Freigeben über


Erstellen der Apache Kafka-Tabelle® auf Apache Flink® in HDInsight auf AKS

Hinweis

Azure HDInsight on AKS wird am 31. Januar 2025 eingestellt. Vor dem 31. Januar 2025 müssen Sie Ihre Workloads zu Microsoft Fabric oder einem gleichwertigen Azure-Produkt migrieren, um eine abruptes Beendigung Ihrer Workloads zu vermeiden. Die verbleibenden Cluster in Ihrem Abonnement werden beendet und vom Host entfernt.

Bis zum Einstellungsdatum ist nur grundlegende Unterstützung verfügbar.

Wichtig

Diese Funktion steht derzeit als Vorschau zur Verfügung. Die zusätzlichen Nutzungsbedingungen für Microsoft Azure-Vorschauen enthalten weitere rechtliche Bestimmungen, die für Azure-Features in Betaversionen, in Vorschauversionen oder anderen Versionen gelten, die noch nicht allgemein verfügbar gemacht wurden. Informationen zu dieser spezifischen Vorschau finden Sie unter Informationen zur Vorschau von Azure HDInsight on AKS. Bei Fragen oder Funktionsvorschlägen senden Sie eine Anfrage an AskHDInsight mit den entsprechenden Details, und folgen Sie uns für weitere Updates in der Azure HDInsight-Community.

In diesem Beispiel erfahren Sie, wie Sie die Kafka-Tabelle über Apache FlinkSQL erstellen.

Voraussetzungen

Der Kafka-Connector ermöglicht das Lesen und Schreiben von Daten in Kafka-Themen. Weitere Informationen finden Sie unter Apache Kafka SQL Connector.

Vorbereiten von Themen und Daten auf HDInsight Kafka

Vorbereiten von Nachrichten mit weblog.py

import random
import json
import time
from datetime import datetime

user_set = [
        'John',
        'XiaoMing',
        'Mike',
        'Tom',
        'Machael',
        'Zheng Hu',
        'Zark',
        'Tim',
        'Andrew',
        'Pick',
        'Sean',
        'Luke',
        'Chunck'
]

web_set = [
        'https://google.com',
        'https://facebook.com?id=1',
        'https://tmall.com',
        'https://baidu.com',
        'https://taobao.com',
        'https://aliyun.com',
        'https://apache.com',
        'https://flink.apache.com',
        'https://hbase.apache.com',
        'https://github.com',
        'https://gmail.com',
        'https://stackoverflow.com',
        'https://python.org'
]

def main():
        while True:
                if random.randrange(10) < 4:
                        url = random.choice(web_set[:3])
                else:
                        url = random.choice(web_set)

                log_entry = {
                        'userName': random.choice(user_set),
                        'visitURL': url,
                        'ts': datetime.now().strftime("%m/%d/%Y %H:%M:%S")
                }

                print(json.dumps(log_entry))
                time.sleep(0.05)

if __name__ == "__main__":
    main()

Pipeline zum Kafka-Thema

sshuser@hn0-contsk:~$ python weblog.py | /usr/hdp/current/kafka-broker/bin/kafka-console-producer.sh --bootstrap-server wn0-contsk:9092 --topic click_events

Andere Befehle:

-- create topic
/usr/hdp/current/kafka-broker/bin/kafka-topics.sh --create --replication-factor 2 --partitions 3 --topic click_events --bootstrap-server wn0-contsk:9092

-- delete topic
/usr/hdp/current/kafka-broker/bin/kafka-topics.sh --delete  --topic click_events --bootstrap-server wn0-contsk:9092

-- consume topic
sshuser@hn0-contsk:~$ /usr/hdp/current/kafka-broker/bin/kafka-console-consumer.sh --bootstrap-server wn0-contsk:9092 --topic click_events --from-beginning
{"userName": "Luke", "visitURL": "https://flink.apache.com", "ts": "06/26/2023 14:33:43"}
{"userName": "Tom", "visitURL": "https://stackoverflow.com", "ts": "06/26/2023 14:33:43"}
{"userName": "Chunck", "visitURL": "https://google.com", "ts": "06/26/2023 14:33:44"}
{"userName": "Chunck", "visitURL": "https://facebook.com?id=1", "ts": "06/26/2023 14:33:44"}
{"userName": "John", "visitURL": "https://tmall.com", "ts": "06/26/2023 14:33:44"}
{"userName": "Andrew", "visitURL": "https://facebook.com?id=1", "ts": "06/26/2023 14:33:44"}
{"userName": "John", "visitURL": "https://tmall.com", "ts": "06/26/2023 14:33:44"}
{"userName": "Pick", "visitURL": "https://google.com", "ts": "06/26/2023 14:33:44"}
{"userName": "Mike", "visitURL": "https://tmall.com", "ts": "06/26/2023 14:33:44"}
{"userName": "Zheng Hu", "visitURL": "https://tmall.com", "ts": "06/26/2023 14:33:44"}
{"userName": "Luke", "visitURL": "https://facebook.com?id=1", "ts": "06/26/2023 14:33:44"}
{"userName": "John", "visitURL": "https://flink.apache.com", "ts": "06/26/2023 14:33:44"}

Ausführliche Anweisungen zur Verwendung von Secure Shell für Flink SQL-Client.

Herunterladen von Kafka SQL Connector und Abhängigkeiten in SSH

Wir verwenden die Kafka 3.2.0-Abhängigkeiten im folgenden Schritt. Sie müssen den Befehl basierend auf Ihrer Kafka-Version in HDInsight-Cluster anpassen.

wget https://repo1.maven.org/maven2/org/apache/kafka/kafka-clients/3.2.0/kafka-clients-3.2.0.jar
wget https://repo1.maven.org/maven2/org/apache/flink/flink-connector-kafka/1.17.0/flink-connector-kafka-1.17.0.jar

Stellen wir nun eine Verbindung mit dem Flink SQL-Client mit Kafka SQL-Client-JARs her.

msdata@pod-0 [ /opt/flink-webssh ]$ bin/sql-client.sh -j flink-connector-kafka-1.17.0.jar -j kafka-clients-3.2.0.jar

Erstellen wir nun die Kafka-Tabelle in Flink SQL, und wählen wir die Kafka-Tabelle in Flink SQL aus.

Sie müssen Ihre Kafka-Bootstrap-Server-IPs im folgenden Codeausschnitt aktualisieren.

CREATE TABLE KafkaTable (
`userName` STRING,
`visitURL` STRING,
`ts` TIMESTAMP(3) METADATA FROM 'timestamp'
) WITH (
'connector' = 'kafka',
'topic' = 'click_events',
'properties.bootstrap.servers' = '<update-kafka-bootstrapserver-ip>:9092,<update-kafka-bootstrapserver-ip>:9092,<update-kafka-bootstrapserver-ip>:9092',
'properties.group.id' = 'my_group',
'scan.startup.mode' = 'earliest-offset',
'format' = 'json'
);

select * from KafkaTable;

Screenshot, der zeigt, wie Sie die Kafka-Tabelle in Flink SQL erstellen und auswählen.

Erstellen von Kafka-Nachrichten

Lassen Sie uns nun Kafka-Nachrichten zu demselben Thema erstellen, indem wir HDInsight Kafka verwenden.

python weblog.py | /usr/hdp/current/kafka-broker/bin/kafka-console-producer.sh --bootstrap-server wn0-contsk:9092 --topic click_events

Sie können die Tabelle in Flink SQL überwachen.

Screenshot, der Überwachung des Tabellendatums in Flink SQL.

Hier sind die Streamingaufträge auf der Flink Web UI.

Screenshot mit Aufträgen auf der Flink-Web-UI.

Verweis