Math.Pow(Double, Double) Methode
Definition
Wichtig
Einige Informationen beziehen sich auf Vorabversionen, die vor dem Release ggf. grundlegend überarbeitet werden. Microsoft übernimmt hinsichtlich der hier bereitgestellten Informationen keine Gewährleistungen, seien sie ausdrücklich oder konkludent.
Potenziert eine angegebene Zahl mit dem angegebenen Exponenten.
public:
static double Pow(double x, double y);
public static double Pow (double x, double y);
static member Pow : double * double -> double
Public Shared Function Pow (x As Double, y As Double) As Double
Parameter
- x
- Double
Eine Gleitkommazahl mit doppelter Genauigkeit, die potenziert werden soll.
- y
- Double
Eine Gleitkommazahl mit doppelter Genauigkeit, die einen Exponenten darstellt.
Gibt zurück
Die Zahl x
hoch y
.
Beispiele
Im folgenden Beispiel wird die Pow -Methode verwendet, um den Wert zu berechnen, der sich aus der Erhöhung von 2 auf eine Leistung von 0 bis 32 ergibt.
int value = 2;
for (int power = 0; power <= 32; power++)
Console.WriteLine($"{value}^{power} = {(long)Math.Pow(value, power):N0} (0x{(long)Math.Pow(value, power):X})");
// The example displays the following output:
// 2^0 = 1 (0x1)
// 2^1 = 2 (0x2)
// 2^2 = 4 (0x4)
// 2^3 = 8 (0x8)
// 2^4 = 16 (0x10)
// 2^5 = 32 (0x20)
// 2^6 = 64 (0x40)
// 2^7 = 128 (0x80)
// 2^8 = 256 (0x100)
// 2^9 = 512 (0x200)
// 2^10 = 1,024 (0x400)
// 2^11 = 2,048 (0x800)
// 2^12 = 4,096 (0x1000)
// 2^13 = 8,192 (0x2000)
// 2^14 = 16,384 (0x4000)
// 2^15 = 32,768 (0x8000)
// 2^16 = 65,536 (0x10000)
// 2^17 = 131,072 (0x20000)
// 2^18 = 262,144 (0x40000)
// 2^19 = 524,288 (0x80000)
// 2^20 = 1,048,576 (0x100000)
// 2^21 = 2,097,152 (0x200000)
// 2^22 = 4,194,304 (0x400000)
// 2^23 = 8,388,608 (0x800000)
// 2^24 = 16,777,216 (0x1000000)
// 2^25 = 33,554,432 (0x2000000)
// 2^26 = 67,108,864 (0x4000000)
// 2^27 = 134,217,728 (0x8000000)
// 2^28 = 268,435,456 (0x10000000)
// 2^29 = 536,870,912 (0x20000000)
// 2^30 = 1,073,741,824 (0x40000000)
// 2^31 = 2,147,483,648 (0x80000000)
// 2^32 = 4,294,967,296 (0x100000000)
open System
let value = 2
for power = 0 to 32 do
printfn $"{value}^{power} = {Math.Pow(value, power) |> int64:N0} (0x{Math.Pow(value, power) |> int64:X})"
// The example displays the following output:
// 2^0 = 1 (0x1)
// 2^1 = 2 (0x2)
// 2^2 = 4 (0x4)
// 2^3 = 8 (0x8)
// 2^4 = 16 (0x10)
// 2^5 = 32 (0x20)
// 2^6 = 64 (0x40)
// 2^7 = 128 (0x80)
// 2^8 = 256 (0x100)
// 2^9 = 512 (0x200)
// 2^10 = 1,024 (0x400)
// 2^11 = 2,048 (0x800)
// 2^12 = 4,096 (0x1000)
// 2^13 = 8,192 (0x2000)
// 2^14 = 16,384 (0x4000)
// 2^15 = 32,768 (0x8000)
// 2^16 = 65,536 (0x10000)
// 2^17 = 131,072 (0x20000)
// 2^18 = 262,144 (0x40000)
// 2^19 = 524,288 (0x80000)
// 2^20 = 1,048,576 (0x100000)
// 2^21 = 2,097,152 (0x200000)
// 2^22 = 4,194,304 (0x400000)
// 2^23 = 8,388,608 (0x800000)
// 2^24 = 16,777,216 (0x1000000)
// 2^25 = 33,554,432 (0x2000000)
// 2^26 = 67,108,864 (0x4000000)
// 2^27 = 134,217,728 (0x8000000)
// 2^28 = 268,435,456 (0x10000000)
// 2^29 = 536,870,912 (0x20000000)
// 2^30 = 1,073,741,824 (0x40000000)
// 2^31 = 2,147,483,648 (0x80000000)
// 2^32 = 4,294,967,296 (0x100000000)
Public Module Example
Public Sub Main
Dim value As Integer = 2
For power As Integer = 0 To 32
Console.WriteLine("{0}^{1} = {2:N0} (0x{2:X})", _
value, power, CLng(Math.Pow(value, power)))
Next
End Sub
End Module
' The example displays the following output:
' 2^0 = 1 (0x1)
' 2^1 = 2 (0x2)
' 2^2 = 4 (0x4)
' 2^3 = 8 (0x8)
' 2^4 = 16 (0x10)
' 2^5 = 32 (0x20)
' 2^6 = 64 (0x40)
' 2^7 = 128 (0x80)
' 2^8 = 256 (0x100)
' 2^9 = 512 (0x200)
' 2^10 = 1,024 (0x400)
' 2^11 = 2,048 (0x800)
' 2^12 = 4,096 (0x1000)
' 2^13 = 8,192 (0x2000)
' 2^14 = 16,384 (0x4000)
' 2^15 = 32,768 (0x8000)
' 2^16 = 65,536 (0x10000)
' 2^17 = 131,072 (0x20000)
' 2^18 = 262,144 (0x40000)
' 2^19 = 524,288 (0x80000)
' 2^20 = 1,048,576 (0x100000)
' 2^21 = 2,097,152 (0x200000)
' 2^22 = 4,194,304 (0x400000)
' 2^23 = 8,388,608 (0x800000)
' 2^24 = 16,777,216 (0x1000000)
' 2^25 = 33,554,432 (0x2000000)
' 2^26 = 67,108,864 (0x4000000)
' 2^27 = 134,217,728 (0x8000000)
' 2^28 = 268,435,456 (0x10000000)
' 2^29 = 536,870,912 (0x20000000)
' 2^30 = 1,073,741,824 (0x40000000)
' 2^31 = 2,147,483,648 (0x80000000)
' 2^32 = 4,294,967,296 (0x100000000)
Hinweise
Die folgende Tabelle gibt den Rückgabewert an, wenn verschiedene Werte oder Wertebereiche für die x
Parameter und y
angegeben werden. Weitere Informationen finden Sie unter Double.PositiveInfinity, Double.NegativeInfinity und Double.NaN.
x | Y | Rückgabewert |
---|---|---|
NaN |
Beliebiger Wert außer 0 | NaN |
NaN |
0 | 1 (NaN zu .NET Framework) |
Beliebiger Wert außer NaN |
0 | 1 |
1 | Beliebiger Wert außer NaN |
1 |
1 | NaN |
1 (NaN zu .NET Framework) |
Einen beliebiger Wert außer 1 | NaN |
NaN |
NegativeInfinity |
< 0 | 0 |
NegativeInfinity |
Positive ungerade ganze Zahl | NegativeInfinity |
NegativeInfinity |
Positiv, aber keine ungerade ganze Zahl | PositiveInfinity |
< 0, aber nicht NegativeInfinity |
Keine ganze Zahl, NegativeInfinity oder PositiveInfinity |
NaN |
-1 | = NegativeInfinity Oder PositiveInfinity |
NaN |
-1 < x < 1 | NegativeInfinity |
PositiveInfinity |
-1 < x < 1 | PositiveInfinity |
0 |
< -1 oder > 1 | NegativeInfinity |
0 |
< -1 oder > 1 | PositiveInfinity |
PositiveInfinity |
0 | < 0 | PositiveInfinity |
0 | > 0 | 0 |
PositiveInfinity |
< 0 | 0 |
PositiveInfinity |
> 0 | PositiveInfinity |
Diese Methode ruft die zugrunde liegende C-Runtime auf, und das genaue Ergebnis oder der gültige Eingabebereich kann sich zwischen verschiedenen Betriebssystemen oder Architekturen unterscheiden.
Gilt für:
Weitere Informationen
Feedback
Feedback senden und anzeigen für