Math.Atan2(Double, Double) Metoda
Definice
Důležité
Některé informace platí pro předběžně vydaný produkt, který se může zásadně změnit, než ho výrobce nebo autor vydá. Microsoft neposkytuje žádné záruky, výslovné ani předpokládané, týkající se zde uváděných informací.
Vrátí úhel, jehož tangens je podílem dvou zadaných čísel.
public:
static double Atan2(double y, double x);
public static double Atan2 (double y, double x);
static member Atan2 : double * double -> double
Public Shared Function Atan2 (y As Double, x As Double) As Double
Parametry
- y
- Double
Souřadnice y bodu.
- x
- Double
Souřadnice x bodu.
Návraty
Úhel, θ, měřený v radiánech, takový, že tan(θ) = y
/ x
, kde (x
, y
) je bod v kartézské rovině. Sledujte následující:
Pro (
x
,y
) v kvadrantu 1, 0 < θ < π/2.Pro (
x
,y
) v kvadrantu 2 π/2 < θ ≤ π.Pro (
x
,y
) v kvadrantu 3, -π ≤ θ < -π/2.Pro (
x
,y
) v kvadrantu 4, -π/2 < θ < 0.
Pro body na hranicích kvadrantů je návratová hodnota následující:
Pokud je y 0 a x není záporné, θ = 0.
Pokud je y 0 a x záporné, θ = π.
Pokud je y pozitivní a x je 0, θ = π/2.
Pokud je hodnota y záporná a x je 0, θ = -π/2.
Pokud je y 0 a x 0, θ = 0.
Pokud x
nebo y
je NaN, nebo pokud x
a y
jsou nebo PositiveInfinityNegativeInfinity, vrátí metoda .NaN
Příklady
Následující příklad ukazuje, jak vypočítat arkusangens úhlu a vektoru. Výsledná hodnota se zobrazí v konzole.
// This example demonstrates Math.Atan()
// Math.Atan2()
// Math.Tan()
using namespace System;
int main()
{
double x = 1.0;
double y = 2.0;
double angle;
double radians;
double result;
// Calculate the tangent of 30 degrees.
angle = 30;
radians = angle * (Math::PI / 180);
result = Math::Tan( radians );
Console::WriteLine( "The tangent of 30 degrees is {0}.", result );
// Calculate the arctangent of the previous tangent.
radians = Math::Atan( result );
angle = radians * (180 / Math::PI);
Console::WriteLine( "The previous tangent is equivalent to {0} degrees.", angle );
// Calculate the arctangent of an angle.
String^ line1 = "{0}The arctangent of the angle formed by the x-axis and ";
String^ line2 = "a vector to point ({0},{1}) is {2}, ";
String^ line3 = "which is equivalent to {0} degrees.";
radians = Math::Atan2( y, x );
angle = radians * (180 / Math::PI);
Console::WriteLine( line1, Environment::NewLine );
Console::WriteLine( line2, x, y, radians );
Console::WriteLine( line3, angle );
}
/*
This example produces the following results:
The tangent of 30 degrees is 0.577350269189626.
The previous tangent is equivalent to 30 degrees.
The arctangent of the angle formed by the x-axis and
a vector to point (1,2) is 1.10714871779409,
which is equivalent to 63.434948822922 degrees.
*/
// This example demonstrates Math.Atan()
// Math.Atan2()
// Math.Tan()
using System;
class Sample
{
public static void Main()
{
double x = 1.0;
double y = 2.0;
double angle;
double radians;
double result;
// Calculate the tangent of 30 degrees.
angle = 30;
radians = angle * (Math.PI/180);
result = Math.Tan(radians);
Console.WriteLine("The tangent of 30 degrees is {0}.", result);
// Calculate the arctangent of the previous tangent.
radians = Math.Atan(result);
angle = radians * (180/Math.PI);
Console.WriteLine("The previous tangent is equivalent to {0} degrees.", angle);
// Calculate the arctangent of an angle.
String line1 = "{0}The arctangent of the angle formed by the x-axis and ";
String line2 = "a vector to point ({0},{1}) is {2}, ";
String line3 = "which is equivalent to {0} degrees.";
radians = Math.Atan2(y, x);
angle = radians * (180/Math.PI);
Console.WriteLine(line1, Environment.NewLine);
Console.WriteLine(line2, x, y, radians);
Console.WriteLine(line3, angle);
}
}
/*
This example produces the following results:
The tangent of 30 degrees is 0.577350269189626.
The previous tangent is equivalent to 30 degrees.
The arctangent of the angle formed by the x-axis and
a vector to point (1,2) is 1.10714871779409,
which is equivalent to 63.434948822922 degrees.
*/
// This example demonstrates Math.Atan()
// Math.Atan2()
// Math.Tan()
// Functions 'atan', 'atan2', and 'tan' may be used instead.
open System
[<EntryPoint>]
let main _ =
let x = 1.
let y = 2.
// Calculate the tangent of 30 degrees.
let angle = 30.
let radians = angle * (Math.PI / 180.)
let result = Math.Tan radians
printfn $"The tangent of 30 degrees is {result}."
// Calculate the arctangent of the previous tangent.
let radians = Math.Atan result
let angle = radians * (180. / Math.PI)
printfn $"The previous tangent is equivalent to {angle} degrees."
// Calculate the arctangent of an angle.
let radians = Math.Atan2(y, x)
let angle = radians * (180. / Math.PI)
printfn
$"""The arctangent of the angle formed by the x-axis and
a vector to point ({x},{y}) is {radians},
which is equivalent to {angle} degrees."""
0
//This example produces the following results:
// The tangent of 30 degrees is 0.577350269189626.
// The previous tangent is equivalent to 30 degrees.
//
// The arctangent of the angle formed by the x-axis and
// a vector to point (1,2) is 1.10714871779409,
// which is equivalent to 63.434948822922 degrees.
' This example demonstrates Math.Atan()
' Math.Atan2()
' Math.Tan()
Class Sample
Public Shared Sub Main()
Dim x As Double = 1.0
Dim y As Double = 2.0
Dim angle As Double
Dim radians As Double
Dim result As Double
' Calculate the tangent of 30 degrees.
angle = 30
radians = angle *(Math.PI / 180)
result = Math.Tan(radians)
Console.WriteLine("The tangent of 30 degrees is {0}.", result)
' Calculate the arctangent of the previous tangent.
radians = Math.Atan(result)
angle = radians *(180 / Math.PI)
Console.WriteLine("The previous tangent is equivalent to {0} degrees.", angle)
' Calculate the arctangent of an angle.
Dim line1 As [String] = "{0}The arctangent of the angle formed by the x-axis and "
Dim line2 As [String] = "a vector to point ({0},{1}) is {2}, "
Dim line3 As [String] = "which is equivalent to {0} degrees."
radians = Math.Atan2(y, x)
angle = radians *(180 / Math.PI)
Console.WriteLine(line1, Environment.NewLine)
Console.WriteLine(line2, x, y, radians)
Console.WriteLine(line3, angle)
End Sub
End Class
'
'This example produces the following results:
'
'The tangent of 30 degrees is 0.577350269189626.
'The previous tangent is equivalent to 30 degrees.
'
'The arctangent of the angle formed by the x-axis and
'a vector to point (1,2) is 1.10714871779409,
'which is equivalent to 63.434948822922 degrees.
'
Poznámky
Návratová hodnota je úhel v kartézské rovině vytvořené osou x a vektor začínající od počátku (0,0) a končící v bodě (x,y).
Tato metoda volá základní modul runtime jazyka C a přesný výsledek nebo platný rozsah vstupu se může v různých operačních systémech nebo architekturách lišit.