ConversionsCatalog.MapKeyToBinaryVector Metoda
Definice
Důležité
Některé informace platí pro předběžně vydaný produkt, který se může zásadně změnit, než ho výrobce nebo autor vydá. Microsoft neposkytuje žádné záruky, výslovné ani předpokládané, týkající se zde uváděných informací.
KeyToBinaryVectorMappingEstimatorVytvořte soubor , který převede typy klíčů na odpovídající binární reprezentaci původní hodnoty.
public static Microsoft.ML.Transforms.KeyToBinaryVectorMappingEstimator MapKeyToBinaryVector (this Microsoft.ML.TransformsCatalog.ConversionTransforms catalog, string outputColumnName, string inputColumnName = default);
static member MapKeyToBinaryVector : Microsoft.ML.TransformsCatalog.ConversionTransforms * string * string -> Microsoft.ML.Transforms.KeyToBinaryVectorMappingEstimator
<Extension()>
Public Function MapKeyToBinaryVector (catalog As TransformsCatalog.ConversionTransforms, outputColumnName As String, Optional inputColumnName As String = Nothing) As KeyToBinaryVectorMappingEstimator
Parametry
Katalog kategorických transformací.
- outputColumnName
- String
Název sloupce, který je výsledkem transformace inputColumnName
.
Datový typ je známý vektor Single velikosti představující vstupní hodnotu.
- inputColumnName
- String
Název sloupce, který se má transformovat. Pokud je nastavená hodnota null
, použije se jako zdroj hodnota outputColumnName
.
Datový typ je klíč nebo známý vektor klíče.
Návraty
Příklady
using System;
using System.Collections.Generic;
using Microsoft.ML;
using Microsoft.ML.Data;
namespace Samples.Dynamic
{
class MapKeyToBinaryVector
{
/// This example demonstrates the use of MapKeyToVector by mapping keys to
/// floats[] of 0 and 1, representing the number in binary format.
/// Because the ML.NET KeyType maps the missing value to zero, counting
/// starts at 1, so the uint values converted to KeyTypes will appear
/// skewed by one.
/// See https://github.com/dotnet/machinelearning/blob/main/docs/code/IDataViewTypeSystem.md#key-types
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var mlContext = new MLContext();
// Get a small dataset as an IEnumerable.
var rawData = new[] {
new DataPoint() { Timeframe = 9 },
new DataPoint() { Timeframe = 8 },
new DataPoint() { Timeframe = 8 },
new DataPoint() { Timeframe = 9 },
new DataPoint() { Timeframe = 2 },
new DataPoint() { Timeframe = 3 }
};
var data = mlContext.Data.LoadFromEnumerable(rawData);
// Constructs the ML.net pipeline
var pipeline = mlContext.Transforms.Conversion.MapKeyToBinaryVector(
"TimeframeVector", "Timeframe");
// Fits the pipeline to the data.
IDataView transformedData = pipeline.Fit(data).Transform(data);
// Getting the resulting data as an IEnumerable.
// This will contain the newly created columns.
IEnumerable<TransformedData> features = mlContext.Data.CreateEnumerable<
TransformedData>(transformedData, reuseRowObject: false);
Console.WriteLine($" Timeframe TimeframeVector");
foreach (var featureRow in features)
Console.WriteLine($"{featureRow.Timeframe}\t\t\t" +
$"{string.Join(',', featureRow.TimeframeVector)}");
// Timeframe TimeframeVector
// 10 0,1,0,0,1 //binary representation of 9, the original value
// 9 0,1,0,0,0 //binary representation of 8, the original value
// 9 0,1,0,0,0
// 10 0,1,0,0,1
// 3 0,0,0,1,0
// 4 0,0,0,1,1
}
private class DataPoint
{
[KeyType(10)]
public uint Timeframe { get; set; }
}
private class TransformedData : DataPoint
{
public float[] TimeframeVector { get; set; }
}
}
}