ExpressionCatalog.Expression Metoda
Definice
Důležité
Některé informace platí pro předběžně vydaný produkt, který se může zásadně změnit, než ho výrobce nebo autor vydá. Microsoft neposkytuje žádné záruky, výslovné ani předpokládané, týkající se zde uváděných informací.
ExpressionEstimatorVytvoří .
public static Microsoft.ML.Transforms.ExpressionEstimator Expression (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string expression, params string[] inputColumnNames);
static member Expression : Microsoft.ML.TransformsCatalog * string * string * string[] -> Microsoft.ML.Transforms.ExpressionEstimator
<Extension()>
Public Function Expression (catalog As TransformsCatalog, outputColumnName As String, expression As String, ParamArray inputColumnNames As String()) As ExpressionEstimator
Parametry
- catalog
- TransformsCatalog
Hodnota TransformsCatalog
- outputColumnName
- String
Název sloupce, který je výsledkem transformace inputColumnNames
.
Datový typ tohoto sloupce bude stejný jako datový typ vstupního sloupce.
- expression
- String
Výraz, který se má použít k inputColumnNames
vytvoření sloupce outputColumnName
.
- inputColumnNames
- String[]
Názvy vstupních sloupců.
Návraty
Příklady
using System;
using System.Collections.Generic;
using Microsoft.ML;
using Microsoft.ML.Data;
namespace Samples.Dynamic.Transforms
{
public static class Expression
{
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var mlContext = new MLContext();
// Create a small dataset as an IEnumerable.
var samples = new List<InputData>()
{
new InputData(0.5f, new[] { 1f, 0.2f }, 3, "hi", true, new[] { "zero", "one" }),
new InputData(-2.7f, new[] { 3.5f, -0.1f }, 2, "bye", false, new[] { "a", "b" }),
new InputData(1.3f, new[] { 1.9f, 3.3f }, 39, "hi", false, new[] { "0", "1" }),
new InputData(3, new[] { 3f, 3f }, 4, "hello", true, new[] { "c", "d" }),
new InputData(0, new[] { 1f, 1f }, 1, "hi", true, new[] { "zero", "one" }),
new InputData(30.4f, new[] { 10f, 4f }, 9, "bye", true, new[] { "e", "f" }),
new InputData(5.6f, new[] { 1.1f, 2.2f }, 0, "hey", false, new[] { "g", "h" }),
};
// Convert training data to IDataView.
var dataview = mlContext.Data.LoadFromEnumerable(samples);
// A pipeline that applies various expressions to the input columns.
var pipeline = mlContext.Transforms.Expression("Expr1", "(x,y)=>log(y)+x",
nameof(InputData.FloatColumn), nameof(InputData.FloatVectorColumn))
.Append(mlContext.Transforms.Expression("Expr2", "(b,s,i)=>b ? len(s) : i",
nameof(InputData.BooleanColumn), nameof(InputData.StringVectorColumn), nameof(InputData.IntColumn)))
.Append(mlContext.Transforms.Expression("Expr3", "(s,f1,f2,i)=>len(concat(s,\"a\"))+f1+f2+i",
nameof(InputData.StringColumn), nameof(InputData.FloatVectorColumn), nameof(InputData.FloatColumn), nameof(InputData.IntColumn)))
.Append(mlContext.Transforms.Expression("Expr4", "(x,y)=>cos(x+pi())*y",
nameof(InputData.FloatColumn), nameof(InputData.IntColumn)));
// The transformed data.
var transformedData = pipeline.Fit(dataview).Transform(dataview);
// Now let's take a look at what this concatenation did.
// We can extract the newly created column as an IEnumerable of
// TransformedData.
var featuresColumn = mlContext.Data.CreateEnumerable<TransformedData>(
transformedData, reuseRowObject: false);
// And we can write out a few rows
Console.WriteLine($"Features column obtained post-transformation.");
foreach (var featureRow in featuresColumn)
{
Console.Write(string.Join(" ", featureRow.Expr1));
Console.Write(" ");
Console.Write(string.Join(" ", featureRow.Expr2));
Console.Write(" ");
Console.Write(string.Join(" ", featureRow.Expr3));
Console.Write(" ");
Console.WriteLine(featureRow.Expr4);
}
// Expected output:
// Features column obtained post-transformation.
// 0.5 - 1.109438 4 3 7.5 6.7 - 2.63274768567112
// - 1.447237 NaN 2 2 6.8 3.2 1.80814432479224
// 1.941854 2.493922 39 39 45.2 46.6 - 10.4324561082543
// 4.098612 4.098612 1 1 16 16 3.95996998640178
// 0 0 4 3 5 5 - 1
// 32.70258 31.78629 1 1 53.4 47.4 - 4.74149076052604
// 5.69531 6.388457 0 0 10.7 11.8 0
}
private class InputData
{
public float FloatColumn;
[VectorType(3)]
public float[] FloatVectorColumn;
public int IntColumn;
public string StringColumn;
public bool BooleanColumn;
[VectorType(2)]
public string[] StringVectorColumn;
public InputData(float f, float[] fv, int i, string s, bool b, string[] sv)
{
FloatColumn = f;
FloatVectorColumn = fv;
IntColumn = i;
StringColumn = s;
BooleanColumn = b;
StringVectorColumn = sv;
}
}
private sealed class TransformedData
{
public float[] Expr1 { get; set; }
public int[] Expr2 { get; set; }
public float[] Expr3 { get; set; }
public double Expr4 { get; set; }
}
}
}