Freigeben über


Schnellstart: Vektorsuche mit Python in Azure DocumentDB

Verwenden Sie die Vektorsuche in Azure DocumentDB mit der Python-Clientbibliothek. Effizientes Speichern und Abfragen von Vektordaten.

Diese Schnellstartanleitung verwendet ein Beispiel-Hotel-Dataset in einer JSON-Datei mit Vektoren aus dem text-embedding-ada-002 Modell. Das Dataset umfasst Hotelnamen, Standorte, Beschreibungen und Vektoreinbettungen.

Suchen Sie den Beispielcode auf GitHub.

Voraussetzungen

  • Ein Azure-Abonnement

    • Wenn Sie nicht über ein Azure-Abonnement verfügen, erstellen Sie ein kostenloses Konto
  • Ein vorhandener Azure DocumentDB-Cluster

    • Wenn Sie keinen Cluster haben, erstellen Sie einen neuen Cluster.

Erstellen eines Python-Projekts

  1. Erstellen Sie ein neues Verzeichnis für Ihr Projekt, und öffnen Sie es in Visual Studio Code:

    mkdir vector-search-quickstart
    code vector-search-quickstart
    
  2. Erstellen und aktivieren Sie im Terminal eine virtuelle Umgebung:

    Für Windows:

    python -m venv venv
    venv\\Scripts\\activate
    

    Für macOS/Linux:

    python -m venv venv
    source venv/bin/activate
    
  3. Installieren Sie die erforderlichen Pakete:

    pip install pymongo azure-identity openai python-dotenv
    
    • pymongo: MongoDB-Treiber für Python
    • azure-identity: Azure Identity-Bibliothek für kennwortlose Authentifizierung
    • openai: OpenAI-Clientbibliothek zum Erstellen von Vektoren
    • python-dotenv: Umgebungsvariablenverwaltung von env-Dateien
  4. Erstellen Sie eine .env Datei im Projektstamm für Umgebungsvariablen:

    # Azure OpenAI configuration
    AZURE_OPENAI_EMBEDDING_ENDPOINT= 
    AZURE_OPENAI_EMBEDDING_MODEL=text-embedding-ada-002
    AZURE_OPENAI_EMBEDDING_API_VERSION=2024-02-01
    
    # Azure DocumentDB configuration
    MONGO_CLUSTER_NAME=
    
    # Data Configuration (defaults should work)
    DATA_FILE_WITH_VECTORS=data/HotelsData_with_vectors.json
    EMBEDDED_FIELD=text_embedding_ada_002
    EMBEDDING_DIMENSIONS=1536
    EMBEDDING_SIZE_BATCH=16
    LOAD_SIZE_BATCH=100
    

    Ersetzen Sie für die in diesem Artikel verwendete kennwortlose Authentifizierung die Platzhalterwerte in der .env Datei durch Ihre eigenen Informationen:

    • AZURE_OPENAI_EMBEDDING_ENDPOINT: Ihre Azure OpenAI-Ressourcenendpunkt-URL
    • MONGO_CLUSTER_NAME: Ihr Azure DocumentDB-Ressourcenname

    Sie sollten immer die kennwortlose Authentifizierung bevorzugen, erfordern jedoch zusätzliche Einrichtung. Weitere Informationen zum Einrichten der verwalteten Identität und zum vollständigen Spektrum Ihrer Authentifizierungsoptionen finden Sie unter Authentifizieren von Python-Apps für Azure-Dienste mithilfe des Azure SDK für Python.

  5. Erstellen Sie ein neues Unterverzeichnis aus dem Stammnamen data.

  6. Kopieren Sie die Rohdatendatei mit Vektoren in eine neue HotelsData_with_vectors.json Datei im data Unterverzeichnis.

  7. Die Projektstruktur sollte wie folgt aussehen:

    vector-search-quickstart
    ├── .env
    ├── data
    │   └── HotelsData_with_vectors.json
    └── venv (or your virtual environment folder)
    

Fahren Sie mit dem Projekt fort, indem Sie Codedateien für die Vektorsuche erstellen. Wenn Sie fertig sind, sollte die Projektstruktur wie folgt aussehen:

vector-search-quickstart
├── .env
├── data
│   └── HotelsData_with_vectors.json
├── src
│   ├── diskann.py
│   ├── ivf.py
│   └── hnsw.py
│   └── utils.py
└── venv (or your virtual environment folder)

Erstellen Sie ein src Verzeichnis für Ihre Python-Dateien. Fügen Sie zwei Dateien hinzu: diskann.py und utils.py für die DiskANN-Indeximplementierung:

mkdir src    
touch src/diskann.py
touch src/utils.py

Fügen Sie den folgenden Code in die diskann.py Datei ein.

import os
from typing import List, Dict, Any
from utils import get_clients, get_clients_passwordless, read_file_return_json, insert_data, print_search_results, drop_vector_indexes
from dotenv import load_dotenv

# Load environment variables
load_dotenv()


def create_diskann_vector_index(collection, vector_field: str, dimensions: int) -> None:

    print(f"Creating DiskANN vector index on field '{vector_field}'...")

    # Drop any existing vector indexes on this field first
    drop_vector_indexes(collection, vector_field)

    # Use the native MongoDB command for Cosmos DB vector indexes
    index_command = {
        "createIndexes": collection.name,
        "indexes": [
            {
                "name": f"diskann_index_{vector_field}",
                "key": {
                    vector_field: "cosmosSearch"  # Cosmos DB vector search index type
                },
                "cosmosSearchOptions": {
                    # DiskANN algorithm configuration
                    "kind": "vector-diskann",

                    # Vector dimensions must match the embedding model
                    "dimensions": dimensions,

                    # Vector similarity metric - cosine is good for text embeddings
                    "similarity": "COS",

                    # Maximum degree: number of edges per node in the graph
                    # Higher values improve accuracy but increase memory usage
                    "maxDegree": 20,

                    # Build parameter: candidates evaluated during index construction
                    # Higher values improve index quality but increase build time
                    "lBuild": 10
                }
            }
        ]
    }

    try:
        # Execute the createIndexes command directly
        result = collection.database.command(index_command)
        print("DiskANN vector index created successfully")

    except Exception as e:
        print(f"Error creating DiskANN vector index: {e}")

        # Check if it's a tier limitation and suggest alternatives
        if "not enabled for this cluster tier" in str(e):
            print("\nDiskANN indexes require a higher cluster tier.")
            print("Try one of these alternatives:")
            print("  • Upgrade your Cosmos DB cluster to a higher tier")
            print("  • Use HNSW instead: python src/hnsw.py")
            print("  • Use IVF instead: python src/ivf.py")
        raise


def perform_diskann_vector_search(collection,
                                 azure_openai_client,
                                 query_text: str,
                                 vector_field: str,
                                 model_name: str,
                                 top_k: int = 5) -> List[Dict[str, Any]]:

    print(f"Performing DiskANN vector search for: '{query_text}'")

    try:
        # Generate embedding for the query text
        embedding_response = azure_openai_client.embeddings.create(
            input=[query_text],
            model=model_name
        )

        query_embedding = embedding_response.data[0].embedding

        # Construct the aggregation pipeline for vector search
        # Cosmos DB for MongoDB vCore uses $search with cosmosSearch
        pipeline = [
            {
                "$search": {
                    # Use cosmosSearch for vector operations in Cosmos DB
                    "cosmosSearch": {
                        # The query vector to search for
                        "vector": query_embedding,

                        # Field containing the document vectors to compare against
                        "path": vector_field,

                        # Number of final results to return
                        "k": top_k
                    }
                }
            },
            {
                # Add similarity score to the results
                "$project": {
                    "document": "$$ROOT",
                    # Add search score from metadata
                    "score": {"$meta": "searchScore"}
                }
            }
        ]

        # Execute the aggregation pipeline
        results = list(collection.aggregate(pipeline))

        return results

    except Exception as e:
        print(f"Error performing DiskANN vector search: {e}")
        raise


def main():

    # Load configuration from environment variables
    config = {
        'cluster_name': os.getenv('MONGO_CLUSTER_NAME', 'vectorSearch'),
        'database_name': 'vectorSearchDB',
        'collection_name': 'vectorSearchCollection',
        'data_file': os.getenv('DATA_FILE_WITH_VECTORS', 'data/HotelsData_with_vectors.json'),
        'vector_field': os.getenv('EMBEDDED_FIELD', 'DescriptionVector'),
        'model_name': os.getenv('AZURE_OPENAI_EMBEDDING_MODEL', 'text-embedding-ada-002'),
        'dimensions': int(os.getenv('EMBEDDING_DIMENSIONS', '1536')),
        'batch_size': int(os.getenv('LOAD_SIZE_BATCH', '100'))
    }

    try:
        # Initialize clients
        print("\nInitializing MongoDB and Azure OpenAI clients...")
        mongo_client, azure_openai_client = get_clients_passwordless()

        # Get database and collection
        database = mongo_client[config['database_name']]
        collection = database[config['collection_name']]

        # Load data with embeddings
        print(f"\nLoading data from {config['data_file']}...")
        data = read_file_return_json(config['data_file'])
        print(f"Loaded {len(data)} documents")

        # Verify embeddings are present
        documents_with_embeddings = [doc for doc in data if config['vector_field'] in doc]
        if not documents_with_embeddings:
            raise ValueError(f"No documents found with embeddings in field '{config['vector_field']}'. "
                           "Please run create_embeddings.py first.")

        # Insert data into collection
        print(f"\nInserting data into collection '{config['collection_name']}'...")

        # Clear existing data to ensure clean state
        collection.delete_many({})
        print("Cleared existing data from collection")

        # Insert the hotel data
        stats = insert_data(
            collection,
            documents_with_embeddings,
            batch_size=config['batch_size']
        )

        if stats['inserted'] == 0:
            raise ValueError("No documents were inserted successfully")

        # Create DiskANN vector index
        create_diskann_vector_index(
            collection,
            config['vector_field'],
            config['dimensions']
        )

        # Wait briefly for index to be ready
        import time
        print("Waiting for index to be ready...")
        time.sleep(2)

        # Perform sample vector search
        query = "quintessential lodging near running trails, eateries, retail"

        results = perform_diskann_vector_search(
            collection,
            azure_openai_client,
            query,
            config['vector_field'],
            config['model_name'],
            top_k=5
        )

        # Display results
        print_search_results(results, max_results=5, show_score=True)


    except Exception as e:
        print(f"\nError during DiskANN demonstration: {e}")
        raise

    finally:
        # Close the MongoDB client
        if 'mongo_client' in locals():
            mongo_client.close()


if __name__ == "__main__":
    main()

Dieses Hauptmodul bietet die folgenden Features:

  • Enthält Hilfsfunktionen

  • Erstellt ein Konfigurationsobjekt für Umgebungsvariablen.

  • Erstellt Clients für Azure OpenAI und Azure DocumentDB

  • Stellt eine Verbindung mit MongoDB bereit, erstellt eine Datenbank und Sammlung, fügt Daten ein und erstellt Standardindizes.

  • Erstellt einen Vektorindex mithilfe von IVF, HNSW oder DiskANN

  • Erstellt eine Einbettung für einen Beispielabfragetext mithilfe des OpenAI-Clients. Sie können die Abfrage am Anfang der Datei ändern.

  • Führt eine Vektorsuche mithilfe der Einbettung aus und druckt die Ergebnisse.

Erstellen von Hilfsfunktionen

Fügen Sie den folgenden Code in utils.py:

import json
import os
import time
from typing import Dict, List, Any, Optional, Tuple
from pymongo import MongoClient, InsertOne
from pymongo.collection import Collection
from pymongo.errors import BulkWriteError
from azure.identity import DefaultAzureCredential
from pymongo.auth_oidc import OIDCCallback, OIDCCallbackContext, OIDCCallbackResult
from openai import AzureOpenAI
from dotenv import load_dotenv

# Load environment variables from .env file
load_dotenv()

class AzureIdentityTokenCallback(OIDCCallback):
    def __init__(self, credential):
        self.credential = credential

    def fetch(self, context: OIDCCallbackContext) -> OIDCCallbackResult:
        token = self.credential.get_token(
            "https://ossrdbms-aad.database.windows.net/.default").token
        return OIDCCallbackResult(access_token=token)

def get_clients() -> Tuple[MongoClient, AzureOpenAI]:

    # Get MongoDB connection string - required for Cosmos DB access
    mongo_connection_string = os.getenv("MONGO_CONNECTION_STRING")
    if not mongo_connection_string:
        raise ValueError("MONGO_CONNECTION_STRING environment variable is required")

    # Create MongoDB client with optimized settings for Cosmos DB
    mongo_client = MongoClient(
        mongo_connection_string,
        maxPoolSize=50,  # Allow up to 50 connections for better performance
        minPoolSize=5,   # Keep minimum 5 connections open
        maxIdleTimeMS=30000,  # Close idle connections after 30 seconds
        serverSelectionTimeoutMS=5000,  # 5 second timeout for server selection
        socketTimeoutMS=20000  # 20 second socket timeout
    )

    # Get Azure OpenAI configuration
    azure_openai_endpoint = os.getenv("AZURE_OPENAI_EMBEDDING_ENDPOINT")
    azure_openai_key = os.getenv("AZURE_OPENAI_EMBEDDING_KEY")

    if not azure_openai_endpoint or not azure_openai_key:
        raise ValueError("Azure OpenAI endpoint and key are required")

    # Create Azure OpenAI client for generating embeddings
    azure_openai_client = AzureOpenAI(
        azure_endpoint=azure_openai_endpoint,
        api_key=azure_openai_key,
        api_version=os.getenv("AZURE_OPENAI_EMBEDDING_API_VERSION", "2024-02-01")
    )

    return mongo_client, azure_openai_client


def get_clients_passwordless() -> Tuple[MongoClient, AzureOpenAI]:

    # Get MongoDB cluster name for passwordless authentication
    cluster_name = os.getenv("MONGO_CLUSTER_NAME")
    if not cluster_name:
        raise ValueError("MONGO_CLUSTER_NAME environment variable is required")

    # Create credential object for Azure authentication
    credential = DefaultAzureCredential()

    authProperties = {"OIDC_CALLBACK": AzureIdentityTokenCallback(credential)}

    # Create MongoDB client with Azure AD token callback
    mongo_client = MongoClient(
        f"mongodb+srv://{cluster_name}.global.mongocluster.cosmos.azure.com/",
        connectTimeoutMS=120000,
        tls=True,
        retryWrites=True,
        authMechanism="MONGODB-OIDC",
        authMechanismProperties=authProperties
    )

    # Get Azure OpenAI endpoint
    azure_openai_endpoint = os.getenv("AZURE_OPENAI_EMBEDDING_ENDPOINT")
    if not azure_openai_endpoint:
        raise ValueError("AZURE_OPENAI_EMBEDDING_ENDPOINT environment variable is required")

    # Create Azure OpenAI client with credential-based authentication
    azure_openai_client = AzureOpenAI(
        azure_endpoint=azure_openai_endpoint,
        azure_ad_token_provider=lambda: credential.get_token("https://cognitiveservices.azure.com/.default").token,
        api_version=os.getenv("AZURE_OPENAI_EMBEDDING_API_VERSION", "2024-02-01")
    )

    return mongo_client, azure_openai_client


def azure_identity_token_callback(credential: DefaultAzureCredential) -> str:

    # Cosmos DB for MongoDB requires this specific scope
    token_scope = "https://cosmos.azure.com/.default"

    # Get token from Azure AD
    token = credential.get_token(token_scope)

    return token.token


def read_file_return_json(file_path: str) -> List[Dict[str, Any]]:

    try:
        with open(file_path, 'r', encoding='utf-8') as file:
            return json.load(file)
    except FileNotFoundError:
        print(f"Error: File '{file_path}' not found")
        raise
    except json.JSONDecodeError as e:
        print(f"Error: Invalid JSON in file '{file_path}': {e}")
        raise


def write_file_json(data: List[Dict[str, Any]], file_path: str) -> None:

    try:
        with open(file_path, 'w', encoding='utf-8') as file:
            json.dump(data, file, indent=2, ensure_ascii=False)
        print(f"Data successfully written to '{file_path}'")
    except IOError as e:
        print(f"Error writing to file '{file_path}': {e}")
        raise


def insert_data(collection: Collection, data: List[Dict[str, Any]],
                batch_size: int = 100, index_fields: Optional[List[str]] = None) -> Dict[str, int]:

    total_documents = len(data)
    inserted_count = 0
    failed_count = 0

    print(f"Starting batch insertion of {total_documents} documents...")

    # Create indexes if specified
    if index_fields:
        for field in index_fields:
            try:
                collection.create_index(field)
                print(f"Created index on field: {field}")
            except Exception as e:
                print(f"Warning: Could not create index on {field}: {e}")

    # Process data in batches to manage memory and error recovery
    for i in range(0, total_documents, batch_size):
        batch = data[i:i + batch_size]
        batch_num = (i // batch_size) + 1
        total_batches = (total_documents + batch_size - 1) // batch_size

        try:
            # Prepare bulk insert operations
            operations = [InsertOne(document) for document in batch]

            # Execute bulk insert
            result = collection.bulk_write(operations, ordered=False)
            inserted_count += result.inserted_count

            print(f"Batch {batch_num} completed: {result.inserted_count} documents inserted")

        except BulkWriteError as e:
            # Handle partial failures in bulk operations
            inserted_count += e.details.get('nInserted', 0)
            failed_count += len(batch) - e.details.get('nInserted', 0)

            print(f"Batch {batch_num} had errors: {e.details.get('nInserted', 0)} inserted, "
                  f"{failed_count} failed")

            # Print specific error details for debugging
            for error in e.details.get('writeErrors', []):
                print(f"  Error: {error.get('errmsg', 'Unknown error')}")

        except Exception as e:
            # Handle unexpected errors
            failed_count += len(batch)
            print(f"Batch {batch_num} failed completely: {e}")

        # Small delay between batches to avoid overwhelming the database
        time.sleep(0.1)

    # Return summary statistics
    stats = {
        'total': total_documents,
        'inserted': inserted_count,
        'failed': failed_count
    }

    return stats


def drop_vector_indexes(collection, vector_field: str) -> None:

    try:
        # Get all indexes for the collection
        indexes = list(collection.list_indexes())

        # Find vector indexes on the specified field
        vector_indexes = []
        for index in indexes:
            if 'key' in index and vector_field in index['key']:
                if index['key'][vector_field] == 'cosmosSearch':
                    vector_indexes.append(index['name'])

        # Drop each vector index found
        for index_name in vector_indexes:
            print(f"Dropping existing vector index: {index_name}")
            collection.drop_index(index_name)

        if vector_indexes:
            print(f"Dropped {len(vector_indexes)} existing vector index(es)")
        else:
            print("No existing vector indexes found to drop")

    except Exception as e:
        print(f"Warning: Could not drop existing vector indexes: {e}")
        # Continue anyway - the error might be that no indexes exist


def print_search_resultsx(results: List[Dict[str, Any]],
                        max_results: int = 5,
                        show_score: bool = True) -> None:

    if not results:
        print("No search results found.")
        return

    print(f"\nSearch Results (showing top {min(len(results), max_results)}):")
    print("=" * 80)

    for i, result in enumerate(results[:max_results], 1):

        # Display hotel name and ID
        print(f"HotelName: {result['HotelName']}, Score: {result['score']:.4f}")

def print_search_results(results: List[Dict[str, Any]],
                        max_results: int = 5,
                        show_score: bool = True) -> None:

    if not results:
        print("No search results found.")
        return

    print(f"\nSearch Results (showing top {min(len(results), max_results)}):")
    print("=" * 80)

    for i, result in enumerate(results[:max_results], 1):

        # Check if results are nested under 'document' (when using $$ROOT)
        if 'document' in result:
            doc = result['document']
        else:
            doc = result

        # Display hotel name and ID
        print(f"HotelName: {doc['HotelName']}, Score: {result['score']:.4f}")


    if len(results) > max_results:
        print(f"\n... and {len(results) - max_results} more results")

Dieses Hilfsmodul bietet die folgenden Features:

  • JsonData: Schnittstelle für die Datenstruktur

  • scoreProperty: Position der Ergebnisbewertung in Abfrageergebnissen basierend auf der Vektorsuchmethode

  • getClients: Erstellt Clients für Azure OpenAI und Azure DocumentDB und gibt sie zurück

  • getClientsPasswordless: Erstellt und gibt Clients für Azure OpenAI und Azure DocumentDB mit kennwortloser Authentifizierung zurück. RBAC auf beiden Ressourcen aktivieren und bei Azure CLI anmelden

  • readFileReturnJson: Liest eine JSON-Datei und gibt den Inhalt als Array von JsonData Objekten zurück.

  • writeFileJson: Schreibt ein Array von JsonData Objekten in eine JSON-Datei.

  • insertData: Fügt Daten in Batches in eine MongoDB-Auflistung ein und erstellt Standardindizes für angegebene Felder.

  • printSearchResults: Druckt die Ergebnisse einer Vektorsuche, einschließlich der Bewertung und des Hotelnamens.

Authentifizieren mit Azure CLI

Melden Sie sich bei Azure CLI an, bevor Sie die Anwendung ausführen, damit sie sicher auf Azure-Ressourcen zugreifen kann.

az login

Ausführen der Anwendung

So führen Sie die Python-Skripts aus:

python src/diskann.py

Die fünf besten Hotels, die mit der Vektorsuchabfrage und ihren Ähnlichkeitsbewertungen übereinstimmen, werden angezeigt.

Anzeigen und Verwalten von Daten in Visual Studio Code

  1. Wählen Sie die DocumentDB-Erweiterung in Visual Studio Code aus, um eine Verbindung mit Ihrem Azure DocumentDB-Konto herzustellen.

  2. Zeigen Sie die Daten und Indizes der Datenbank "Hotels" an.

    Screenshot der DocumentDB-Erweiterung mit der Azure DocumentDB-Auflistung.

Bereinigen von Ressourcen

Löschen Sie die Ressourcengruppe, das Azure DocumentDB-Konto und die Azure OpenAI-Ressource, wenn Sie sie nicht benötigen, um zusätzliche Kosten zu vermeiden.