Sdílet prostřednictvím


ModelOperationsCatalog.Load Metoda

Definice

Přetížení

Load(Stream, DataViewSchema)

Načtěte model a jeho vstupní schéma ze streamu.

Load(String, DataViewSchema)

Načtěte model a jeho vstupní schéma ze souboru.

Load(Stream, DataViewSchema)

Načtěte model a jeho vstupní schéma ze streamu.

public Microsoft.ML.ITransformer Load (System.IO.Stream stream, out Microsoft.ML.DataViewSchema inputSchema);
member this.Load : System.IO.Stream * DataViewSchema -> Microsoft.ML.ITransformer
Public Function Load (stream As Stream, ByRef inputSchema As DataViewSchema) As ITransformer

Parametry

stream
Stream

Čitelný, vyhledatelný datový proud, ze které se má načíst.

inputSchema
DataViewSchema

Bude obsahovat vstupní schéma modelu. Pokud byl model uložen bez popisu vstupu, nebude k dispozici žádné vstupní schéma. V tomto případě to může být null.

Návraty

Načtený model.

Příklady

using System;
using System.Collections.Generic;
using System.IO;
using Microsoft.ML;

namespace Samples.Dynamic.ModelOperations
{
    public class SaveLoadModel
    {
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var mlContext = new MLContext();

            // Generate sample data.
            var data = new List<Data>()
            {
                new Data() { Value="abc" }
            };

            // Convert data to IDataView.
            var dataView = mlContext.Data.LoadFromEnumerable(data);
            var inputColumnName = nameof(Data.Value);
            var outputColumnName = nameof(Transformation.Key);

            // Transform.
            ITransformer model = mlContext.Transforms.Conversion
                .MapValueToKey(outputColumnName, inputColumnName).Fit(dataView);

            // Save model.
            mlContext.Model.Save(model, dataView.Schema, "model.zip");

            // Load model.
            using (var file = File.OpenRead("model.zip"))
                model = mlContext.Model.Load(file, out DataViewSchema schema);

            // Create a prediction engine from the model for feeding new data.
            var engine = mlContext.Model
                .CreatePredictionEngine<Data, Transformation>(model);

            var transformation = engine.Predict(new Data() { Value = "abc" });

            // Print transformation to console.
            Console.WriteLine("Value: {0}\t Key:{1}", transformation.Value,
                transformation.Key);

            // Value: abc       Key:1

        }

        private class Data
        {
            public string Value { get; set; }
        }

        private class Transformation
        {
            public string Value { get; set; }
            public uint Key { get; set; }
        }
    }
}

Platí pro

Load(String, DataViewSchema)

Načtěte model a jeho vstupní schéma ze souboru.

public Microsoft.ML.ITransformer Load (string filePath, out Microsoft.ML.DataViewSchema inputSchema);
member this.Load : string * DataViewSchema -> Microsoft.ML.ITransformer
Public Function Load (filePath As String, ByRef inputSchema As DataViewSchema) As ITransformer

Parametry

filePath
String

Cesta k souboru, ze kterého se má model číst.

inputSchema
DataViewSchema

Bude obsahovat vstupní schéma modelu. Pokud byl model uložen bez popisu vstupu, nebude k dispozici žádné vstupní schéma. V tomto případě to může být null.

Návraty

Načtený model.

Příklady

using System;
using System.Collections.Generic;
using System.IO;
using Microsoft.ML;

namespace Samples.Dynamic.ModelOperations
{
    public class SaveLoadModelFile
    {
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var mlContext = new MLContext();

            // Generate sample data.
            var data = new List<Data>()
            {
                new Data() { Value="abc" }
            };

            // Convert data to IDataView.
            var dataView = mlContext.Data.LoadFromEnumerable(data);
            var inputColumnName = nameof(Data.Value);
            var outputColumnName = nameof(Transformation.Key);

            // Transform.
            ITransformer model = mlContext.Transforms.Conversion
                .MapValueToKey(outputColumnName, inputColumnName).Fit(dataView);

            // Save model.
            mlContext.Model.Save(model, dataView.Schema, "model.zip");

            // Load model.
            model = mlContext.Model.Load("model.zip", out DataViewSchema schema);

            // Create a prediction engine from the model for feeding new data.
            var engine = mlContext.Model
                .CreatePredictionEngine<Data, Transformation>(model);

            var transformation = engine.Predict(new Data() { Value = "abc" });

            // Print transformation to console.
            Console.WriteLine("Value: {0}\t Key:{1}", transformation.Value,
                transformation.Key);

            // Value: abc       Key:1

        }

        private class Data
        {
            public string Value { get; set; }
        }

        private class Transformation
        {
            public string Value { get; set; }
            public uint Key { get; set; }
        }
    }
}

Platí pro