporal.

Pasos siguientes