Freigeben über


FastForestBinaryTrainer Klasse

Definition

Für die IEstimator<TTransformer> Schulung eines Entscheidungsstruktur-Binärklassifizierungsmodells mithilfe von Fast Forest.

public sealed class FastForestBinaryTrainer : Microsoft.ML.Trainers.FastTree.RandomForestTrainerBase<Microsoft.ML.Trainers.FastTree.FastForestBinaryTrainer.Options,Microsoft.ML.Data.BinaryPredictionTransformer<Microsoft.ML.Trainers.FastTree.FastForestBinaryModelParameters>,Microsoft.ML.Trainers.FastTree.FastForestBinaryModelParameters>
type FastForestBinaryTrainer = class
    inherit RandomForestTrainerBase<FastForestBinaryTrainer.Options, BinaryPredictionTransformer<FastForestBinaryModelParameters>, FastForestBinaryModelParameters>
Public NotInheritable Class FastForestBinaryTrainer
Inherits RandomForestTrainerBase(Of FastForestBinaryTrainer.Options, BinaryPredictionTransformer(Of FastForestBinaryModelParameters), FastForestBinaryModelParameters)
Vererbung

Hinweise

Um diesen Trainer zu erstellen, verwenden Sie FastForest oder FastForest(Options).

Eingabe- und Ausgabespalten

Die Daten in der Spalte für die Eingabezeichnung müssen Boolean sein. Die Eingabefeatures-Spaltendaten müssen ein bekannter Vektor von Single.

Der Trainer gibt folgende Spalten aus:

Name der Ausgabespalte Spaltentyp BESCHREIBUNG
Score Single Die von dem Modell berechnete ungebundene Bewertung.
PredictedLabel Boolean Der vorhergesagte Bezeichnung, basierend auf dem Abzeichnen der Bewertung. Eine negative Bewertung wird false und eine positive Bewertung wird true zugeordnet.
Probability Single Die Wahrscheinlichkeit, die durch die Kalibrierung der Bewertung des True-Werts als Bezeichnung berechnet wird. Der Wahrscheinlichkeitswert befindet sich im Bereich [0, 1].

Trainereigenschaften

ML-Aufgabe Binäre Klassifizierung
Ist die Normalisierung erforderlich? No
Ist zwischenspeichern erforderlich? No
Erforderliche NuGet zusätzlich zu Microsoft.ML Microsoft.ML.FastTree
Exportierbar in ONNX Yes

Schulungsalgorithmusdetails

Entscheidungsbäume sind nicht-parametrische Modelle, die eine Reihe von einfachen Tests auf Eingaben anwenden. Dieses Entscheidungsverfahren ordnet sie Ausgaben aus dem Trainingsdataset zu, deren Eingaben der zu verarbeitenden Instanz ähnlich waren. Bei jedem Knoten der binären Baumstruktur wird eine Entscheidung auf Grundlage des Maßes der Ähnlichkeit getroffen, das jede Instanz rekursiv durch die Zweige des Baums zuordnet, bis der entsprechende Blattknoten erreicht und die Ausgabeentscheidung zurückgegeben wird.

Entscheidungsbäume haben mehrere Vorteile:

  • Sie sind während des Trainings und der Vorhersage effizient sowohl bei der Berechnung als auch bei der Arbeitsspeicherauslastung.
  • Sie können nicht lineare Entscheidungsgrenzen darstellen.
  • Sie führen eine integrierte Featureauswahl und -klassifizierung durch.
  • Sie sind resilient gegen störende Features.

Schnelle Gesamtstruktur ist eine zufällige Gesamtstrukturimplementierung. Dieses Modell besteht aus einem Ensemble von Entscheidungsbäumen. Jeder Baum in einem Entscheidungswald gibt mittels Prognose eine Gauß-Verteilung aus. Es erfolgt eine Aggregation über das Baumensemble, um eine Gauß-Verteilung zu finden, die der kombinierten Verteilung für alle Bäume im Modell am nächsten kommt. Dieser Entscheidungswaldklassifizierer besteht aus einem Ensemble von Entscheidungsbäumen.

Im Allgemeinen bieten Ensemblemodelle eine bessere Abdeckung und Genauigkeit als einzelne Entscheidungsbäume. Jeder Baum in einem Entscheidungswald gibt eine Gauß-Verteilung aus.

Weitere Informationen finden Sie unter:

Überprüfen Sie den Abschnitt "Siehe auch", um Links zu Beispielen der Verwendung zu finden.

Felder

FeatureColumn

Die Featurespalte, die der Trainer erwartet.

(Geerbt von TrainerEstimatorBase<TTransformer,TModel>)
GroupIdColumn

Die optionale GroupID-Spalte, die die Bewertungstrainer erwarten.

(Geerbt von TrainerEstimatorBaseWithGroupId<TTransformer,TModel>)
LabelColumn

Die Bezeichnungsspalte, die der Trainer erwartet. Kann sein null, was angibt, dass die Bezeichnung nicht für Schulungen verwendet wird.

(Geerbt von TrainerEstimatorBase<TTransformer,TModel>)
WeightColumn

Die Gewichtsspalte, die der Trainer erwartet. nullKann sein, was angibt, dass das Gewicht nicht für die Schulung verwendet wird.

(Geerbt von TrainerEstimatorBase<TTransformer,TModel>)

Eigenschaften

Info

Für die IEstimator<TTransformer> Schulung eines Entscheidungsstruktur-Binärklassifizierungsmodells mithilfe von Fast Forest.

(Geerbt von FastTreeTrainerBase<TOptions,TTransformer,TModel>)

Methoden

Fit(IDataView, IDataView)

Ruft eine FastForestBinaryTrainer Verwendung von Schulungs- und Validierungsdaten ab, gibt einen BinaryPredictionTransformer<TModel>Wert zurück.

Fit(IDataView)

Züge und zurückgeben eine ITransformer.

(Geerbt von TrainerEstimatorBase<TTransformer,TModel>)
GetOutputSchema(SchemaShape)

Für die IEstimator<TTransformer> Schulung eines Entscheidungsstruktur-Binärklassifizierungsmodells mithilfe von Fast Forest.

(Geerbt von TrainerEstimatorBase<TTransformer,TModel>)

Erweiterungsmethoden

AppendCacheCheckpoint<TTrans>(IEstimator<TTrans>, IHostEnvironment)

Fügen Sie einen "Zwischenspeicherpunkt" an die Stimatorkette an. Dadurch wird sichergestellt, dass die nachgelagerten Stimatoren gegen zwischengespeicherte Daten trainiert werden. Es ist hilfreich, einen Cache-Prüfpunkt zu haben, bevor Trainer, die mehrere Daten übergeben.

WithOnFitDelegate<TTransformer>(IEstimator<TTransformer>, Action<TTransformer>)

Geben Sie aufgrund einer Schätzung ein Umbruchobjekt zurück, das einen Stellvertretung aufruft, sobald Fit(IDataView) er aufgerufen wird. Es ist oft wichtig, dass eine Schätzung Informationen zu dem zurückgibt, was passt, weshalb die Fit(IDataView) Methode ein spezifisches typiertes Objekt zurückgibt, anstatt nur ein allgemeines ITransformer. Gleichzeitig IEstimator<TTransformer> werden jedoch oft Pipelines mit vielen Objekten gebildet, sodass wir möglicherweise eine Kette von EstimatorChain<TLastTransformer> Schätzern erstellen müssen, über die der Schätzer, für den wir den Transformator erhalten möchten, irgendwo in dieser Kette begraben wird. Für dieses Szenario können wir über diese Methode eine Stellvertretung anfügen, die einmal aufgerufen wird, wenn die Anpassung aufgerufen wird.

Gilt für:

Weitere Informationen