TimeSeriesCatalog.DetectEntireAnomalyBySrCnn Methode
Definition
Wichtig
Einige Informationen beziehen sich auf Vorabversionen, die vor dem Release ggf. grundlegend überarbeitet werden. Microsoft übernimmt hinsichtlich der hier bereitgestellten Informationen keine Gewährleistungen, seien sie ausdrücklich oder konkludent.
Überlädt
DetectEntireAnomalyBySrCnn(AnomalyDetectionCatalog, IDataView, String, String, SrCnnEntireAnomalyDetectorOptions) |
Erstellen Sie Microsoft.ML.TimeSeries.SrCnnEntireAnomalyDetector, die Zeitserienanomalien für gesamte Eingaben mithilfe des SRCNN-Algorithmus erkennt. |
DetectEntireAnomalyBySrCnn(AnomalyDetectionCatalog, IDataView, String, String, Double, Int32, Double, SrCnnDetectMode) |
Erstellen Sie Microsoft.ML.TimeSeries.SrCnnEntireAnomalyDetector, die Zeitserienanomalien für gesamte Eingaben mithilfe des SRCNN-Algorithmus erkennt. |
DetectEntireAnomalyBySrCnn(AnomalyDetectionCatalog, IDataView, String, String, SrCnnEntireAnomalyDetectorOptions)
Erstellen Sie Microsoft.ML.TimeSeries.SrCnnEntireAnomalyDetector, die Zeitserienanomalien für gesamte Eingaben mithilfe des SRCNN-Algorithmus erkennt.
public static Microsoft.ML.IDataView DetectEntireAnomalyBySrCnn (this Microsoft.ML.AnomalyDetectionCatalog catalog, Microsoft.ML.IDataView input, string outputColumnName, string inputColumnName, Microsoft.ML.TimeSeries.SrCnnEntireAnomalyDetectorOptions options);
static member DetectEntireAnomalyBySrCnn : Microsoft.ML.AnomalyDetectionCatalog * Microsoft.ML.IDataView * string * string * Microsoft.ML.TimeSeries.SrCnnEntireAnomalyDetectorOptions -> Microsoft.ML.IDataView
<Extension()>
Public Function DetectEntireAnomalyBySrCnn (catalog As AnomalyDetectionCatalog, input As IDataView, outputColumnName As String, inputColumnName As String, options As SrCnnEntireAnomalyDetectorOptions) As IDataView
Parameter
- catalog
- AnomalyDetectionCatalog
Der AnomalyDetectionCatalog.
- input
- IDataView
Eingabedatenansicht.
- outputColumnName
- String
Name der Spalte, die aus der Datenverarbeitung inputColumnName
resultiert.
Die Spaltendaten sind ein Vektor von Double. Die Länge dieses Vektors variiert je nach options.DetectMode.DetectMode
.
Definiert die Einstellungen des Ladevorgangs.
Gibt zurück
Beispiele
using System;
using System.Collections.Generic;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.TimeSeries;
namespace Samples.Dynamic
{
public static class DetectEntireAnomalyBySrCnn
{
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging,
// as well as the source of randomness.
var ml = new MLContext();
// Generate sample series data with an anomaly
var data = new List<TimeSeriesData>();
for (int index = 0; index < 20; index++)
{
data.Add(new TimeSeriesData { Value = 5 });
}
data.Add(new TimeSeriesData { Value = 10 });
for (int index = 0; index < 5; index++)
{
data.Add(new TimeSeriesData { Value = 5 });
}
// Convert data to IDataView.
var dataView = ml.Data.LoadFromEnumerable(data);
// Setup the detection arguments
string outputColumnName = nameof(SrCnnAnomalyDetection.Prediction);
string inputColumnName = nameof(TimeSeriesData.Value);
// Do batch anomaly detection
var outputDataView = ml.AnomalyDetection.DetectEntireAnomalyBySrCnn(dataView, outputColumnName, inputColumnName,
threshold: 0.35, batchSize: 512, sensitivity: 90.0, detectMode: SrCnnDetectMode.AnomalyAndMargin);
// Getting the data of the newly created column as an IEnumerable of
// SrCnnAnomalyDetection.
var predictionColumn = ml.Data.CreateEnumerable<SrCnnAnomalyDetection>(
outputDataView, reuseRowObject: false);
Console.WriteLine("Index\tData\tAnomaly\tAnomalyScore\tMag\tExpectedValue\tBoundaryUnit\tUpperBoundary\tLowerBoundary");
int k = 0;
foreach (var prediction in predictionColumn)
{
PrintPrediction(k, data[k].Value, prediction);
k++;
}
//Index Data Anomaly AnomalyScore Mag ExpectedValue BoundaryUnit UpperBoundary LowerBoundary
//0 5.00 0 0.00 0.21 5.00 5.00 5.01 4.99
//1 5.00 0 0.00 0.11 5.00 5.00 5.01 4.99
//2 5.00 0 0.00 0.03 5.00 5.00 5.01 4.99
//3 5.00 0 0.00 0.01 5.00 5.00 5.01 4.99
//4 5.00 0 0.00 0.03 5.00 5.00 5.01 4.99
//5 5.00 0 0.00 0.06 5.00 5.00 5.01 4.99
//6 5.00 0 0.00 0.02 5.00 5.00 5.01 4.99
//7 5.00 0 0.00 0.01 5.00 5.00 5.01 4.99
//8 5.00 0 0.00 0.01 5.00 5.00 5.01 4.99
//9 5.00 0 0.00 0.01 5.00 5.00 5.01 4.99
//10 5.00 0 0.00 0.00 5.00 5.00 5.01 4.99
//11 5.00 0 0.00 0.01 5.00 5.00 5.01 4.99
//12 5.00 0 0.00 0.01 5.00 5.00 5.01 4.99
//13 5.00 0 0.00 0.02 5.00 5.00 5.01 4.99
//14 5.00 0 0.00 0.07 5.00 5.00 5.01 4.99
//15 5.00 0 0.00 0.08 5.00 5.00 5.01 4.99
//16 5.00 0 0.00 0.02 5.00 5.00 5.01 4.99
//17 5.00 0 0.00 0.05 5.00 5.00 5.01 4.99
//18 5.00 0 0.00 0.12 5.00 5.00 5.01 4.99
//19 5.00 0 0.00 0.17 5.00 5.00 5.01 4.99
//20 10.00 1 0.50 0.80 5.00 5.00 5.01 4.99
//21 5.00 0 0.00 0.16 5.00 5.00 5.01 4.99
//22 5.00 0 0.00 0.11 5.00 5.00 5.01 4.99
//23 5.00 0 0.00 0.05 5.00 5.00 5.01 4.99
//24 5.00 0 0.00 0.11 5.00 5.00 5.01 4.99
//25 5.00 0 0.00 0.19 5.00 5.00 5.01 4.99
}
private static void PrintPrediction(int idx, double value, SrCnnAnomalyDetection prediction) =>
Console.WriteLine("{0}\t{1:0.00}\t{2}\t\t{3:0.00}\t{4:0.00}\t\t{5:0.00}\t\t{6:0.00}\t\t{7:0.00}\t\t{8:0.00}",
idx, value, prediction.Prediction[0], prediction.Prediction[1], prediction.Prediction[2],
prediction.Prediction[3], prediction.Prediction[4], prediction.Prediction[5], prediction.Prediction[6]);
private class TimeSeriesData
{
public double Value { get; set; }
}
private class SrCnnAnomalyDetection
{
[VectorType]
public double[] Prediction { get; set; }
}
}
}
Gilt für:
DetectEntireAnomalyBySrCnn(AnomalyDetectionCatalog, IDataView, String, String, Double, Int32, Double, SrCnnDetectMode)
Erstellen Sie Microsoft.ML.TimeSeries.SrCnnEntireAnomalyDetector, die Zeitserienanomalien für gesamte Eingaben mithilfe des SRCNN-Algorithmus erkennt.
public static Microsoft.ML.IDataView DetectEntireAnomalyBySrCnn (this Microsoft.ML.AnomalyDetectionCatalog catalog, Microsoft.ML.IDataView input, string outputColumnName, string inputColumnName, double threshold = 0.3, int batchSize = 1024, double sensitivity = 99, Microsoft.ML.TimeSeries.SrCnnDetectMode detectMode = Microsoft.ML.TimeSeries.SrCnnDetectMode.AnomalyOnly);
static member DetectEntireAnomalyBySrCnn : Microsoft.ML.AnomalyDetectionCatalog * Microsoft.ML.IDataView * string * string * double * int * double * Microsoft.ML.TimeSeries.SrCnnDetectMode -> Microsoft.ML.IDataView
<Extension()>
Public Function DetectEntireAnomalyBySrCnn (catalog As AnomalyDetectionCatalog, input As IDataView, outputColumnName As String, inputColumnName As String, Optional threshold As Double = 0.3, Optional batchSize As Integer = 1024, Optional sensitivity As Double = 99, Optional detectMode As SrCnnDetectMode = Microsoft.ML.TimeSeries.SrCnnDetectMode.AnomalyOnly) As IDataView
Parameter
- catalog
- AnomalyDetectionCatalog
Der AnomalyDetectionCatalog.
- input
- IDataView
Eingabedatenansicht.
- outputColumnName
- String
Name der Spalte, die aus der Datenverarbeitung inputColumnName
resultiert.
Die Spaltendaten sind ein Vektor von Double. Die Länge dieses Vektors variiert je nach detectMode
.
- threshold
- Double
Der Schwellenwert, um eine Anomalie zu bestimmen. Eine Anomalie wird erkannt, wenn die berechnete SR-Rohbewertung für einen bestimmten Punkt mehr als der festgelegte Schwellenwert ist. Dieser Schwellenwert muss zwischen [0,1] liegen, und der Standardwert beträgt 0,3.
- batchSize
- Int32
Teilen Sie die Eingabedaten in Batches, um das srcnn-Modell anzupassen. Wenn sie auf -1 festgelegt sind, verwenden Sie die gesamte Eingabe, um das Modell anstelle von Batch nach Batch anzupassen, wenn sie auf eine positive ganze Zahl festgelegt ist, verwenden Sie diese Zahl als Batchgröße. Muss -1 oder eine positive ganze Zahl sein, die nicht kleiner als 12 ist. Standardwert ist 1024.
- sensitivity
- Double
Vertraulichkeit von Grenzen, nur nützlich, wenn srCnnDetectMode AnomalyAndMargin ist. Muss in [0,100] sein. Standardwert ist 99.
- detectMode
- SrCnnDetectMode
Eine Aufzählungsart von SrCnnDetectMode. Beim Festlegen auf AnomalyOnly wäre der Ausgabevektor ein 3-Element-Doppelvektor (IsAnomaly, RawScore, Mag). Beim Festlegen auf AnomalyAndExpectedValue wäre der Ausgabevektor ein 4-Element-Double-Vektor (IsAnomaly, RawScore, Mag, ExpectedValue). Beim Festlegen auf AnomalyAndMargin wäre der Ausgabevektor ein 7-Element-Doppelvektor (IsAnomaly, AnomalyScore, Mag, ExpectedValue, BoundaryUnit, UpperBoundary, LowerBoundary). Der RawScore wird von SR ausgegeben, um zu bestimmen, ob ein Punkt eine Anomalie ist oder nicht, unter anomalyAndMargin Mode, wenn ein Punkt ein AnomalyScore ist, entsprechend der Vertraulichkeitseinstellung berechnet wird. Standardwert ist AnomalyOnly.
Gibt zurück
Beispiele
using System;
using System.Collections.Generic;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.TimeSeries;
namespace Samples.Dynamic
{
public static class DetectEntireAnomalyBySrCnn
{
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging,
// as well as the source of randomness.
var ml = new MLContext();
// Generate sample series data with an anomaly
var data = new List<TimeSeriesData>();
for (int index = 0; index < 20; index++)
{
data.Add(new TimeSeriesData { Value = 5 });
}
data.Add(new TimeSeriesData { Value = 10 });
for (int index = 0; index < 5; index++)
{
data.Add(new TimeSeriesData { Value = 5 });
}
// Convert data to IDataView.
var dataView = ml.Data.LoadFromEnumerable(data);
// Setup the detection arguments
string outputColumnName = nameof(SrCnnAnomalyDetection.Prediction);
string inputColumnName = nameof(TimeSeriesData.Value);
// Do batch anomaly detection
var outputDataView = ml.AnomalyDetection.DetectEntireAnomalyBySrCnn(dataView, outputColumnName, inputColumnName,
threshold: 0.35, batchSize: 512, sensitivity: 90.0, detectMode: SrCnnDetectMode.AnomalyAndMargin);
// Getting the data of the newly created column as an IEnumerable of
// SrCnnAnomalyDetection.
var predictionColumn = ml.Data.CreateEnumerable<SrCnnAnomalyDetection>(
outputDataView, reuseRowObject: false);
Console.WriteLine("Index\tData\tAnomaly\tAnomalyScore\tMag\tExpectedValue\tBoundaryUnit\tUpperBoundary\tLowerBoundary");
int k = 0;
foreach (var prediction in predictionColumn)
{
PrintPrediction(k, data[k].Value, prediction);
k++;
}
//Index Data Anomaly AnomalyScore Mag ExpectedValue BoundaryUnit UpperBoundary LowerBoundary
//0 5.00 0 0.00 0.21 5.00 5.00 5.01 4.99
//1 5.00 0 0.00 0.11 5.00 5.00 5.01 4.99
//2 5.00 0 0.00 0.03 5.00 5.00 5.01 4.99
//3 5.00 0 0.00 0.01 5.00 5.00 5.01 4.99
//4 5.00 0 0.00 0.03 5.00 5.00 5.01 4.99
//5 5.00 0 0.00 0.06 5.00 5.00 5.01 4.99
//6 5.00 0 0.00 0.02 5.00 5.00 5.01 4.99
//7 5.00 0 0.00 0.01 5.00 5.00 5.01 4.99
//8 5.00 0 0.00 0.01 5.00 5.00 5.01 4.99
//9 5.00 0 0.00 0.01 5.00 5.00 5.01 4.99
//10 5.00 0 0.00 0.00 5.00 5.00 5.01 4.99
//11 5.00 0 0.00 0.01 5.00 5.00 5.01 4.99
//12 5.00 0 0.00 0.01 5.00 5.00 5.01 4.99
//13 5.00 0 0.00 0.02 5.00 5.00 5.01 4.99
//14 5.00 0 0.00 0.07 5.00 5.00 5.01 4.99
//15 5.00 0 0.00 0.08 5.00 5.00 5.01 4.99
//16 5.00 0 0.00 0.02 5.00 5.00 5.01 4.99
//17 5.00 0 0.00 0.05 5.00 5.00 5.01 4.99
//18 5.00 0 0.00 0.12 5.00 5.00 5.01 4.99
//19 5.00 0 0.00 0.17 5.00 5.00 5.01 4.99
//20 10.00 1 0.50 0.80 5.00 5.00 5.01 4.99
//21 5.00 0 0.00 0.16 5.00 5.00 5.01 4.99
//22 5.00 0 0.00 0.11 5.00 5.00 5.01 4.99
//23 5.00 0 0.00 0.05 5.00 5.00 5.01 4.99
//24 5.00 0 0.00 0.11 5.00 5.00 5.01 4.99
//25 5.00 0 0.00 0.19 5.00 5.00 5.01 4.99
}
private static void PrintPrediction(int idx, double value, SrCnnAnomalyDetection prediction) =>
Console.WriteLine("{0}\t{1:0.00}\t{2}\t\t{3:0.00}\t{4:0.00}\t\t{5:0.00}\t\t{6:0.00}\t\t{7:0.00}\t\t{8:0.00}",
idx, value, prediction.Prediction[0], prediction.Prediction[1], prediction.Prediction[2],
prediction.Prediction[3], prediction.Prediction[4], prediction.Prediction[5], prediction.Prediction[6]);
private class TimeSeriesData
{
public double Value { get; set; }
}
private class SrCnnAnomalyDetection
{
[VectorType]
public double[] Prediction { get; set; }
}
}
}