Práce se soubory na platformě Azure Databricks
Azure Databricks má několik nástrojů a rozhraní API pro interakci se soubory v následujících umístěních:
- Svazky katalogu Unity
- Soubory pracovního prostoru
- Cloudové úložiště objektů
- Připojení DBFS a kořen DBFS
- Dočasné úložiště připojené k uzlu ovladače clusteru
Tento článek obsahuje příklady pro interakci se soubory v těchto umístěních pro následující nástroje:
- Apache Spark
- Spark SQL a Databricks SQL
- Nástroje systému souborů Databricks (
dbutils.fs
nebo%fs
) - Databricks CLI
- Databricks REST API
- Příkazy prostředí Bash (
%sh
) - Instalace knihoven s vymezeným poznámkovým blokem pomocí
%pip
- pandas
- Nástroje pro správu a zpracování souborů Pythonu v OSS
Důležité
Operace se soubory vyžadující přístup k datům FUSE nemají přímý přístup ke cloudovému úložišti objektů pomocí identifikátorů URI. Databricks doporučuje použít svazky katalogu Unity ke konfiguraci přístupu k těmto umístěním pro FUSE.
Scala podporuje FUSE pro svazky katalogu Unity a soubory pracovních prostorů na výpočetních prostředcích nakonfigurovaných pomocí katalogu Unity a režimu sdíleného přístupu. Na výpočetních prostředcích nakonfigurovaných s režimem přístupu jednoho uživatele a modulem Databricks Runtime 14.3 a novějším podporuje Scala FUSE pro svazky katalogu Unity a soubory pracovních prostorů s výjimkou dílčích procesorů, které pocházejí ze scaly, jako je například příkaz "cat /Volumes/path/to/file".!!
Scala .
Musím pro přístup k datům zadat schéma identifikátoru URI?
Cesty přístupu k datům v Azure Databricks se řídí jedním z následujících standardů:
Cesty ve stylu identifikátoru URI zahrnují schéma identifikátoru URI. Pro řešení přístupu k datům nativních pro Databricks jsou schémata identifikátorů URI volitelná pro většinu případů použití. Při přímém přístupu k datům v cloudovém úložišti objektů musíte zadat správné schéma identifikátoru URI pro typ úložiště.
Cesty ve stylu POSIX poskytují přístup k datům vzhledem ke kořenovému adresáři ovladače (
/
). Cesty stylu POSIX nikdy nevyžadují schéma. Svazky katalogu Unity nebo připojení DBFS můžete použít k zajištění přístupu k datům ve stylu POSIX v cloudovém úložišti objektů. Mnoho architektur ML a dalších modulů OSS Python vyžaduje FUSE a může používat pouze cesty ve stylu POSIX.
Práce se soubory ve svazcích katalogu Unity
Databricks doporučuje použít svazky katalogu Unity ke konfiguraci přístupu k ne tabulkovým datovým souborům uloženým v cloudovém úložišti objektů. Podívejte se, co jsou svazky katalogu Unity?
Nástroj | Příklad |
---|---|
Apache Spark | spark.read.format("json").load("/Volumes/my_catalog/my_schema/my_volume/data.json").show() |
Spark SQL a Databricks SQL | SELECT * FROM csv.`/Volumes/my_catalog/my_schema/my_volume/data.csv`; LIST '/Volumes/my_catalog/my_schema/my_volume/'; |
Nástroje systému souborů Databricks | dbutils.fs.ls("/Volumes/my_catalog/my_schema/my_volume/") %fs ls /Volumes/my_catalog/my_schema/my_volume/ |
Databricks CLI | databricks fs cp /path/to/local/file dbfs:/Volumes/my_catalog/my_schema/my_volume/ |
Databricks REST API | POST https://<databricks-instance>/api/2.1/jobs/create {"name": "A multitask job", "tasks": [{..."libraries": [{"jar": "/Volumes/dev/environment/libraries/logging/Logging.jar"}],},...]} |
Příkazy prostředí Bash | %sh curl http://<address>/text.zip -o /Volumes/my_catalog/my_schema/my_volume/tmp/text.zip |
Instalace knihoven | %pip install /Volumes/my_catalog/my_schema/my_volume/my_library.whl |
Pandy | df = pd.read_csv('/Volumes/my_catalog/my_schema/my_volume/data.csv') |
OSS Python | os.listdir('/Volumes/my_catalog/my_schema/my_volume/path/to/directory') |
Poznámka:
Schéma dbfs:/
se vyžaduje při práci s rozhraním příkazového řádku Databricks.
Omezení svazků
Svazky mají následující omezení:
Přímé nebo nesekvenční (náhodné) zápisy, například zápis souborů ZIP a Excelu, nejsou podporovány. U úloh přímého připojení nebo náhodného zápisu nejprve proveďte operace na místním disku a pak výsledky zkopírujte do svazků katalogu Unity. Příklad:
# python import xlsxwriter from shutil import copyfile workbook = xlsxwriter.Workbook('/local_disk0/tmp/excel.xlsx') worksheet = workbook.add_worksheet() worksheet.write(0, 0, "Key") worksheet.write(0, 1, "Value") workbook.close() copyfile('/local_disk0/tmp/excel.xlsx', '/Volumes/my_catalog/my_schema/my_volume/excel.xlsx')
Řídké soubory nejsou podporovány. Pokud chcete kopírovat řídké soubory, použijte
cp --sparse=never
:$ cp sparse.file /Volumes/my_catalog/my_schema/my_volume/sparse.file error writing '/dbfs/sparse.file': Operation not supported $ cp --sparse=never sparse.file /Volumes/my_catalog/my_schema/my_volume/sparse.file
Práce se soubory pracovního prostoru
Soubory pracovního prostoru Databricks jsou soubory v pracovním prostoru, které nejsou poznámkové bloky. Soubory pracovního prostoru můžete použít k ukládání a přístupu k datům a dalším souborům uloženým společně s poznámkovými bloky a dalšími prostředky pracovního prostoru. Vzhledem k tomu, že soubory pracovního prostoru mají omezení velikosti, databricks doporučuje ukládat jenom malé datové soubory, a to především pro vývoj a testování.
Nástroj | Příklad |
---|---|
Apache Spark | spark.read.format("json").load("file:/Workspace/Users/<user-folder>/data.json").show() |
Spark SQL a Databricks SQL | SELECT * FROM json.`file:/Workspace/Users/<user-folder>/file.json`; |
Nástroje systému souborů Databricks | dbutils.fs.ls("file:/Workspace/Users/<user-folder>/") %fs ls file:/Workspace/Users/<user-folder>/ |
Databricks CLI | databricks workspace list |
Databricks REST API | POST https://<databricks-instance>/api/2.0/workspace/delete {"path": "/Workspace/Shared/code.py", "recursive": "false"} |
Příkazy prostředí Bash | %sh curl http://<address>/text.zip -o /Workspace/Users/<user-folder>/text.zip |
Instalace knihoven | %pip install /Workspace/Users/<user-folder>/my_library.whl |
Pandy | df = pd.read_csv('/Workspace/Users/<user-folder>/data.csv') |
OSS Python | os.listdir('/Workspace/Users/<user-folder>/path/to/directory') |
Poznámka:
Schéma file:/
se vyžaduje při práci s nástroji Databricks, Apache Sparkem nebo SQL.
Omezení při práci se soubory pracovního prostoru najdete v tématu Omezení.
Kde jsou odstraněné soubory pracovního prostoru?
Odstraněním souboru pracovního prostoru se odešle do koše. Soubory můžete obnovit nebo trvale odstranit z koše pomocí uživatelského rozhraní.
Viz Odstranění objektu.
Práce se soubory v cloudovém úložišti objektů
Databricks doporučuje používat svazky katalogu Unity ke konfiguraci zabezpečeného přístupu k souborům v cloudovém úložišti objektů. Pokud se rozhodnete přímo přistupovat k datům v cloudovém úložišti objektů pomocí identifikátorů URI, musíte nakonfigurovat oprávnění. Viz Správa externích umístění, externích tabulek a externích svazků.
Následující příklady používají identifikátory URI pro přístup k datům v cloudovém úložišti objektů:
Nástroj | Příklad |
---|---|
Apache Spark | spark.read.format("json").load("abfss://container-name@storage-account-name.dfs.core.windows.net/path/file.json").show() |
Spark SQL a Databricks SQL | SELECT * FROM csv.`abfss://container-name@storage-account-name.dfs.core.windows.net/path/file.json`; LIST 'abfss://container-name@storage-account-name.dfs.core.windows.net/path'; |
Nástroje systému souborů Databricks | dbutils.fs.ls("abfss://container-name@storage-account-name.dfs.core.windows.net/path/") %fs ls abfss://container-name@storage-account-name.dfs.core.windows.net/path/ |
Databricks CLI | Nepodporováno |
Databricks REST API | Nepodporováno |
Příkazy prostředí Bash | Nepodporováno |
Instalace knihoven | %pip install abfss://container-name@storage-account-name.dfs.core.windows.net/path/to/library.whl |
Pandy | Nepodporováno |
OSS Python | Nepodporováno |
Poznámka:
Práce se soubory v připojeních DBFS a kořenovém adresáři DBFS
Připojení DBFS se nedají zabezpečit pomocí katalogu Unity a databricks už nedoporučují. Data uložená v kořenovém adresáři DBFS jsou přístupná všem uživatelům v pracovním prostoru. Databricks doporučuje ukládat jakýkoli citlivý nebo produkční kód nebo data do kořenového adresáře DBFS. Podívejte se, co je DBFS?
Nástroj | Příklad |
---|---|
Apache Spark | spark.read.format("json").load("/mnt/path/to/data.json").show() |
Spark SQL a Databricks SQL | SELECT * FROM json.`/mnt/path/to/data.json`; |
Nástroje systému souborů Databricks | dbutils.fs.ls("/mnt/path") %fs ls /mnt/path |
Databricks CLI | databricks fs cp dbfs:/mnt/path/to/remote/file /path/to/local/file |
Databricks REST API | POST https://<host>/api/2.0/dbfs/delete --data '{ "path": "/tmp/HelloWorld.txt" }' |
Příkazy prostředí Bash | %sh curl http://<address>/text.zip > /dbfs/mnt/tmp/text.zip |
Instalace knihoven | %pip install /dbfs/mnt/path/to/my_library.whl |
Pandy | df = pd.read_csv('/dbfs/mnt/path/to/data.csv') |
OSS Python | os.listdir('/dbfs/mnt/path/to/directory') |
Poznámka:
Schéma dbfs:/
se vyžaduje při práci s rozhraním příkazového řádku Databricks.
Práce se soubory v dočasném úložišti připojeném k uzlu ovladače
Dočasné úložiště připojené k uzlu ovladače je blokové úložiště s integrovanou cestou založenou na POSIX. Všechna data uložená v tomto umístění zmizí, když se cluster ukončí nebo restartuje.
Nástroj | Příklad |
---|---|
Apache Spark | Nepodporováno |
Spark SQL a Databricks SQL | Nepodporováno |
Nástroje systému souborů Databricks | dbutils.fs.ls("file:/path") %fs ls file:/path |
Databricks CLI | Nepodporováno |
Databricks REST API | Nepodporováno |
Příkazy prostředí Bash | %sh curl http://<address>/text.zip > /tmp/text.zip |
Instalace knihoven | Nepodporováno |
Pandy | df = pd.read_csv('/path/to/data.csv') |
OSS Python | os.listdir('/path/to/directory') |
Poznámka:
Schéma file:/
se vyžaduje při práci s nástroji Databricks.
Přesun dat z dočasného úložiště do svazků
Možná budete chtít přistupovat k datům staženým nebo uloženým do dočasného úložiště pomocí Apache Sparku. Vzhledem k tomu, že dočasné úložiště je připojené k ovladači a Spark je distribuovaný modul pro zpracování, ne všechny operace můžou přímo přistupovat k datům. Předpokládejme, že musíte přesunout data ze systému souborů ovladače do svazků katalogu Unity. V takovém případě můžete kopírovat soubory pomocí příkazů magic nebo nástrojů Databricks, jako v následujících příkladech:
dbutils.fs.cp ("file:/<path>", "/Volumes/<catalog>/<schema>/<volume>/<path>")
%sh cp /<path> /Volumes/<catalog>/<schema>/<volume>/<path>
%fs cp file:/<path> /Volumes/<catalog>/<schema>/<volume>/<path>
Další materiály
Informace o nahrávání místních souborů nebo stahování internetových souborů do Azure Databricks najdete v tématu Nahrání souborů do Azure Databricks.