Upravit

Sdílet prostřednictvím


predict_onnx_fl()

Applies to: ✅ Microsoft FabricAzure Data ExplorerAzure MonitorMicrosoft Sentinel

The function predict_onnx_fl() is a user-defined function (UDF) that predicts using an existing trained machine learning model. This model has been converted to ONNX format, serialized to string, and saved in a standard table.

Prerequisites

  • The Python plugin must be enabled on the cluster. This is required for the inline Python used in the function.

Syntax

T | invoke predict_onnx_fl(models_tbl, model_name, features_cols, pred_col)

Learn more about syntax conventions.

Parameters

Name Type Required Description
models_tbl string ✔️ The name of the table that contains all serialized models. The table must have the following columns:
name: the model name
timestamp: time of model training
model: string representation of the serialized model
model_name string ✔️ The name of the specific model to use.
features_cols synamic ✔️ An array containing the names of the features columns that are used by the model for prediction.
pred_col string ✔️ The name of the column that stores the predictions.

Function definition

You can define the function by either embedding its code as a query-defined function, or creating it as a stored function in your database, as follows:

Define the function using the following let statement. No permissions are required.

Important

A let statement can't run on its own. It must be followed by a tabular expression statement. To run a working example of predict_onnx_fl(), see Example.

let predict_onnx_fl=(samples:(*), models_tbl:(name:string, timestamp:datetime, model:string), model_name:string, features_cols:dynamic, pred_col:string)
{
    let model_str = toscalar(models_tbl | where name == model_name | top 1 by timestamp desc | project model);
    let kwargs = bag_pack('smodel', model_str, 'features_cols', features_cols, 'pred_col', pred_col);
    let code = ```if 1:
    
    import binascii
    
    smodel = kargs["smodel"]
    features_cols = kargs["features_cols"]
    pred_col = kargs["pred_col"]
    bmodel = binascii.unhexlify(smodel)
    
    features_cols = kargs["features_cols"]
    pred_col = kargs["pred_col"]
    
    import onnxruntime as rt
    sess = rt.InferenceSession(bmodel)
    input_name = sess.get_inputs()[0].name
    label_name = sess.get_outputs()[0].name
    df1 = df[features_cols]
    predictions = sess.run([label_name], {input_name: df1.values.astype(np.float32)})[0]
    
    result = df
    result[pred_col] = pd.DataFrame(predictions, columns=[pred_col])
    
    ```;
    samples | evaluate python(typeof(*), code, kwargs)
};
// Write your query to use the function here.

Example

The following example uses the invoke operator to run the function.

To use a query-defined function, invoke it after the embedded function definition.

let predict_onnx_fl=(samples:(*), models_tbl:(name:string, timestamp:datetime, model:string), model_name:string, features_cols:dynamic, pred_col:string)
{
    let model_str = toscalar(models_tbl | where name == model_name | top 1 by timestamp desc | project model);
    let kwargs = bag_pack('smodel', model_str, 'features_cols', features_cols, 'pred_col', pred_col);
    let code = ```if 1:
    
    import binascii
    
    smodel = kargs["smodel"]
    features_cols = kargs["features_cols"]
    pred_col = kargs["pred_col"]
    bmodel = binascii.unhexlify(smodel)
    
    features_cols = kargs["features_cols"]
    pred_col = kargs["pred_col"]
    
    import onnxruntime as rt
    sess = rt.InferenceSession(bmodel)
    input_name = sess.get_inputs()[0].name
    label_name = sess.get_outputs()[0].name
    df1 = df[features_cols]
    predictions = sess.run([label_name], {input_name: df1.values.astype(np.float32)})[0]
    
    result = df
    result[pred_col] = pd.DataFrame(predictions, columns=[pred_col])
    
    ```;
    samples | evaluate python(typeof(*), code, kwargs)
};
//
// Predicts room occupancy from sensors measurements, and calculates the confusion matrix
//
// Occupancy Detection is an open dataset from UCI Repository at https://archive.ics.uci.edu/ml/datasets/Occupancy+Detection+
// It contains experimental data for binary classification of room occupancy from Temperature,Humidity,Light and CO2.
// Ground-truth labels were obtained from time stamped pictures that were taken every minute
//
OccupancyDetection 
| where Test == 1
| extend pred_Occupancy=bool(0)
| invoke predict_onnx_fl(ML_Models, 'ONNX-Occupancy', pack_array('Temperature', 'Humidity', 'Light', 'CO2', 'HumidityRatio'), 'pred_Occupancy')
| summarize n=count() by Occupancy, pred_Occupancy

Output

Occupancy pred_Occupancy n
TRUE TRUE 3006
FALSE TRUE 112
TRUE FALSE 15
FALSE FALSE 9284