Sdílet prostřednictvím


Rychlý start: Analýza textového obsahu

Začněte pracovat se sadami Content Safety Studio, REST API nebo klientskými sadami SDK, abyste mohli provádět základní moderování textu. Služba Azure AI Content Safety poskytuje algoritmy AI pro označování problematického obsahu. Pokud si to chcete vyzkoušet, postupujte podle těchto kroků.

Další informace o moderování textu najdete na stránce konceptů kategorií škod. Informace o limitech vstupu rozhraní API najdete v části Požadavky na vstup v části Přehled.

Poznámka:

Ukázková data a kód můžou obsahovat urážlivý obsah. Doporučuje se, aby uživatel rozhodoval.

Požadavky

  • Předplatné Azure – Vytvoření předplatného zdarma
  • Jakmile budete mít předplatné Azure, vytvořte na webu Azure Portal prostředek zabezpečení obsahu, abyste získali svůj klíč a koncový bod. Zadejte jedinečný název vašeho prostředku, vyberte své předplatné a vyberte skupinu prostředků, podporovanou oblast (viz Dostupnost oblastí) a podporovanou cenovou úroveň. Pak vyberte Vytvořit.
    • Nasazení prostředku trvá několik minut. Po dokončení vyberte přejít k prostředku. V levém podokně v části Správa prostředků vyberte Klíč předplatného a koncový bod. Koncový bod a jeden z klíčů se používají k volání rozhraní API.
  • Nainstalovaný cURL

Analýza obsahu textu

Následující část vás provede ukázkovým požadavkem s cURL. Vložte následující příkaz do textového editoru a proveďte následující změny.

  1. Nahraďte <endpoint> adresou URL koncového bodu přidruženou k vašemu prostředku.
  2. Nahraďte <your_subscription_key> jedním z klíčů, které jsou součástí vašeho prostředku.
  3. Volitelně můžete pole v textu nahradit "text" vlastním textem, který chcete analyzovat.

    Tip

    Velikost a členitost textu

    Viz Požadavky na vstup pro omezení maximální délky textu.

curl --location --request POST '<endpoint>/contentsafety/text:analyze?api-version=2024-09-01' \
--header 'Ocp-Apim-Subscription-Key: <your_subscription_key>' \
--header 'Content-Type: application/json' \
--data-raw '{
  "text": "I hate you",
  "categories": ["Hate", "Sexual", "SelfHarm", "Violence"],
  "blocklistNames": ["string"],
  "haltOnBlocklistHit": true,
  "outputType": "FourSeverityLevels"
}'

Následující pole musí být zahrnuta v adrese URL:

Název Požadováno Popis Typ
Verze rozhraní API Požaduje se Toto je verze rozhraní API, která se má zkontrolovat. Aktuální verze je: api-version=2024-09-01. Příklad: <endpoint>/contentsafety/text:analyze?api-version=2024-09-01 String

Parametry v textu požadavku jsou definovány v této tabulce:

Název Požadováno Popis Typ
text Požaduje se Jedná se o nezpracovaný text, který se má zkontrolovat. Můžete zahrnout i jiné znaky, které nejsou ascii. String
Kategorie Volitelné Předpokládá se, že se jedná o pole názvů kategorií. Seznam dostupných názvů kategorií najdete v průvodci kategoriemi škod. Pokud nejsou zadány žádné kategorie, použijí se všechny čtyři kategorie. K získání skóre v jednom požadavku používáme více kategorií. String
blocklistNames Volitelné Název seznamu blokovaných textu Podporují pouze následující znaky: 0-9 A-Z a-z - . _ ~. Tady můžete připojit více názvů seznamů. Pole
haltOnBlocklistHit Volitelné Pokud je nastavená hodnota true, nebudou se provádět další analýzy škodlivého obsahu v případech, kdy jsou nalezeny seznamy blokovaných položek. Při nastavení budou falseprovedeny všechny analýzy škodlivého obsahu bez ohledu na to, zda jsou nalezeny seznamy blokovaných položek nebo nikoli. Logická hodnota
outputType Volitelné "FourSeverityLevels" nebo "EightSeverityLevels". Závažnosti výstupu ve čtyřech nebo osmi úrovních, může být 0,2,4,6 hodnota nebo 0,1,2,3,4,5,6,7. String

Podívejte se na následující text ukázkové žádosti:

{
  "text": "I hate you",
  "categories": ["Hate", "Sexual", "SelfHarm", "Violence"],
  "blocklistNames": ["array"],
  "haltOnBlocklistHit": false,
  "outputType": "FourSeverityLevels"
}

Otevřete okno příkazového řádku, vložte upravený příkaz cURL a spusťte ho.

Výstup

Ve výstupu konzoly by se měly zobrazit výsledky moderování textu jako data JSON. Příklad:

{
  "blocklistsMatch": [
    {
      "blocklistName": "string",
      "blocklistItemId": "string",
      "blocklistItemText": "string"
    }
  ],
  "categoriesAnalysis": [
    {
      "category": "Hate",
      "severity": 2
    },
    {
      "category": "SelfHarm",
      "severity": 0
    },
    {
      "category": "Sexual",
      "severity": 0
    },
    {
      "category": "Violence",
      "severity": 0
    }
  ]
}

Pole JSON ve výstupu jsou definována tady:

Název Popis Typ
categoriesAnalysis Každá výstupní třída, kterou rozhraní API predikuje. Klasifikaci lze označit více popisky. Když například vzorový text prochází modelem moderování textu, může se klasifikovat jako sexuální obsah i násilí. Kategorie škod String
Závažnost Čím vyšší je závažnost vstupního obsahu, tím větší je tato hodnota. Celé číslo

Referenční dokumentace | – ukázky balíčku zdrojového kódu | knihovny (NuGet) |

Požadavky

  • Předplatné Azure – Vytvoření předplatného zdarma
  • Integrované vývojové prostředí sady Visual Studio s povoleným vývojem desktopových aplikací .NET pro úlohy Nebo pokud nemáte v plánu používat integrované vývojové prostředí sady Visual Studio, potřebujete aktuální verzi .NET Core.
  • Jakmile budete mít předplatné Azure, vytvořte na webu Azure Portal prostředek zabezpečení obsahu, abyste získali svůj klíč a koncový bod. Zadejte jedinečný název vašeho prostředku, vyberte své předplatné a vyberte skupinu prostředků, podporovanou oblast (viz Dostupnost oblastí) a podporovanou cenovou úroveň. Pak vyberte Vytvořit.
    • Nasazení prostředku trvá několik minut. Po dokončení vyberte přejít k prostředku. V levém podokně v části Správa prostředků vyberte Klíč předplatného a koncový bod. Koncový bod a jeden z klíčů se používají k volání rozhraní API.

Nastavení aplikace

Vytvořte novou aplikaci jazyka C#.

Otevřete Visual Studio a v části Začínáme vyberte Vytvořit nový projekt. Nastavte filtry šablon na C#/Všechny platformy/konzolu. Vyberte konzolovou aplikaci (aplikaci příkazového řádku, která se dá spustit v .NET ve Windows, Linuxu a macOS) a zvolte Další. Aktualizujte název projektu na ContentSafetyQuickstart a zvolte Další. Vyberte .NET 6.0 nebo novější a zvolte Vytvořit a vytvořte projekt.

Instalace klientské sady SDK

Po vytvoření nového projektu nainstalujte klientskou sadu SDK tak, že v Průzkumník řešení kliknete pravým tlačítkem na řešení projektu a vyberete Spravovat balíčky NuGet. Ve správci balíčků, který se otevře, vyberte Procházet a vyhledejte Azure.AI.ContentSafety. Vyberte volbu Instalovat.

Vytvoření proměnných prostředí

V tomto příkladu napíšete přihlašovací údaje do proměnných prostředí na místním počítači, na kterém běží aplikace.

Pokud chcete nastavit proměnnou prostředí pro klíč a koncový bod, otevřete okno konzoly a postupujte podle pokynů pro operační systém a vývojové prostředí.

  • Pokud chcete nastavit proměnnou CONTENT_SAFETY_KEY prostředí, nahraďte YOUR_CONTENT_SAFETY_KEY jedním z klíčů pro váš prostředek.
  • Pokud chcete nastavit proměnnou CONTENT_SAFETY_ENDPOINT prostředí, nahraďte YOUR_CONTENT_SAFETY_ENDPOINT koncovým bodem vašeho prostředku.

Důležité

Pokud používáte klíč rozhraní API, uložte ho bezpečně někam jinam, například ve službě Azure Key Vault. Nezahrnujte klíč rozhraní API přímo do kódu a nikdy ho nevštěvujte veřejně.

Další informace o zabezpečení služeb AI najdete v tématu Ověřování požadavků na služby Azure AI.

setx CONTENT_SAFETY_KEY 'YOUR_CONTENT_SAFETY_KEY'
setx CONTENT_SAFETY_ENDPOINT 'YOUR_CONTENT_SAFETY_ENDPOINT'

Po přidání proměnných prostředí budete možná muset restartovat všechny spuštěné programy, které budou číst proměnné prostředí, včetně okna konzoly.

Analýza obsahu textu

V adresáři projektu otevřete dříve vytvořený soubor Program.cs . Vložte následující kód:

using System;
using Azure.AI.ContentSafety;

namespace Azure.AI.ContentSafety.Dotnet.Sample
{
  class ContentSafetySampleAnalyzeText
  {
    public static void AnalyzeText()
    {
      // retrieve the endpoint and key from the environment variables created earlier
      string endpoint = Environment.GetEnvironmentVariable("CONTENT_SAFETY_ENDPOINT");
      string key = Environment.GetEnvironmentVariable("CONTENT_SAFETY_KEY");

      ContentSafetyClient client = new ContentSafetyClient(new Uri(endpoint), new AzureKeyCredential(key));

      string text = "Your input text";

      var request = new AnalyzeTextOptions(text);

      Response<AnalyzeTextResult> response;
      try
      {
          response = client.AnalyzeText(request);
      }
      catch (RequestFailedException ex)
      {
          Console.WriteLine("Analyze text failed.\nStatus code: {0}, Error code: {1}, Error message: {2}", ex.Status, ex.ErrorCode, ex.Message);
          throw;
      }

      Console.WriteLine("\nAnalyze text succeeded:");
      Console.WriteLine("Hate severity: {0}", response.Value.CategoriesAnalysis.FirstOrDefault(a => a.Category == TextCategory.Hate)?.Severity ?? 0);
      Console.WriteLine("SelfHarm severity: {0}", response.Value.CategoriesAnalysis.FirstOrDefault(a => a.Category == TextCategory.SelfHarm)?.Severity ?? 0);
      Console.WriteLine("Sexual severity: {0}", response.Value.CategoriesAnalysis.FirstOrDefault(a => a.Category == TextCategory.Sexual)?.Severity ?? 0);
      Console.WriteLine("Violence severity: {0}", response.Value.CategoriesAnalysis.FirstOrDefault(a => a.Category == TextCategory.Violence)?.Severity ?? 0);

    }
    static void Main()
    {
        AnalyzeText();
    }
  }
}

Nahraďte "Your input text" textovým obsahem, který chcete použít.

Tip

Velikost a členitost textu

Viz Požadavky na vstup pro omezení maximální délky textu.

Sestavte a spusťte aplikaci výběrem možnosti Spustit ladění z nabídky Ladění v horní části okna integrovaného vývojového prostředí (nebo stiskněte klávesu F5).

Ukázky zdrojového kódu | knihovny referenční dokumentace | (PyPI) | |

Požadavky

  • Předplatné Azure – Vytvoření předplatného zdarma
  • Jakmile budete mít předplatné Azure, vytvořte na webu Azure Portal prostředek zabezpečení obsahu, abyste získali svůj klíč a koncový bod. Zadejte jedinečný název vašeho prostředku, vyberte své předplatné a vyberte skupinu prostředků, podporovanou oblast (viz Dostupnost oblastí) a podporovanou cenovou úroveň. Pak vyberte Vytvořit.
    • Nasazení prostředku trvá několik minut. Po dokončení vyberte přejít k prostředku. V levém podokně v části Správa prostředků vyberte Klíč předplatného a koncový bod. Koncový bod a jeden z klíčů se používají k volání rozhraní API.
  • Python 3.x
    • Vaše instalace Pythonu by měla obsahovat pip. Spuštěním na příkazovém pip --version řádku můžete zkontrolovat, jestli máte nainstalovaný pip. Získejte pip instalací nejnovější verze Pythonu.

Vytvoření proměnných prostředí

V tomto příkladu napíšete přihlašovací údaje do proměnných prostředí na místním počítači, na kterém běží aplikace.

Pokud chcete nastavit proměnnou prostředí pro klíč a koncový bod, otevřete okno konzoly a postupujte podle pokynů pro operační systém a vývojové prostředí.

  • Pokud chcete nastavit proměnnou CONTENT_SAFETY_KEY prostředí, nahraďte YOUR_CONTENT_SAFETY_KEY jedním z klíčů pro váš prostředek.
  • Pokud chcete nastavit proměnnou CONTENT_SAFETY_ENDPOINT prostředí, nahraďte YOUR_CONTENT_SAFETY_ENDPOINT koncovým bodem vašeho prostředku.

Důležité

Pokud používáte klíč rozhraní API, uložte ho bezpečně někam jinam, například ve službě Azure Key Vault. Nezahrnujte klíč rozhraní API přímo do kódu a nikdy ho nevštěvujte veřejně.

Další informace o zabezpečení služeb AI najdete v tématu Ověřování požadavků na služby Azure AI.

setx CONTENT_SAFETY_KEY 'YOUR_CONTENT_SAFETY_KEY'
setx CONTENT_SAFETY_ENDPOINT 'YOUR_CONTENT_SAFETY_ENDPOINT'

Po přidání proměnných prostředí budete možná muset restartovat všechny spuštěné programy, které budou číst proměnné prostředí, včetně okna konzoly.

Analýza obsahu textu

Následující část vás provede ukázkovým požadavkem pomocí sady Python SDK.

  1. Otevřete příkazový řádek, přejděte do složky projektu a vytvořte nový soubor s názvem quickstart.py.

  2. Spuštěním tohoto příkazu nainstalujte knihovnu Zabezpečení obsahu Azure AI:

    pip install azure-ai-contentsafety
    
  3. Do quickstart.py zkopírujte následující kód:

    import os
    from azure.ai.contentsafety import ContentSafetyClient
    from azure.core.credentials import AzureKeyCredential
    from azure.core.exceptions import HttpResponseError
    from azure.ai.contentsafety.models import AnalyzeTextOptions, TextCategory
    
    def analyze_text():
        # analyze text
        key = os.environ["CONTENT_SAFETY_KEY"]
        endpoint = os.environ["CONTENT_SAFETY_ENDPOINT"]
    
        # Create an Azure AI Content Safety client
        client = ContentSafetyClient(endpoint, AzureKeyCredential(key))
    
        # Contruct request
        request = AnalyzeTextOptions(text="Your input text")
    
        # Analyze text
        try:
            response = client.analyze_text(request)
        except HttpResponseError as e:
            print("Analyze text failed.")
            if e.error:
                print(f"Error code: {e.error.code}")
                print(f"Error message: {e.error.message}")
                raise
            print(e)
            raise
    
        hate_result = next(item for item in response.categories_analysis if item.category == TextCategory.HATE)
        self_harm_result = next(item for item in response.categories_analysis if item.category == TextCategory.SELF_HARM)
        sexual_result = next(item for item in response.categories_analysis if item.category == TextCategory.SEXUAL)
        violence_result = next(item for item in response.categories_analysis if item.category == TextCategory.VIOLENCE)
    
        if hate_result:
            print(f"Hate severity: {hate_result.severity}")
        if self_harm_result:
            print(f"SelfHarm severity: {self_harm_result.severity}")
        if sexual_result:
            print(f"Sexual severity: {sexual_result.severity}")
        if violence_result:
            print(f"Violence severity: {violence_result.severity}")
    
    if __name__ == "__main__":
        analyze_text()
    
  4. Nahraďte "Your input text" textovým obsahem, který chcete použít.

    Tip

    Velikost a členitost textu

    Viz Požadavky na vstup pro omezení maximální délky textu.

  5. Pak spusťte aplikaci pomocí příkazu v souboru rychlého python startu.

    python quickstart.py
    

Referenční dokumentace | – ukázky artefaktu zdrojového kódu | knihovny (Maven) |

Požadavky

  • Předplatné Azure – Vytvoření předplatného zdarma
  • Aktuální verze sady Java Development Kit (JDK)
  • Nástroj sestavení Gradle nebo jiný správce závislostí.
  • Jakmile budete mít předplatné Azure, vytvořte na webu Azure Portal prostředek zabezpečení obsahu, abyste získali svůj klíč a koncový bod. Zadejte jedinečný název vašeho prostředku, vyberte své předplatné a vyberte skupinu prostředků, podporovanou oblast (viz Dostupnost oblastí) a podporovanou cenovou úroveň. Pak vyberte Vytvořit.
    • Nasazení prostředku trvá několik minut. Po dokončení vyberte přejít k prostředku. V levém podokně v části Správa prostředků vyberte Klíč předplatného a koncový bod. Koncový bod a jeden z klíčů se používají k volání rozhraní API.

Nastavení aplikace

Vytvořte nový projekt Gradle.

V okně konzoly (například cmd, PowerShell nebo Bash) vytvořte pro vaši aplikaci nový adresář a přejděte do něj.

mkdir myapp && cd myapp

gradle init Spusťte příkaz z pracovního adresáře. Tento příkaz vytvoří základní soubory sestavení pro Gradle, včetně build.gradle.kts, které se používají za běhu k vytvoření a konfiguraci aplikace.

gradle init --type basic

Po zobrazení výzvy k výběru DSL vyberte Kotlin.

Spuštěním následujícího příkazu z pracovního adresáře vytvořte zdrojovou složku projektu:

mkdir -p src/main/java

Přejděte do nové složky a vytvořte soubor s názvem ContentSafetyQuickstart.java.

Instalace klientské sady SDK

V tomto rychlém startu se používá správce závislostí Gradle. Klientskou knihovnu a informace pro další správce závislostí najdete v centrálním úložišti Maven.

Vyhledejte build.gradle.kts a otevřete ho pomocí preferovaného integrovaného vývojového prostředí (IDE) nebo textového editoru. Pak zkopírujte následující konfiguraci sestavení. Tato konfigurace definuje projekt jako aplikaci Java, jejíž vstupním bodem je třída ContentSafetyQuickstart. Naimportuje knihovnu Azure AI Vision.

plugins {
    java
    application
}
application { 
    mainClass.set("ContentSafetyQuickstart")
}
repositories {
    mavenCentral()
}
dependencies {
    implementation(group = "com.azure", name = "azure-ai-contentsafety", version = "1.0.0")
}

Vytvoření proměnných prostředí

V tomto příkladu napíšete přihlašovací údaje do proměnných prostředí na místním počítači, na kterém běží aplikace.

Pokud chcete nastavit proměnnou prostředí pro klíč a koncový bod, otevřete okno konzoly a postupujte podle pokynů pro operační systém a vývojové prostředí.

  • Pokud chcete nastavit proměnnou CONTENT_SAFETY_KEY prostředí, nahraďte YOUR_CONTENT_SAFETY_KEY jedním z klíčů pro váš prostředek.
  • Pokud chcete nastavit proměnnou CONTENT_SAFETY_ENDPOINT prostředí, nahraďte YOUR_CONTENT_SAFETY_ENDPOINT koncovým bodem vašeho prostředku.

Důležité

Pokud používáte klíč rozhraní API, uložte ho bezpečně někam jinam, například ve službě Azure Key Vault. Nezahrnujte klíč rozhraní API přímo do kódu a nikdy ho nevštěvujte veřejně.

Další informace o zabezpečení služeb AI najdete v tématu Ověřování požadavků na služby Azure AI.

setx CONTENT_SAFETY_KEY 'YOUR_CONTENT_SAFETY_KEY'
setx CONTENT_SAFETY_ENDPOINT 'YOUR_CONTENT_SAFETY_ENDPOINT'

Po přidání proměnných prostředí budete možná muset restartovat všechny spuštěné programy, které budou číst proměnné prostředí, včetně okna konzoly.

Analýza obsahu textu

Otevřete ContentSafetyQuickstart.java v preferovaném editoru nebo integrovaném vývojovém prostředí (IDE) a vložte následující kód. Nahraďte <your text sample> textovým obsahem, který chcete použít.

Tip

Velikost a členitost textu

Viz Požadavky na vstup pro omezení maximální délky textu.

import com.azure.ai.contentsafety.ContentSafetyClient;
import com.azure.ai.contentsafety.ContentSafetyClientBuilder;
import com.azure.ai.contentsafety.models.AnalyzeTextOptions;
import com.azure.ai.contentsafety.models.AnalyzeTextResult;
import com.azure.ai.contentsafety.models.TextCategoriesAnalysis;
import com.azure.core.credential.KeyCredential;
import com.azure.core.util.Configuration;


public class ContentSafetyQuickstart {
    public static void main(String[] args) {

        // get endpoint and key from environment variables
        String endpoint = System.getenv("CONTENT_SAFETY_ENDPOINT");
        String key = System.getenv("CONTENT_SAFETY_KEY");
        
        ContentSafetyClient contentSafetyClient = new ContentSafetyClientBuilder()
            .credential(new KeyCredential(key))
            .endpoint(endpoint).buildClient();

        AnalyzeTextResult response = contentSafetyClient.analyzeText(new AnalyzeTextOptions("<your text sample>"));

        for (TextCategoriesAnalysis result : response.getCategoriesAnalysis()) {
            System.out.println(result.getCategory() + " severity: " + result.getSeverity());
        }
    }
}

Přejděte zpět do kořenové složky projektu a sestavte aplikaci pomocí:

gradle build

Pak ho spusťte pomocí gradle run příkazu:

gradle run

Výstup

Hate severity: 0
SelfHarm severity: 0
Sexual severity: 0
Violence severity: 0

Referenční dokumentace | – ukázky balíčku zdrojového kódu | knihovny (npm) | |

Požadavky

  • Předplatné Azure – Vytvoření předplatného zdarma
  • Aktuální verze Node.js
  • Jakmile budete mít předplatné Azure, vytvořte na webu Azure Portal prostředek zabezpečení obsahu, abyste získali svůj klíč a koncový bod. Zadejte jedinečný název vašeho prostředku, vyberte své předplatné a vyberte skupinu prostředků, podporovanou oblast (viz Dostupnost oblastí) a podporovanou cenovou úroveň. Pak vyberte Vytvořit.
    • Nasazení prostředku trvá několik minut. Po dokončení vyberte přejít k prostředku. V levém podokně v části Správa prostředků vyberte Klíč předplatného a koncový bod. Koncový bod a jeden z klíčů se používají k volání rozhraní API.

Nastavení aplikace

Vytvořte novou aplikaci Node.js. V okně konzoly (například cmd, PowerShell nebo Bash) vytvořte pro vaši aplikaci nový adresář a přejděte do něj.

mkdir myapp && cd myapp

Spuštěním příkazu npm init vytvoříte aplikaci uzlu se souborem package.json.

npm init

Instalace klientské sady SDK

@azure-rest/ai-content-safety Nainstalujte balíček npm:

npm install @azure-rest/ai-content-safety

Nainstalujte dotenv také modul pro použití proměnných prostředí:

npm install dotenv

Soubor package.json vaší aplikace se bude aktualizovat s využitím závislostí.

Vytvoření proměnných prostředí

V tomto příkladu napíšete přihlašovací údaje do proměnných prostředí na místním počítači, na kterém běží aplikace.

Pokud chcete nastavit proměnnou prostředí pro klíč a koncový bod, otevřete okno konzoly a postupujte podle pokynů pro operační systém a vývojové prostředí.

  • Pokud chcete nastavit proměnnou CONTENT_SAFETY_KEY prostředí, nahraďte YOUR_CONTENT_SAFETY_KEY jedním z klíčů pro váš prostředek.
  • Pokud chcete nastavit proměnnou CONTENT_SAFETY_ENDPOINT prostředí, nahraďte YOUR_CONTENT_SAFETY_ENDPOINT koncovým bodem vašeho prostředku.

Důležité

Pokud používáte klíč rozhraní API, uložte ho bezpečně někam jinam, například ve službě Azure Key Vault. Nezahrnujte klíč rozhraní API přímo do kódu a nikdy ho nevštěvujte veřejně.

Další informace o zabezpečení služeb AI najdete v tématu Ověřování požadavků na služby Azure AI.

setx CONTENT_SAFETY_KEY 'YOUR_CONTENT_SAFETY_KEY'
setx CONTENT_SAFETY_ENDPOINT 'YOUR_CONTENT_SAFETY_ENDPOINT'

Po přidání proměnných prostředí budete možná muset restartovat všechny spuštěné programy, které budou číst proměnné prostředí, včetně okna konzoly.

Analýza obsahu textu

Vytvořte v adresáři nový soubor index.js. Otevřete ho v preferovaném editoru nebo integrovaném vývojovém prostředí a vložte do něj následující kód. Nahraďte <your text sample> textovým obsahem, který chcete použít.

Tip

Velikost a členitost textu

Viz Požadavky na vstup pro omezení maximální délky textu.

const ContentSafetyClient = require("@azure-rest/ai-content-safety").default,
  { isUnexpected } = require("@azure-rest/ai-content-safety");
const { AzureKeyCredential } = require("@azure/core-auth");

// Load the .env file if it exists
require("dotenv").config();

async function main() {
    // get endpoint and key from environment variables
    const endpoint = process.env["CONTENT_SAFETY_ENDPOINT"];
    const key = process.env["CONTENT_SAFETY_KEY"];
    
    const credential = new AzureKeyCredential(key);
    const client = ContentSafetyClient(endpoint, credential);
    
    // replace with your own sample text string 
    const text = "<your sample text>";
    const analyzeTextOption = { text: text };
    const analyzeTextParameters = { body: analyzeTextOption };
    
    const result = await client.path("/text:analyze").post(analyzeTextParameters);
    
    if (isUnexpected(result)) {
        throw result;
    }
    
    for (let i = 0; i < result.body.categoriesAnalysis.length; i++) {
    const textCategoriesAnalysisOutput = result.body.categoriesAnalysis[i];
    console.log(
      textCategoriesAnalysisOutput.category,
      " severity: ",
      textCategoriesAnalysisOutput.severity
    );
  }
}

main().catch((err) => {
    console.error("The sample encountered an error:", err);
});

Spusťte aplikaci pomocí příkazu node pro soubor rychlého startu.

node index.js

Výstup

Hate severity:  0
SelfHarm severity:  0
Sexual severity:  0
Violence severity:  0

Vyčištění prostředků

Pokud chcete vyčistit a odebrat předplatné služeb Azure AI, můžete odstranit prostředek nebo skupinu prostředků. Odstraněním skupiny prostředků se odstraní také všechny ostatní prostředky, které jsou k ní přidružené.