Freigeben über


OnlineLinearTrainer<TTransformer,TModel> Klasse

Definition

Basisklasse für online lineare Trainer. Online-Trainer können inkrementell mit zusätzlichen Daten aktualisiert werden.

public abstract class OnlineLinearTrainer<TTransformer,TModel> : Microsoft.ML.Trainers.TrainerEstimatorBase<TTransformer,TModel> where TTransformer : ISingleFeaturePredictionTransformer<TModel> where TModel : class
type OnlineLinearTrainer<'ransformer, 'Model (requires 'ransformer :> ISingleFeaturePredictionTransformer<'Model> and 'Model : null)> = class
    inherit TrainerEstimatorBase<'ransformer, 'Model (requires 'ransformer :> ISingleFeaturePredictionTransformer<'Model> and 'Model : null)>
Public MustInherit Class OnlineLinearTrainer(Of TTransformer, TModel)
Inherits TrainerEstimatorBase(Of TTransformer, TModel)

Typparameter

TTransformer
TModel
Vererbung
OnlineLinearTrainer<TTransformer,TModel>
Abgeleitet

Felder

FeatureColumn

Die Featurespalte, die der Trainer erwartet.

(Geerbt von TrainerEstimatorBase<TTransformer,TModel>)
LabelColumn

Die Bezeichnungsspalte, die der Trainer erwartet. Kann sein null, was angibt, dass die Bezeichnung nicht für Schulungen verwendet wird.

(Geerbt von TrainerEstimatorBase<TTransformer,TModel>)
WeightColumn

Die Gewichtsspalte, die der Trainer erwartet. nullKann sein, was angibt, dass das Gewicht nicht für die Schulung verwendet wird.

(Geerbt von TrainerEstimatorBase<TTransformer,TModel>)

Eigenschaften

Info

Basisklasse für online lineare Trainer. Online-Trainer können inkrementell mit zusätzlichen Daten aktualisiert werden.

Methoden

Fit(IDataView, LinearModelParameters)

Führt die Schulung einer OnlineLinearTrainer<TTransformer,TModel> bereits trainierten modelParameters Und gibt eine ITransformer.

Fit(IDataView)

Züge und zurückgeben eine ITransformer.

(Geerbt von TrainerEstimatorBase<TTransformer,TModel>)
GetOutputSchema(SchemaShape)

Basisklasse für online lineare Trainer. Online-Trainer können inkrementell mit zusätzlichen Daten aktualisiert werden.

(Geerbt von TrainerEstimatorBase<TTransformer,TModel>)

Erweiterungsmethoden

AppendCacheCheckpoint<TTrans>(IEstimator<TTrans>, IHostEnvironment)

Fügen Sie einen "Zwischenspeicherpunkt" an die Stimatorkette an. Dadurch wird sichergestellt, dass die nachgelagerten Stimatoren gegen zwischengespeicherte Daten trainiert werden. Es ist hilfreich, einen Cache-Prüfpunkt zu haben, bevor Trainer, die mehrere Daten übergeben.

WithOnFitDelegate<TTransformer>(IEstimator<TTransformer>, Action<TTransformer>)

Geben Sie aufgrund einer Schätzung ein Umbruchobjekt zurück, das einen Stellvertretung aufruft, sobald Fit(IDataView) er aufgerufen wird. Es ist oft wichtig, dass eine Schätzung Informationen zu dem zurückgibt, was passt, weshalb die Fit(IDataView) Methode ein spezifisches typiertes Objekt zurückgibt, anstatt nur ein allgemeines ITransformer. Gleichzeitig IEstimator<TTransformer> werden jedoch oft Pipelines mit vielen Objekten gebildet, sodass wir möglicherweise eine Kette von EstimatorChain<TLastTransformer> Schätzern erstellen müssen, über die der Schätzer, für den wir den Transformator erhalten möchten, irgendwo in dieser Kette begraben wird. Für dieses Szenario können wir über diese Methode eine Stellvertretung anfügen, die einmal aufgerufen wird, wenn die Anpassung aufgerufen wird.

Gilt für: