Erstellen der Apache Kafka-Tabelle® auf Apache Flink® in HDInsight auf AKS
Hinweis
Azure HDInsight on AKS wird am 31. Januar 2025 eingestellt. Vor dem 31. Januar 2025 müssen Sie Ihre Workloads zu Microsoft Fabric oder einem gleichwertigen Azure-Produkt migrieren, um eine abruptes Beendigung Ihrer Workloads zu vermeiden. Die verbleibenden Cluster in Ihrem Abonnement werden beendet und vom Host entfernt.
Bis zum Einstellungsdatum ist nur grundlegende Unterstützung verfügbar.
Wichtig
Diese Funktion steht derzeit als Vorschau zur Verfügung. Die zusätzlichen Nutzungsbedingungen für Microsoft Azure-Vorschauen enthalten weitere rechtliche Bestimmungen, die für Azure-Features in Betaversionen, in Vorschauversionen oder anderen Versionen gelten, die noch nicht allgemein verfügbar gemacht wurden. Informationen zu dieser spezifischen Vorschau finden Sie unter Informationen zur Vorschau von Azure HDInsight on AKS. Bei Fragen oder Funktionsvorschlägen senden Sie eine Anfrage an AskHDInsight mit den entsprechenden Details, und folgen Sie uns für weitere Updates in der Azure HDInsight-Community.
In diesem Beispiel erfahren Sie, wie Sie die Kafka-Tabelle über Apache FlinkSQL erstellen.
Voraussetzungen
Kafka SQL Connector auf Apache Flink
Der Kafka-Connector ermöglicht das Lesen und Schreiben von Daten in Kafka-Themen. Weitere Informationen finden Sie unter Apache Kafka SQL Connector.
Erstellen einer Kafka-Tabelle in Flink SQL
Vorbereiten von Themen und Daten auf HDInsight Kafka
Vorbereiten von Nachrichten mit weblog.py
import random
import json
import time
from datetime import datetime
user_set = [
'John',
'XiaoMing',
'Mike',
'Tom',
'Machael',
'Zheng Hu',
'Zark',
'Tim',
'Andrew',
'Pick',
'Sean',
'Luke',
'Chunck'
]
web_set = [
'https://google.com',
'https://facebook.com?id=1',
'https://tmall.com',
'https://baidu.com',
'https://taobao.com',
'https://aliyun.com',
'https://apache.com',
'https://flink.apache.com',
'https://hbase.apache.com',
'https://github.com',
'https://gmail.com',
'https://stackoverflow.com',
'https://python.org'
]
def main():
while True:
if random.randrange(10) < 4:
url = random.choice(web_set[:3])
else:
url = random.choice(web_set)
log_entry = {
'userName': random.choice(user_set),
'visitURL': url,
'ts': datetime.now().strftime("%m/%d/%Y %H:%M:%S")
}
print(json.dumps(log_entry))
time.sleep(0.05)
if __name__ == "__main__":
main()
Pipeline zum Kafka-Thema
sshuser@hn0-contsk:~$ python weblog.py | /usr/hdp/current/kafka-broker/bin/kafka-console-producer.sh --bootstrap-server wn0-contsk:9092 --topic click_events
Andere Befehle:
-- create topic
/usr/hdp/current/kafka-broker/bin/kafka-topics.sh --create --replication-factor 2 --partitions 3 --topic click_events --bootstrap-server wn0-contsk:9092
-- delete topic
/usr/hdp/current/kafka-broker/bin/kafka-topics.sh --delete --topic click_events --bootstrap-server wn0-contsk:9092
-- consume topic
sshuser@hn0-contsk:~$ /usr/hdp/current/kafka-broker/bin/kafka-console-consumer.sh --bootstrap-server wn0-contsk:9092 --topic click_events --from-beginning
{"userName": "Luke", "visitURL": "https://flink.apache.com", "ts": "06/26/2023 14:33:43"}
{"userName": "Tom", "visitURL": "https://stackoverflow.com", "ts": "06/26/2023 14:33:43"}
{"userName": "Chunck", "visitURL": "https://google.com", "ts": "06/26/2023 14:33:44"}
{"userName": "Chunck", "visitURL": "https://facebook.com?id=1", "ts": "06/26/2023 14:33:44"}
{"userName": "John", "visitURL": "https://tmall.com", "ts": "06/26/2023 14:33:44"}
{"userName": "Andrew", "visitURL": "https://facebook.com?id=1", "ts": "06/26/2023 14:33:44"}
{"userName": "John", "visitURL": "https://tmall.com", "ts": "06/26/2023 14:33:44"}
{"userName": "Pick", "visitURL": "https://google.com", "ts": "06/26/2023 14:33:44"}
{"userName": "Mike", "visitURL": "https://tmall.com", "ts": "06/26/2023 14:33:44"}
{"userName": "Zheng Hu", "visitURL": "https://tmall.com", "ts": "06/26/2023 14:33:44"}
{"userName": "Luke", "visitURL": "https://facebook.com?id=1", "ts": "06/26/2023 14:33:44"}
{"userName": "John", "visitURL": "https://flink.apache.com", "ts": "06/26/2023 14:33:44"}
Apache Flink SQL-Client
Ausführliche Anweisungen zur Verwendung von Secure Shell für Flink SQL-Client.
Herunterladen von Kafka SQL Connector und Abhängigkeiten in SSH
Wir verwenden die Kafka 3.2.0-Abhängigkeiten im folgenden Schritt. Sie müssen den Befehl basierend auf Ihrer Kafka-Version in HDInsight-Cluster anpassen.
wget https://repo1.maven.org/maven2/org/apache/kafka/kafka-clients/3.2.0/kafka-clients-3.2.0.jar
wget https://repo1.maven.org/maven2/org/apache/flink/flink-connector-kafka/1.17.0/flink-connector-kafka-1.17.0.jar
Herstellen einer Verbindung mit Apache Flink SQL Client
Stellen wir nun eine Verbindung mit dem Flink SQL-Client mit Kafka SQL-Client-JARs her.
msdata@pod-0 [ /opt/flink-webssh ]$ bin/sql-client.sh -j flink-connector-kafka-1.17.0.jar -j kafka-clients-3.2.0.jar
Kafka-Tabelle in Apache Flink SQL erstellen
Erstellen wir nun die Kafka-Tabelle in Flink SQL, und wählen wir die Kafka-Tabelle in Flink SQL aus.
Sie müssen Ihre Kafka-Bootstrap-Server-IPs im folgenden Codeausschnitt aktualisieren.
CREATE TABLE KafkaTable (
`userName` STRING,
`visitURL` STRING,
`ts` TIMESTAMP(3) METADATA FROM 'timestamp'
) WITH (
'connector' = 'kafka',
'topic' = 'click_events',
'properties.bootstrap.servers' = '<update-kafka-bootstrapserver-ip>:9092,<update-kafka-bootstrapserver-ip>:9092,<update-kafka-bootstrapserver-ip>:9092',
'properties.group.id' = 'my_group',
'scan.startup.mode' = 'earliest-offset',
'format' = 'json'
);
select * from KafkaTable;
Erstellen von Kafka-Nachrichten
Lassen Sie uns nun Kafka-Nachrichten zu demselben Thema erstellen, indem wir HDInsight Kafka verwenden.
python weblog.py | /usr/hdp/current/kafka-broker/bin/kafka-console-producer.sh --bootstrap-server wn0-contsk:9092 --topic click_events
Tabelle für Apache Flink SQL
Sie können die Tabelle in Flink SQL überwachen.
Hier sind die Streamingaufträge auf der Flink Web UI.
Verweis
- Apache Kafka SQL Connector
- Apache, Apache Kafka, Kafka, Apache Flink, Flink und zugehörige Open Source-Projektnamen sind Handelsmarken der Apache Software Foundation (ASF).