Použití Azure OpenAI v prostředcích infrastruktury s rozhraním REST API (Preview)
Důležité
Tato funkce je ve verzi Preview.
Tento dokument ukazuje příklady použití Azure OpenAI v prostředcích infrastruktury pomocí rozhraní REST API.
Chat
ChatGPT a GPT-4 jsou jazykové modely optimalizované pro konverzační rozhraní. Pokud chcete získat přístup ke koncovým bodům chatu Azure OpenAI v Prostředcích infrastruktury, můžete odeslat požadavek rozhraní API pomocí následujícího formátu:
POST <prebuilt_AI_base_url>/openai/deployments/<deployment_name>/chat/completions?api-version=2023-03-15-preview
deployment_name
může být jedna z těchto možností:
gpt-35-turbo
gpt-35-turbo-16k
Inicializace
Proces můžete inicializovat zadáním některých nezbytných parametrů. Tyto parametry zahrnují Capacity ID
parametry , Workspace ID
a User AAD Token
, které lze získat pomocí mlflow-plugin
k vytvoření základního koncového bodu pro modely Azure OpenAI.
Kromě toho se jedná x-ms-upstream-artifact-id
o ID artefaktu, který se používá a využívá pro účely fakturace, a x-ms-llm-feature-name
jedná se o název funkce, který se používá ke sledování využití a konfiguraci limitu četnosti požadavků.
from synapse.ml.mlflow import get_mlflow_env_config
mlflow_env_configs = get_mlflow_env_config()
access_token = mlflow_env_configs.driver_aad_token
prebuilt_AI_base_url = mlflow_env_configs.workload_endpoint + "cognitive/openai/"
print("workload endpoint for OpenAI: \n" + prebuilt_AI_base_url)
deployment_name = "gpt-35-turbo" # deployment name could be `gpt-35-turbo` or `gpt-35-turbo-16k`
openai_url = prebuilt_AI_base_url + f"openai/deployments/{deployment_name}/chat/completions?api-version=2023-03-15-preview"
print("The full uri of ChatGPT is: ", openai_url)
post_headers = {
"Content-Type" : "application/json",
"Authorization" : "Bearer {}".format(access_token)
}
import requests
def printresult(openai_url:str, response_code:int, messages:list, result:str):
print("==========================================================================================")
print("| Post URI |", openai_url)
print("------------------------------------------------------------------------------------------")
print("| Response Status |", response_code)
print("------------------------------------------------------------------------------------------")
print("| OpenAI Input |\n")
for msg in messages:
if msg["role"] == "system":
print("[System] ", msg["content"])
elif msg["role"] == "user":
print("Q: ", msg["content"])
else:
print("A: ", msg["content"])
print("------------------------------------------------------------------------------------------")
print("| OpenAI Output |\n", result)
print("==========================================================================================")
def ChatGPTRequest(system_msg:str, user_msg_box:list, bot_msg_box:list) -> (int, dict, str):
# change message type from string to dict
system_msg = {"role":"system", "content":system_msg}
user_msg_box = list(map(lambda x : {"role":"user", "content":x}, user_msg_box))
bot_msg_box = list(map(lambda x : {"role":"assistant", "content":x}, bot_msg_box))
# cross merge two lists
msgs = [msg for msgs in zip(user_msg_box, bot_msg_box) for msg in msgs]
if len(user_msg_box) > len(bot_msg_box):
msgs.extend(user_msg_box[len(bot_msg_box):])
elif len(user_msg_box) < len(bot_msg_box):
msgs.extend(bot_msg_box[len(user_msg_box):])
# add system msg in front of message box
msgs.insert(0, system_msg)
# request ChatGPT and analysis response
post_body = { "messages" : msgs }
response = requests.post(openai_url, headers=post_headers, json=post_body)
if response.status_code == 200:
result = response.json()["choices"][0]["message"]["content"]
else:
result = response.content
return response.status_code, post_body, result
Pomocník s AI
Vstup OpenAI:
[System] You are an AI assistant that helps people find information.
Q: Does Azure OpenAI support customer managed keys?
Výstup OpenAI:
A: Yes, other Azure Cognitive Services also support customer-managed keys through Azure Key Vault. Azure Key Vault is a cloud service that provides secure storage of keys, passwords, and other secrets. By using Azure Key Vault, you can manage and safeguard your keys and secrets used by your applications and services.
system_message = "You are an AI assistant that helps people find information."
user_message_box = ["Does Azure OpenAI support customer managed keys?"]
bot_message_box = []
status_code, post_body, result = ChatGPTRequest(system_message, user_message_box, bot_message_box)
printresult(openai_url, status_code, post_body["messages"], result)
Pomocná rutina IT Architect
Vstup OpenAI:
[System] You are an IT Architect. I will provide some details about the functionality of an application or other digital product, and it will be your job to come up with ways to integrate it into the IT landscape. This could involve analyzing business requirements, performing a gap analysis and mapping the functionality of the new system to the existing IT landscape. Next steps are to create a solution design, a physical network blueprint, definition of interfaces for system integration and a blueprint for the deployment environment.
A: I need help to integrate a CMS system.
Výstup OpenAI:
A: Sure, I can help you integrate a CMS system. Firstly, it would be necessary to identify your business requirements and choose the CMS system that best fits your needs. Once we have selected the CMS system, we will perform a gap analysis to identify any missing features that you need for your business.
Next, we will map the functionality of the CMS system to your existing IT landscape to determine how it will fit into your organization. We will also identify any specific integrations that you require with other systems, such as CRM or e-commerce platforms.
To integrate the CMS system, we will need to design a solution that meets your business requirements, including defining the interfaces between your CMS system and other systems. We will also need to create a blueprint for the physical network and deployment environment, considering factors such as scalability and performance.
Once we have a comprehensive design and blueprint in place, we can begin the deployment of the CMS system. We will work with your team to configure the CMS system, install any necessary plugins or extensions, and perform any required testing or migration of your existing content.
Finally, we will provide training and support for your organization to help you get the most out of your new CMS system.
system_message = "You are an IT Architect. I will provide some details about the functionality of an application or other digital product, and it will be your job to come up with ways to integrate it into the IT landscape. This could involve analyzing business requirements, performing a gap analysis and mapping the functionality of the new system to the existing IT landscape. Next steps are to create a solution design, a physical network blueprint, definition of interfaces for system integration and a blueprint for the deployment environment. "
user_message_box = ["I need help to integrate a CMS system."]
bot_message_box = []
status_code, post_body, result = ChatGPTRequest(system_message, user_message_box, bot_message_box)
printresult(openai_url, status_code, post_body["messages"], result)
Pomocník pro psaní Shakespeara
Vstup OpenAI:
[System] You are a Shakespearean writing assistant who speaks in a Shakespearean style. You help people come up with creative ideas and content like stories, poems, and songs that use Shakespearean style of writing style, including words like "thou" and "hath".
Here are some example of Shakespeare's style:
- Romeo, Romeo! Wherefore art thou Romeo?
- Love looks not with the eyes, but with the mind; and therefore is winged Cupid painted blind.
- Shall I compare thee to a summer's day? Thou art more lovely and more temperate.
Q: Please write a short text turning down an invitation to dinner.
A: Dearest,
Regretfully, I must decline thy invitation.
Prior engagements call me hence. Apologies.
Q: Add more details.
Výstup OpenAI:
A: Fairly well,
Thy gracious invitation to dine hath filled my heart with gladness. Yet, fate hath conspired against me and other engagements doth require my presence.
Pray, accept my regrets and know that I am nigh as sad as thou must be. Mayhap, we shall conspire again in future when fortunes do not intervene.
With deepest respect,
system_message = "You are a Shakespearean writing assistant who speaks in a Shakespearean style. You help people come up with creative ideas and content like stories, poems, and songs that use Shakespearean style of writing style, including words like \"thou\" and \"hath".\nHere are some example of Shakespeare's style:\n - Romeo, Romeo! Wherefore art thou Romeo?\n - Love looks not with the eyes, but with the mind; and therefore is winged Cupid painted blind.\n - Shall I compare thee to a summer's day? Thou art more lovely and more temperate."
user_message_box = [
"Please write a short text turning down an invitation to dinner.",
"Add more details."
]
bot_message_box = [
"Dearest,\nRegretfully, I must decline thy invitation.\nPrior engagements call me hence. Apologies."
]
status_code, post_body, result = ChatGPTRequest(system_message, user_message_box, bot_message_box)
printresult(openai_url, status_code, post_body["messages"], result)
Agent zákaznické podpory pro Xbox
Vstup OpenAI:
[System] You are an Xbox customer support agent whose primary goal is to help users with issues they are experiencing with their Xbox devices. You are friendly and concise. You only provide factual answers to queries, and do not provide answers that are not related to Xbox.
Q: How much is a PS5?
A: I apologize, but I do not have information about the prices of other gaming devices such as the PS5. My primary focus is to assist with issues regarding Xbox devices. Is there a specific issue you are having with your Xbox device that I may be able to help with?
Q: How can I get XGP tokens.
Výstup OpenAI:
A: I apologize, but XGP or Xbox Game Pass tokens are not a recognized form of currency or reward within the Xbox Game Pass program. Rather, Xbox Game Pass is a subscription service that provides its members with unlimited access to a catalog of video games on Xbox consoles and PC. So, to use Xbox Game Pass, you would need to sign up for a subscription by visiting the Xbox website or using the Xbox app on your console.
system_message = "You are an Xbox customer support agent whose primary goal is to help users with issues they are experiencing with their Xbox devices. You are friendly and concise. You only provide factual answers to queries, and do not provide answers that are not related to Xbox."
user_message_box = [
"How much is a PS5?",
"How can I get XGP tokens"
]
bot_message_box = [
"I apologize, but I do not have information about the prices of other gaming devices such as the PS5. My primary focus is to assist with issues regarding Xbox devices. Is there a specific issue you are having with your Xbox device that I may be able to help with?"
]
status_code, post_body, result = ChatGPTRequest(system_message, user_message_box, bot_message_box)
printresult(openai_url, status_code, post_body["messages"], result)
Agent zákaznické podpory pro Xbox
Vstup OpenAI:
[System] You are a marketing writing assistant. You help come up with creative content ideas and content like marketing emails, blog posts, tweets, ad copy and product descriptions. You write in a friendly yet professional tone but can tailor your writing style that best works for a user-specified audience. If you do not know the answer to a question, respond by saying "I do not know the answer to your question."
Q: Help me promote the Windows system.
Výstup OpenAI:
A: Sure, here are a few creative content ideas to promote Windows system:
1. Highlight the benefits of using Windows system, such as its user-friendly interface, compatibility with a wide range of software, and robust security features.
E.g., "Discover the Power of Windows - Your Ultimate Companion for Seamless Computing Experience."
2. Share customer success stories and how they benefited from Windows solutions. For instance, some Windows users can share how it has enabled them to achieve their professional goals by increasing productivity.
E.g., "Windows Changed My Life - The Story of a Productivity Ninja."
3. Offer step-by-step guides and tutorials to help users better understand Windows features and make the most of the system.
E.g., "Mastering Windows - How to Customize and Personalize Your Operating System the Right Way."
4. Create short, visually appealing videos or graphics that showcase the unique features of Windows or compare it with other operating systems in a fun and friendly way.
E.g., "Windows vs. Mac - The Ultimate Showdown."
5. Promote and run special offers, deals, and discounts on Windows products to incentivize new customers to try or upgrade to Windows system.
E.g., "Get 50% Off on Windows 10 Pro - Limited Time Only."
I hope these ideas help you promote the Windows system. If you have any more questions, feel free to ask.
system_message = '"You are a marketing writing assistant. You help come up with creative content ideas and content like marketing emails, blog posts, tweets, ad copy and product descriptions. You write in a friendly yet professional tone but can tailor your writing style that best works for a user-specified audience. If you do not know the answer to a question, respond by saying "I do not know the answer to your question."'
user_message_box = ["Help me promote the Windows system."]
bot_message_box = []
status_code, post_body, result = ChatGPTRequest(system_message, user_message_box, bot_message_box)
printresult(openai_url, status_code, post_body["messages"], result)
Dokončení
Koncový bod dokončení je možné použít pro širokou škálu úloh. Poskytuje jednoduché, ale výkonné textové rozhraní pro jakýkoli z našich modelů. Jako výzvu zadáte nějaký text a model vygeneruje dokončování textu, které se pokusí spárovat s jakýmkoli kontextem nebo vzorem, který jste mu dali. Pokud například dáte rozhraní API výzvu", "Jak řekl Descartes, myslím, proto", vrátí dokončení "Jsem" s vysokou pravděpodobností.
Pokud chcete získat přístup ke koncovým bodům dokončení Azure OpenAI v Prostředcích infrastruktury, můžete odeslat požadavek rozhraní API pomocí následujícího formátu:
POST <url_prefix>/openai/deployments/<deployment_name>/completions?api-version=2022-12-01
deployment_name
může být jedna z těchto možností:
text-davinci-003
code-cushman-002
Inicializace
from synapse.ml.mlflow import get_mlflow_env_config
mlflow_env_configs = get_mlflow_env_config()
access_token = mlflow_env_configs.driver_aad_token
prebuilt_AI_base_url = mlflow_env_configs.workload_endpoint + "cognitive/openai/"
print("workload endpoint for OpenAI: \n" + prebuilt_AI_base_url)
deployment_name = "text-davinci-003" # deployment name could be `text-davinci-003` or `code-cushman-002`
openai_url = prebuilt_AI_base_url + f"openai/deployments/{deployment_name}/completions?api-version=2022-12-01"
print("The full uri of Completions is: ", openai_url)
post_headers = {
"Content-Type" : "application/json",
"Authorization" : "Bearer {}".format(access_token)
}
post_body = {
"prompt": "empty prompt, need to fill in the content before the request",
}
import json
import uuid
import requests
from pprint import pprint
def get_model_response_until_empty(prompt:str, openai_url:str):
post_body["prompt"] = ""
while True:
post_body["prompt"] = post_body["prompt"] + prompt
response = requests.post(openai_url, headers=post_headers, json=post_body)
if response.status_code == 200:
prompt = response.json()["choices"][0]["text"]
if len(prompt) == 0:
result = post_body["prompt"]
break
else:
print(response.headers)
result = response.content
break
return result, response.status_code
def printresult(openai_url:str, response_code:int, prompt:str, result:str):
print("==========================================================================================")
print("| Post URI |", openai_url)
print("------------------------------------------------------------------------------------------")
print("| Response Status |", response_code)
print("------------------------------------------------------------------------------------------")
print("| OpenAI Input |\n", prompt)
print("------------------------------------------------------------------------------------------")
print("| OpenAI Output |\n", result)
print("==========================================================================================")
Shrnutí textu
Vstup OpenAI:
A neutron star is the collapsed core of a massive supergiant star, which had a total mass of between 10 and 25 solar masses, possibly more if the star was especially metal-rich.[1] Neutron stars are the smallest and densest stellar objects, excluding black holes and hypothetical white holes, quark stars, and strange stars.[2] Neutron stars have a radius on the order of 10 kilometres (6.2 mi) and a mass of about 1.4 solar masses.[3] They result from the supernova explosion of a massive star, combined with gravitational collapse, that compresses the core past white dwarf star density to that of atomic nuclei.
Tl;dr
Výstup OpenAI:
A neutron star is the collapsed core of a star that has undergone a supernova. These ultra-dense objects are incredibly fascinating due to their strange properties and the potential for phenomena such as extreme gravitational forces and a strong magnetic field.
import requests
import uuid
prompt = "A neutron star is the collapsed core of a massive supergiant star, which had a total mass of between 10 and 25 solar masses, possibly more if the star was especially metal-rich.[1] Neutron stars are the smallest and densest stellar objects, excluding black holes and hypothetical white holes, quark stars, and strange stars.[2] Neutron stars have a radius on the order of 10 kilometres (6.2 mi) and a mass of about 1.4 solar masses.[3] They result from the supernova explosion of a massive star, combined with gravitational collapse, that compresses the core past white dwarf star density to that of atomic nuclei."
prompt = prompt + "\n\nTl;dr"
result, status = get_model_response_until_empty(prompt=prompt, openai_url=openai_url)
printresult(openai_url=openai_url, response_code=status, prompt=prompt, result=result)
Klasifikace textu
Vstup OpenAI:
Classify the following news article into 1 of the following categories: categories: [Business, Tech, Politics, Sport, Entertainment].
news article: Donna Steffensen Is Cooking Up a New Kind of Perfection. The Internet's most beloved cooking guru has a buzzy new book and a fresh new perspective:
Classified category:
Výstup OpenAI:
Business
prompt = "Classify the following news article into 1 of the following categories: categories: [Business, Tech, Politics, Sport, Entertainment].\n news article: Donna Steffensen Is Cooking Up a New Kind of Perfection. The Internet's most beloved cooking guru has a buzzy new book and a fresh new perspective:"
prompt = prompt + "\n\nClassified category:"
result, status = get_model_response_until_empty(prompt=prompt, openai_url=openai_url)
printresult(openai_url=openai_url, response_code=status, prompt=prompt, result=result)
Přirozený jazyk do SQL
Vstup OpenAI:
### Postgres SQL tables, with their properties:
#
# Employee(id, name, department_id)
# Department(id, name, address)
# Salary_Payments(id, employee_id, amount, date)
#
### A query to list the names of the departments which employed more than 10 employees in the last 3 months
Výstup OpenAI:
SELECT DISTINCT Department.name FROM Employee INNER JOIN Department ON Employee.department_id = Department.id ORDER BY Department.name ASC;
# prompt =
### Postgres SQL tables, with their properties:
#
# Employee(id, name, department_id)
# Department(id, name, address)
# Salary_Payments(id, employee_id, amount, date)
#
### A query to list the names of the departments which employed more than 10 employees in the last 3 months
prompt = "### Postgres SQL tables, with their properties:\n#\n# Employee(id, name, department_id)\n# Department(id, name, address)\n# Salary_Payments(id, employee_id, amount, date)\n#\n### A query to list the names of the departments which employed more than 10 employees in the last 3 months"
prompt = prompt + "\n\nSELECT"
result, status = get_model_response_until_empty(prompt=prompt, openai_url=openai_url)
printresult(openai_url=openai_url, response_code=status, prompt=prompt, result=result)
Přirozený jazyk kódu (Python/Java/Scala/C++/matlab)
Vstup OpenAI:
Write a quick sort function using Python.
Výstup OpenAI:
def quick_sort(arr):
if len(arr) <= 1:
return arr
else:
pivot = arr[-1]
left = [i for i in arr[:-1] if i <= pivot]
right = [j for j in arr[:-1] if j > pivot]
return quick_sort(left) + [pivot] + quick_sort(right)
prompt = "Write a quick sort function using Python."
result, status = get_model_response_until_empty(prompt=prompt, openai_url=openai_url)
printresult(openai_url=openai_url, response_code=status, prompt=prompt, result=result)
Generování nových názvů produktů
Vstup OpenAI:
Product description: A home milkshake maker
Seed words: fast, healthy, compact.
Product names: HomeShaker, Fit Shaker, QuickShake, Shake Maker
Product description: A pair of shoes that can fit any foot size.
Seed words: adaptable, fit, omni-fit.
Výstup OpenAI:
Product names: AllFits, OmniFits, PerfectFits, ShoeFits
# prompt =
# Product description: A home milkshake maker
# Seed words: fast, healthy, compact.
# Product names: HomeShaker, Fit Shaker, QuickShake, Shake Maker
#
# Product description: A pair of shoes that can fit any foot size.
# Seed words: adaptable, fit, omni-fit.
prompt = "Product description: A home milkshake maker\nSeed words: fast, healthy, compact.\nProduct names: HomeShaker, Fit Shaker, QuickShake, Shake Maker\n\nProduct description: A pair of shoes that can fit any foot size.\nSeed words: adaptable, fit, omni-fit."
result, status = get_model_response_until_empty(prompt=prompt, openai_url=openai_url)
printresult(openai_url=openai_url, response_code=status, prompt=prompt, result=result)
Angličtina do francouzštiny
Vstup OpenAI:
English: I do not speak French.
French: Je ne parle pas français.
English: See you later!
French: À tout à l'heure!
English: Where is a good restaurant?
French: Où est un bon restaurant?
English: What rooms do you have available?
French: Quelles chambres avez-vous de disponible?
English: I want to say nothing.
Výstup OpenAI:
French: Je ne veux rien dire.
prompt = "English: I do not speak French.\nFrench: Je ne parle pas français.\n\nEnglish: See you later!\nFrench: À tout à l'heure!\n\nEnglish: Where is a good restaurant?\nFrench: Où est un bon restaurant?\n\nEnglish: What rooms do you have available?\nFrench: Quelles chambres avez-vous de disponible?\n\nEnglish: I want to say nothing.\n"
result, status = get_model_response_until_empty(prompt=prompt, openai_url=openai_url)
printresult(openai_url=openai_url, response_code=status, prompt=prompt, result=result)
Analýza nestrukturovaných dat
Vstup OpenAI:
There are many fruits that were found on the recently discovered planet Goocrux. There are neoskizzles that grow there, which are purple and taste like candy. There are also loheckles, which are a grayish blue fruit and are very tart, a little bit like a lemon. Pounits are a bright green color and are more savory than sweet. There are also plenty of loopnovas which are a neon pink flavor and taste like cotton candy. Finally, there are fruits called glowls, which have a very sour and bitter taste which is acidic and caustic, and a pale orange tinge to them.
Please make a table summarizing the fruits from Goocrux
| Fruit | Color | Flavor |
| Neoskizzles | Purple | Sweet |
| Loheckles | Grayish blue | Tart |
Výstup OpenAI:
| Glowls | Pale orange | Sour and bitter |
prompt = "There are many fruits that were found on the recently discovered planet Goocrux. There are neoskizzles that grow there, which are purple and taste like candy. There are also loheckles, which are a grayish blue fruit and are very tart, a little bit like a lemon. Pounits are a bright green color and are more savory than sweet. There are also plenty of loopnovas which are a neon pink flavor and taste like cotton candy. Finally, there are fruits called glowls, which have a very sour and bitter taste which is acidic and caustic, and a pale orange tinge to them.\n\nPlease make a table summarizing the fruits from Goocrux\n| Fruit | Color | Flavor |\n| Neoskizzles | Purple | Sweet |\n| Loheckles | Grayish blue | Tart |"
result, status = get_model_response_until_empty(prompt=prompt, openai_url=openai_url)
printresult(openai_url=openai_url, response_code=status, prompt=prompt, result=result)
Klasifikace
Vstup OpenAI:
The following is a list of companies and the categories they fall into
Facebook: Social media, Technology
LinkedIn: Social media, Technology, Enterprise, Careers
Uber: Transportation, Technology, Marketplace
Unilever: Conglomerate, Consumer Goods
Mcdonalds: Food, Fast Food, Logistics, Restaurants
FedEx:
Výstup OpenAI:
FedEx: Delivery, Courier, Logistics
prompt = "The following is a list of companies and the categories they fall into\n\nFacebook: Social media, Technology\nLinkedIn: Social media, Technology, Enterprise, Careers\nUber: Transportation, Technology, Marketplace\nUnilever: Conglomerate, Consumer Goods\nMcdonalds: Food, Fast Food, Logistics, Restaurants\nFedEx:"
result, status = get_model_response_until_empty(prompt=prompt, openai_url=openai_url)
printresult(openai_url=openai_url, response_code=status, prompt=prompt, result=result)
Vkládání
Vkládání je speciální formát reprezentace dat, který můžou snadno využívat modely a algoritmy strojového učení. Obsahuje sémantický význam textu s bohatými informacemi, reprezentovaný vektorem čísel s plovoucí desetinou čárkou. Vzdálenost mezi dvěma vkládáními ve vektorovém prostoru souvisí s sémantickou podobností mezi dvěma původními vstupy. Pokud jsou například dva texty podobné, měly by být jejich vektorové reprezentace podobné.
Pokud chcete získat přístup ke koncovému bodu vkládání Azure OpenAI v prostředcích infrastruktury, můžete odeslat požadavek rozhraní API pomocí následujícího formátu:
POST <url_prefix>/openai/deployments/<deployment_name>/embeddings?api-version=2022-12-01
deployment_name
může být text-embedding-ada-002
.
Inicializace
from synapse.ml.mlflow import get_mlflow_env_config
mlflow_env_configs = get_mlflow_env_config()
access_token = mlflow_env_configs.driver_aad_token
prebuilt_AI_base_url = mlflow_env_configs.workload_endpoint + "cognitive/openai/"
print("workload endpoint for OpenAI: \n" + prebuilt_AI_base_url)
deployment_name = "text-embedding-ada-002"
openai_url = prebuilt_AI_base_url + f"openai/deployments/{deployment_name}/embeddings?api-version=2022-12-01"
print("The full uri of Embeddings is: ", openai_url)
post_headers = {
"Content-Type" : "application/json",
"Authorization" : "Bearer {}".format(access_token)
}
post_body = {
"input": "empty prompt, need to fill in the content before the request",
}
import json
import uuid
import requests
from pprint import pprint
def printresult(openai_url:str, response_code:int, prompt:str, result:str):
print("==========================================================================================")
print("| Post URI |", openai_url)
print("------------------------------------------------------------------------------------------")
print("| Response Status |", response_code)
print("------------------------------------------------------------------------------------------")
print("| OpenAI Input |\n", prompt)
print("------------------------------------------------------------------------------------------")
print("| OpenAI Output |\n", result)
print("==========================================================================================")
Získání vkládání
Vstup OpenAI:
John is good boy.
Výstup OpenAI:
[-0.0045386623, 0.0031397594, ..., 0.0006536394, -0.037461143, -0.033455864]
input_words = "John is good boy."
post_body["input"] = input_words
response = requests.post(url=openai_url, headers=post_headers, json=post_body)
printresult(openai_url=openai_url, response_code=response.status_code, prompt=input_words, result=response.content)
Další kroky
- Použití předem připravených Analýza textu v prostředcích infrastruktury s rozhraním REST API
- Použití předem připravených Analýza textu v prostředcích infrastruktury se službou SynapseML
- Použití předem připraveného služby Azure AI Translator v Prostředcích infrastruktury s rozhraním REST API
- Použití předem připraveného překladače Azure AI v Prostředcích infrastruktury se službou SynapseML
- Použití předem připravené sady Azure OpenAI v prostředcích infrastruktury s využitím sady Python SDK
- Použití předem připraveného Azure OpenAI v prostředcích infrastruktury s SynapseML
Váš názor
Odeslat a zobrazit názory pro