Math.Tanh(Double) Methode
Definition
Wichtig
Einige Informationen beziehen sich auf Vorabversionen, die vor dem Release ggf. grundlegend überarbeitet werden. Microsoft übernimmt hinsichtlich der hier bereitgestellten Informationen keine Gewährleistungen, seien sie ausdrücklich oder konkludent.
Gibt den Hyperbeltangens des angegebenen Winkels zurück.
public:
static double Tanh(double value);
public static double Tanh (double value);
static member Tanh : double -> double
Public Shared Function Tanh (value As Double) As Double
Parameter
- value
- Double
Ein im Bogenmaß angegebener Winkel.
Gibt zurück
Der Hyperbeltangens von value
. Wenn value
gleich NegativeInfinity ist, gibt diese Methode -1 zurück. Wenn value gleich PositiveInfinity ist, gibt diese Methode 1 zurück. Wenn value
gleich NaN ist, gibt diese Methode NaN zurück.
Beispiele
Im folgenden Beispiel wird verwendet Tanh , um bestimmte hyperbolische Tangentenidentitäten für ausgewählte Werte auszuwerten.
// Example for the hyperbolic Math::Tanh( double ) method.
using namespace System;
// Evaluate hyperbolic identities with a given argument.
void UseTanh( double arg )
{
double tanhArg = Math::Tanh( arg );
// Evaluate tanh(X) == sinh(X) / cosh(X).
Console::WriteLine( "\n Math::Tanh({0}) == {1:E16}\n"
" Math::Sinh({0}) / Math::Cosh({0}) == {2:E16}", arg, tanhArg, (Math::Sinh( arg ) / Math::Cosh( arg )) );
// Evaluate tanh(2 * X) == 2 * tanh(X) / (1 + tanh^2(X)).
Console::WriteLine( " 2 * Math::Tanh({0}) /", arg, 2.0 * tanhArg );
Console::WriteLine( " (1 + (Math::Tanh({0}))^2) == {1:E16}", arg, 2.0 * tanhArg / (1.0 + tanhArg * tanhArg) );
Console::WriteLine( " Math::Tanh({0}) == {1:E16}", 2.0 * arg, Math::Tanh( 2.0 * arg ) );
}
// Evaluate a hyperbolic identity that is a function of two arguments.
void UseTwoArgs( double argX, double argY )
{
// Evaluate tanh(X + Y) == (tanh(X) + tanh(Y)) / (1 + tanh(X) * tanh(Y)).
Console::WriteLine( "\n (Math::Tanh({0}) + Math::Tanh({1})) /\n"
"(1 + Math::Tanh({0}) * Math::Tanh({1})) == {2:E16}", argX, argY, (Math::Tanh( argX ) + Math::Tanh( argY )) / (1.0 + Math::Tanh( argX ) * Math::Tanh( argY )) );
Console::WriteLine( " Math::Tanh({0}) == {1:E16}", argX + argY, Math::Tanh( argX + argY ) );
}
int main()
{
Console::WriteLine( "This example of hyperbolic Math::Tanh( double )\n"
"generates the following output." );
Console::WriteLine( "\nEvaluate these hyperbolic identities "
"with selected values for X:" );
Console::WriteLine( " tanh(X) == sinh(X) / cosh(X)" );
Console::WriteLine( " tanh(2 * X) == 2 * tanh(X) / (1 + tanh^2(X))" );
UseTanh( 0.1 );
UseTanh( 1.2 );
UseTanh( 4.9 );
Console::WriteLine( "\nEvaluate [tanh(X + Y) == "
"(tanh(X) + tanh(Y)) / (1 + tanh(X) * tanh(Y))]"
"\nwith selected values for X and Y:" );
UseTwoArgs( 0.1, 1.2 );
UseTwoArgs( 1.2, 4.9 );
}
/*
This example of hyperbolic Math::Tanh( double )
generates the following output.
Evaluate these hyperbolic identities with selected values for X:
tanh(X) == sinh(X) / cosh(X)
tanh(2 * X) == 2 * tanh(X) / (1 + tanh^2(X))
Math::Tanh(0.1) == 9.9667994624955819E-002
Math::Sinh(0.1) / Math::Cosh(0.1) == 9.9667994624955819E-002
2 * Math::Tanh(0.1) /
(1 + (Math::Tanh(0.1))^2) == 1.9737532022490401E-001
Math::Tanh(0.2) == 1.9737532022490401E-001
Math::Tanh(1.2) == 8.3365460701215521E-001
Math::Sinh(1.2) / Math::Cosh(1.2) == 8.3365460701215521E-001
2 * Math::Tanh(1.2) /
(1 + (Math::Tanh(1.2))^2) == 9.8367485769368024E-001
Math::Tanh(2.4) == 9.8367485769368024E-001
Math::Tanh(4.9) == 9.9988910295055444E-001
Math::Sinh(4.9) / Math::Cosh(4.9) == 9.9988910295055433E-001
2 * Math::Tanh(4.9) /
(1 + (Math::Tanh(4.9))^2) == 9.9999999385024030E-001
Math::Tanh(9.8) == 9.9999999385024030E-001
Evaluate [tanh(X + Y) == (tanh(X) + tanh(Y)) / (1 + tanh(X) * tanh(Y))]
with selected values for X and Y:
(Math::Tanh(0.1) + Math::Tanh(1.2)) /
(1 + Math::Tanh(0.1) * Math::Tanh(1.2)) == 8.6172315931330645E-001
Math::Tanh(1.3) == 8.6172315931330634E-001
(Math::Tanh(1.2) + Math::Tanh(4.9)) /
(1 + Math::Tanh(1.2) * Math::Tanh(4.9)) == 9.9998993913939649E-001
Math::Tanh(6.1) == 9.9998993913939649E-001
*/
// Example for the hyperbolic Math.Tanh( double ) method.
using System;
class DemoTanh
{
public static void Main()
{
Console.WriteLine(
"This example of hyperbolic Math.Tanh( double )\n" +
"generates the following output." );
Console.WriteLine(
"\nEvaluate these hyperbolic identities " +
"with selected values for X:" );
Console.WriteLine( " tanh(X) == sinh(X) / cosh(X)" );
Console.WriteLine(
" tanh(2 * X) == 2 * tanh(X) / (1 + tanh^2(X))" );
UseTanh(0.1);
UseTanh(1.2);
UseTanh(4.9);
Console.WriteLine(
"\nEvaluate [tanh(X + Y) == (tanh(X) + tanh(Y)) " +
"/ (1 + tanh(X) * tanh(Y))]" +
"\nwith selected values for X and Y:" );
UseTwoArgs(0.1, 1.2);
UseTwoArgs(1.2, 4.9);
}
// Evaluate hyperbolic identities with a given argument.
static void UseTanh(double arg)
{
double tanhArg = Math.Tanh(arg);
// Evaluate tanh(X) == sinh(X) / cosh(X).
Console.WriteLine(
"\n Math.Tanh({0}) == {1:E16}\n" +
" Math.Sinh({0}) / Math.Cosh({0}) == {2:E16}",
arg, tanhArg, (Math.Sinh(arg) / Math.Cosh(arg)) );
// Evaluate tanh(2 * X) == 2 * tanh(X) / (1 + tanh^2(X)).
Console.WriteLine(
" 2 * Math.Tanh({0}) /",
arg, 2.0 * tanhArg );
Console.WriteLine(
" (1 + (Math.Tanh({0}))^2) == {1:E16}",
arg, 2.0 * tanhArg / (1.0 + tanhArg * tanhArg ) );
Console.WriteLine(
" Math.Tanh({0}) == {1:E16}",
2.0 * arg, Math.Tanh(2.0 * arg) );
}
// Evaluate a hyperbolic identity that is a function of two arguments.
static void UseTwoArgs(double argX, double argY)
{
// Evaluate tanh(X + Y) == (tanh(X) + tanh(Y)) / (1 + tanh(X) * tanh(Y)).
Console.WriteLine(
"\n (Math.Tanh({0}) + Math.Tanh({1})) /\n" +
"(1 + Math.Tanh({0}) * Math.Tanh({1})) == {2:E16}",
argX, argY, (Math.Tanh(argX) + Math.Tanh(argY)) /
(1.0 + Math.Tanh(argX) * Math.Tanh(argY)) );
Console.WriteLine(
" Math.Tanh({0}) == {1:E16}",
argX + argY, Math.Tanh(argX + argY));
}
}
/*
This example of hyperbolic Math.Tanh( double )
generates the following output.
Evaluate these hyperbolic identities with selected values for X:
tanh(X) == sinh(X) / cosh(X)
tanh(2 * X) == 2 * tanh(X) / (1 + tanh^2(X))
Math.Tanh(0.1) == 9.9667994624955819E-002
Math.Sinh(0.1) / Math.Cosh(0.1) == 9.9667994624955819E-002
2 * Math.Tanh(0.1) /
(1 + (Math.Tanh(0.1))^2) == 1.9737532022490401E-001
Math.Tanh(0.2) == 1.9737532022490401E-001
Math.Tanh(1.2) == 8.3365460701215521E-001
Math.Sinh(1.2) / Math.Cosh(1.2) == 8.3365460701215521E-001
2 * Math.Tanh(1.2) /
(1 + (Math.Tanh(1.2))^2) == 9.8367485769368024E-001
Math.Tanh(2.4) == 9.8367485769368024E-001
Math.Tanh(4.9) == 9.9988910295055444E-001
Math.Sinh(4.9) / Math.Cosh(4.9) == 9.9988910295055433E-001
2 * Math.Tanh(4.9) /
(1 + (Math.Tanh(4.9))^2) == 9.9999999385024030E-001
Math.Tanh(9.8) == 9.9999999385024030E-001
Evaluate [tanh(X + Y) == (tanh(X) + tanh(Y)) / (1 + tanh(X) * tanh(Y))]
with selected values for X and Y:
(Math.Tanh(0.1) + Math.Tanh(1.2)) /
(1 + Math.Tanh(0.1) * Math.Tanh(1.2)) == 8.6172315931330645E-001
Math.Tanh(1.3) == 8.6172315931330634E-001
(Math.Tanh(1.2) + Math.Tanh(4.9)) /
(1 + Math.Tanh(1.2) * Math.Tanh(4.9)) == 9.9998993913939649E-001
Math.Tanh(6.1) == 9.9998993913939649E-001
*/
// Example for the hyperbolic Math.Tanh( double ) method.
// In F#, the tanh function may be used instead
open System
// Evaluate hyperbolic identities with a given argument.
let useTanh arg =
let tanhArg = Math.Tanh arg
// Evaluate tanh(X) = sinh(X) / cosh(X).
printfn $"""
Math.Tanh({arg}) = {tanhArg:E16}
Math.Sinh({arg}) / Math.Cosh({arg}) = {Math.Sinh arg / Math.Cosh arg:E16}"""
// Evaluate tanh(2 * X) = 2 * tanh(X) / (1 + tanh^2(X)).
printfn $" 2 * Math.Tanh({arg}) / {2. * tanhArg}"
printfn $" (1 + (Math.Tanh({arg}))^2) = {2. * tanhArg / (1. + tanhArg * tanhArg):E16}"
printfn $" Math.Tanh({2. * arg}) = {Math.Tanh(2. * arg):E16}"
// Evaluate a hyperbolic identity that is a function of two arguments.
let useTwoArgs argX argY =
// Evaluate tanh(X + Y) = (tanh(X) + tanh(Y)) / (1 + tanh(X) * tanh(Y)).
printfn $"\n (Math.Tanh({argX}) + Math.Tanh({argY})) /\n(1 + Math.Tanh({argX}) * Math.Tanh({argY})) = {(Math.Tanh argX + Math.Tanh argY) / (1. + Math.Tanh argX * Math.Tanh argY):E16}"
printfn $" Math.Tanh({argX + argY}) = {Math.Tanh(argX + argY):E16}"
printfn "This example of hyperbolic Math.Tanh( double )\ngenerates the following output."
printfn "\nEvaluate these hyperbolic identities with selected values for X:"
printfn " tanh(X) = sinh(X) / cosh(X)"
printfn " tanh(2 * X) = 2 * tanh(X) / (1 + tanh^2(X))"
useTanh 0.1
useTanh 1.2
useTanh 4.9
printfn "\nEvaluate [tanh(X + Y) = (tanh(X) + tanh(Y)) / (1 + tanh(X) * tanh(Y))]\nwith selected values for X and Y:"
useTwoArgs 0.1 1.2
useTwoArgs 1.2 4.9
// This example of hyperbolic Math.Tanh( double )
// generates the following output.
//
// Evaluate these hyperbolic identities with selected values for X:
// tanh(X) = sinh(X) / cosh(X)
// tanh(2 * X) = 2 * tanh(X) / (1 + tanh^2(X))
//
// Math.Tanh(0.1) = 9.9667994624955819E-002
// Math.Sinh(0.1) / Math.Cosh(0.1) = 9.9667994624955819E-002
// 2 * Math.Tanh(0.1) /
// (1 + (Math.Tanh(0.1))^2) = 1.9737532022490401E-001
// Math.Tanh(0.2) = 1.9737532022490401E-001
//
// Math.Tanh(1.2) = 8.3365460701215521E-001
// Math.Sinh(1.2) / Math.Cosh(1.2) = 8.3365460701215521E-001
// 2 * Math.Tanh(1.2) /
// (1 + (Math.Tanh(1.2))^2) = 9.8367485769368024E-001
// Math.Tanh(2.4) = 9.8367485769368024E-001
//
// Math.Tanh(4.9) = 9.9988910295055444E-001
// Math.Sinh(4.9) / Math.Cosh(4.9) = 9.9988910295055433E-001
// 2 * Math.Tanh(4.9) /
// (1 + (Math.Tanh(4.9))^2) = 9.9999999385024030E-001
// Math.Tanh(9.8) = 9.9999999385024030E-001
//
// Evaluate [tanh(X + Y) = (tanh(X) + tanh(Y)) / (1 + tanh(X) * tanh(Y))]
// with selected values for X and Y:
//
// (Math.Tanh(0.1) + Math.Tanh(1.2)) /
// (1 + Math.Tanh(0.1) * Math.Tanh(1.2)) = 8.6172315931330645E-001
// Math.Tanh(1.3) = 8.6172315931330634E-001
//
// (Math.Tanh(1.2) + Math.Tanh(4.9)) /
// (1 + Math.Tanh(1.2) * Math.Tanh(4.9)) = 9.9998993913939649E-001
// Math.Tanh(6.1) = 9.9998993913939649E-001
' Example for the hyperbolic Math.Tanh( Double ) method.
Module DemoTanh
Sub Main()
Console.WriteLine( _
"This example of hyperbolic Math.Tanh( Double )" & _
vbCrLf & "generates the following output.")
Console.WriteLine( _
vbCrLf & "Evaluate these hyperbolic " & _
"identities with selected values for X:")
Console.WriteLine(" tanh(X) = sinh(X) / cosh(X)")
Console.WriteLine(" tanh(2 * X) = 2 * tanh(X) / (1 + tanh^2(X))")
UseTanh(0.1)
UseTanh(1.2)
UseTanh(4.9)
Console.WriteLine( _
vbCrLf & "Evaluate [tanh(X + Y) == (tanh(X) + " & _
"tanh(Y)) / (1 + tanh(X) * tanh(Y))]" & _
vbCrLf & "with selected values for X and Y:")
UseTwoArgs(0.1, 1.2)
UseTwoArgs(1.2, 4.9)
End Sub
' Evaluate hyperbolic identities with a given argument.
Sub UseTanh(arg As Double)
Dim tanhArg As Double = Math.Tanh(arg)
' Evaluate tanh(X) = sinh(X) / cosh(X).
Console.WriteLine( _
vbCrLf & " Math.Tanh({0}) = {1:E16}" & _
vbCrLf & " Math.Sinh({0}) / Math.Cosh({0}) = {2:E16}", _
arg, tanhArg, Math.Sinh(arg) / Math.Cosh(arg))
' Evaluate tanh(2 * X) = 2 * tanh(X) / (1 + tanh^2(X)).
Console.WriteLine( _
" 2 * Math.Tanh({0}) /", _
arg, 2.0 * tanhArg)
Console.WriteLine( _
" (1 + (Math.Tanh({0}))^2) = {1:E16}", _
arg, 2.0 * tanhArg /(1.0 + tanhArg * tanhArg))
Console.WriteLine( _
" Math.Tanh({0}) = {1:E16}", _
2.0 * arg, Math.Tanh((2.0 * arg)))
End Sub
' Evaluate a hyperbolic identity that is a function of two arguments.
Sub UseTwoArgs(argX As Double, argY As Double)
' Evaluate tanh(X + Y) = (tanh(X) + tanh(Y)) / (1 + tanh(X) * tanh(Y)).
Console.WriteLine( _
vbCrLf & " (Math.Tanh({0}) + Math.Tanh({1})) /" & _
vbCrLf & "(1 + Math.Tanh({0}) * Math.Tanh({1})) = {2:E16}", _
argX, argY, (Math.Tanh(argX) + Math.Tanh(argY)) / _
(1.0 + Math.Tanh(argX) * Math.Tanh(argY)))
Console.WriteLine( _
" Math.Tanh({0}) = {1:E16}", _
argX + argY, Math.Tanh(argX + argY))
End Sub
End Module 'DemoTanh
' This example of hyperbolic Math.Tanh( Double )
' generates the following output.
'
' Evaluate these hyperbolic identities with selected values for X:
' tanh(X) = sinh(X) / cosh(X)
' tanh(2 * X) = 2 * tanh(X) / (1 + tanh^2(X))
'
' Math.Tanh(0.1) = 9.9667994624955819E-002
' Math.Sinh(0.1) / Math.Cosh(0.1) = 9.9667994624955819E-002
' 2 * Math.Tanh(0.1) /
' (1 + (Math.Tanh(0.1))^2) = 1.9737532022490401E-001
' Math.Tanh(0.2) = 1.9737532022490401E-001
'
' Math.Tanh(1.2) = 8.3365460701215521E-001
' Math.Sinh(1.2) / Math.Cosh(1.2) = 8.3365460701215521E-001
' 2 * Math.Tanh(1.2) /
' (1 + (Math.Tanh(1.2))^2) = 9.8367485769368024E-001
' Math.Tanh(2.4) = 9.8367485769368024E-001
'
' Math.Tanh(4.9) = 9.9988910295055444E-001
' Math.Sinh(4.9) / Math.Cosh(4.9) = 9.9988910295055433E-001
' 2 * Math.Tanh(4.9) /
' (1 + (Math.Tanh(4.9))^2) = 9.9999999385024030E-001
' Math.Tanh(9.8) = 9.9999999385024030E-001
'
' Evaluate [tanh(X + Y) == (tanh(X) + tanh(Y)) / (1 + tanh(X) * tanh(Y))]
' with selected values for X and Y:
'
' (Math.Tanh(0.1) + Math.Tanh(1.2)) /
' (1 + Math.Tanh(0.1) * Math.Tanh(1.2)) = 8.6172315931330645E-001
' Math.Tanh(1.3) = 8.6172315931330634E-001
'
' (Math.Tanh(1.2) + Math.Tanh(4.9)) /
' (1 + Math.Tanh(1.2) * Math.Tanh(4.9)) = 9.9998993913939649E-001
' Math.Tanh(6.1) = 9.9998993913939649E-001
Hinweise
Der Winkel muss value
im Bogenmaß sein. Multiplizieren Sie mit Math.PI/180, um Grad in Bogenmaß zu konvertieren.
Diese Methode ruft die zugrunde liegende C-Runtime auf, und das genaue Ergebnis oder der gültige Eingabebereich kann sich zwischen verschiedenen Betriebssystemen oder Architekturen unterscheiden.