Sdílet prostřednictvím


Funkce okna

Platí pro: zaškrtnutí označeného ano Databricks SQL zaškrtnutí označeného ano Databricks Runtime

Funkce, které pracují se skupinou řádků, označovaných jako okno, a vypočítají návratovou hodnotu pro každý řádek na základě skupiny řádků. Funkce okna jsou užitečné pro zpracování úloh, jako je výpočet klouzavého průměru, výpočet kumulativní statistiky nebo přístup k hodnotě řádků vzhledem k relativní pozici aktuálního řádku.

Syntaxe

function OVER { window_name | ( window_name ) | window_spec }

function
  { ranking_function | analytic_function | aggregate_function }

over_clause
  OVER { window_name | ( window_name ) | window_spec }

window_spec
  ( [ PARTITION BY partition [ , ... ] ] [ order_by ] [ window_frame ] )

Parametry

  • funkce

    Funkce, která funguje v okně. Různé třídy funkcí podporují různé konfigurace specifikací oken.

  • window_name

    Identifikuje specifikaci pojmenovaného okna definovanou dotazem.

  • window_spec

    Tato klauzule definuje, jak se řádky seskupí, seřadí v rámci skupiny a se kterými řádky v rámci oddílu funkce pracuje.

    • partition

      Jeden nebo více výrazů sloužících k určení skupiny řádků definující obor, na kterém funkce pracuje. Pokud není zadaná žádná klauzule PARTITION, oddíl se skládá ze všech řádků.

    • order_by

      Klauzule ORDER BY určuje pořadí řádků v rámci oddílu.

    • window_frame

      Klauzule rámečku okna určuje posuvnou podmnožinu řádků v rámci oddílu, na kterém agregační nebo analytická funkce pracuje.

Funkci SORT BY můžete zadat jako alias pro ORDER BY.

Funkci DISTRIBUTE BY můžete také zadat jako alias funkce PARTITION BY. Cluster BY můžete použít jako alias funkce PARTITION BY v případě absence FUNKCE ORDER BY.

Příklady

> CREATE TABLE employees
   (name STRING, dept STRING, salary INT, age INT);
> INSERT INTO employees
   VALUES ('Lisa', 'Sales', 10000, 35),
          ('Evan', 'Sales', 32000, 38),
          ('Fred', 'Engineering', 21000, 28),
          ('Alex', 'Sales', 30000, 33),
          ('Tom', 'Engineering', 23000, 33),
          ('Jane', 'Marketing', 29000, 28),
          ('Jeff', 'Marketing', 35000, 38),
          ('Paul', 'Engineering', 29000, 23),
          ('Chloe', 'Engineering', 23000, 25);

> SELECT name, dept, salary, age FROM employees;
 Chloe Engineering 23000   25
  Fred Engineering 21000   28
  Paul Engineering 29000   23
 Helen   Marketing 29000   40
   Tom Engineering 23000   33
  Jane   Marketing 29000   28
  Jeff   Marketing 35000   38
  Evan       Sales 32000   38
  Lisa       Sales 10000   35
  Alex       Sales 30000   33

> SELECT name,
         dept,
         RANK() OVER (PARTITION BY dept ORDER BY salary) AS rank
  FROM employees;
  Lisa       Sales  10000    1
  Alex       Sales  30000    2
  Evan       Sales  32000    3
  Fred Engineering  21000    1
   Tom Engineering  23000    2
 Chloe Engineering  23000    2
  Paul Engineering  29000    4
 Helen   Marketing  29000    1
  Jane   Marketing  29000    1
  Jeff   Marketing  35000    3

> SELECT name,
         dept,
         DENSE_RANK() OVER (PARTITION BY dept ORDER BY salary
                            ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS dense_rank
    FROM employees;
  Lisa       Sales  10000          1
  Alex       Sales  30000          2
  Evan       Sales  32000          3
  Fred Engineering  21000          1
   Tom Engineering  23000          2
 Chloe Engineering  23000          2
  Paul Engineering  29000          3
 Helen   Marketing  29000          1
  Jane   Marketing  29000          1
  Jeff   Marketing  35000          2

> SELECT name,
         dept,
         age,
         CUME_DIST() OVER (PARTITION BY dept ORDER BY age
                           RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS cume_dist
    FROM employees;
  Alex       Sales     33 0.3333333333333333
  Lisa       Sales     35 0.6666666666666666
  Evan       Sales     38                1.0
  Paul Engineering     23               0.25
 Chloe Engineering     25               0.50
  Fred Engineering     28               0.75
   Tom Engineering     33                1.0
  Jane   Marketing     28 0.3333333333333333
  Jeff   Marketing     38 0.6666666666666666
 Helen   Marketing     40                1.0

> SELECT name,
         dept,
         salary,
         MIN(salary) OVER (PARTITION BY dept ORDER BY salary) AS min
    FROM employees;
  Lisa       Sales  10000 10000
  Alex       Sales  30000 10000
  Evan       Sales  32000 10000
 Helen   Marketing  29000 29000
  Jane   Marketing  29000 29000
  Jeff   Marketing  35000 29000
  Fred Engineering  21000 21000
   Tom Engineering  23000 21000
 Chloe Engineering  23000 21000
  Paul Engineering  29000 21000

> SELECT name,
         salary,
         LAG(salary) OVER (PARTITION BY dept ORDER BY salary) AS lag,
         LEAD(salary, 1, 0) OVER (PARTITION BY dept ORDER BY salary) AS lead
    FROM employees;
  Lisa       Sales  10000 NULL  30000
  Alex       Sales  30000 10000 32000
  Evan       Sales  32000 30000     0
  Fred Engineering  21000  NULL 23000
 Chloe Engineering  23000 21000 23000
   Tom Engineering  23000 23000 29000
  Paul Engineering  29000 23000     0
 Helen   Marketing  29000  NULL 29000
  Jane   Marketing  29000 29000 35000
  Jeff   Marketing  35000 29000     0