BinaryLoaderSaverCatalog.SaveAsBinary Metoda
Definice
Důležité
Některé informace platí pro předběžně vydaný produkt, který se může zásadně změnit, než ho výrobce nebo autor vydá. Microsoft neposkytuje žádné záruky, výslovné ani předpokládané, týkající se zde uváděných informací.
Uložte ho IDataView do binárního datového proudu.
public static void SaveAsBinary (this Microsoft.ML.DataOperationsCatalog catalog, Microsoft.ML.IDataView data, System.IO.Stream stream, bool keepHidden = false);
static member SaveAsBinary : Microsoft.ML.DataOperationsCatalog * Microsoft.ML.IDataView * System.IO.Stream * bool -> unit
<Extension()>
Public Sub SaveAsBinary (catalog As DataOperationsCatalog, data As IDataView, stream As Stream, Optional keepHidden As Boolean = false)
Parametry
- catalog
- DataOperationsCatalog
Katalog.
- data
- IDataView
Zobrazení dat, které chcete uložit.
- stream
- Stream
Datový proud, do který se má zapisovat.
- keepHidden
- Boolean
Jestli chcete zachovat skryté sloupce v datové sadě.
Příklady
using System;
using System.Collections.Generic;
using System.IO;
using Microsoft.ML;
namespace Samples.Dynamic
{
public static class SaveAndLoadFromBinary
{
public static void Example()
{
// Create a new context for ML.NET operations. It can be used for
// exception tracking and logging, as a catalog of available operations
// and as the source of randomness. Setting the seed to a fixed number
// in this example to make outputs deterministic.
var mlContext = new MLContext(seed: 0);
// Create a list of training data points.
var dataPoints = new List<DataPoint>()
{
new DataPoint(){ Label = 0, Features = 4},
new DataPoint(){ Label = 0, Features = 5},
new DataPoint(){ Label = 0, Features = 6},
new DataPoint(){ Label = 1, Features = 8},
new DataPoint(){ Label = 1, Features = 9},
};
// Convert the list of data points to an IDataView object, which is
// consumable by ML.NET API.
IDataView data = mlContext.Data.LoadFromEnumerable(dataPoints);
// Create a FileStream object and write the IDataView to it as a binary
// IDV file.
using (FileStream stream = new FileStream("data.idv", FileMode.Create))
mlContext.Data.SaveAsBinary(data, stream);
// Create an IDataView object by loading the binary IDV file.
IDataView loadedData = mlContext.Data.LoadFromBinary("data.idv");
// Inspect the data that is loaded from the previously saved binary file
var loadedDataEnumerable = mlContext.Data
.CreateEnumerable<DataPoint>(loadedData, reuseRowObject: false);
foreach (DataPoint row in loadedDataEnumerable)
Console.WriteLine($"{row.Label}, {row.Features}");
// Preview of the loaded data.
// 0, 4
// 0, 5
// 0, 6
// 1, 8
// 1, 9
}
// Example with label and feature values. A data set is a collection of such
// examples.
private class DataPoint
{
public float Label { get; set; }
public float Features { get; set; }
}
}
}