Random Klasse
Definition
Wichtig
Einige Informationen beziehen sich auf Vorabversionen, die vor dem Release ggf. grundlegend überarbeitet werden. Microsoft übernimmt hinsichtlich der hier bereitgestellten Informationen keine Gewährleistungen, seien sie ausdrücklich oder konkludent.
Stellt einen Generator für Pseudozufallszahlen dar, d. h. ein Algorithmus, der eine Zahlenfolge erzeugt, die bestimmte statistische Anforderungen hinsichtlich ihrer Zufälligkeit erfüllt.
public ref class Random
public class Random
[System.Serializable]
public class Random
[System.Serializable]
[System.Runtime.InteropServices.ComVisible(true)]
public class Random
type Random = class
[<System.Serializable>]
type Random = class
[<System.Serializable>]
[<System.Runtime.InteropServices.ComVisible(true)>]
type Random = class
Public Class Random
- Vererbung
-
Random
- Attribute
Beispiele
Im folgenden Beispiel wird ein einzelner Zufallszahlengenerator erstellt, und die Methoden , und werden zum NextBytes Next Generieren von NextDouble Sequenzen von Zufallszahlen in unterschiedlichen Bereichen aufruft.
using namespace System;
void main()
{
// Instantiate random number generator using system-supplied value as seed.
Random^ rand = gcnew Random();
// Generate and display 5 random byte (integer) values.
array<Byte>^ bytes = gcnew array<Byte>(4);
rand->NextBytes(bytes);
Console::WriteLine("Five random byte values:");
for each (Byte byteValue in bytes)
Console::Write("{0, 5}", byteValue);
Console::WriteLine();
// Generate and display 5 random integers.
Console::WriteLine("Five random integer values:");
for (int ctr = 0; ctr <= 4; ctr++)
Console::Write("{0,15:N0}", rand->Next());
Console::WriteLine();
// Generate and display 5 random integers between 0 and 100.//
Console::WriteLine("Five random integers between 0 and 100:");
for (int ctr = 0; ctr <= 4; ctr++)
Console::Write("{0,8:N0}", rand->Next(101));
Console::WriteLine();
// Generate and display 5 random integers from 50 to 100.
Console::WriteLine("Five random integers between 50 and 100:");
for (int ctr = 0; ctr <= 4; ctr++)
Console::Write("{0,8:N0}", rand->Next(50, 101));
Console::WriteLine();
// Generate and display 5 random floating point values from 0 to 1.
Console::WriteLine("Five Doubles.");
for (int ctr = 0; ctr <= 4; ctr++)
Console::Write("{0,8:N3}", rand->NextDouble());
Console::WriteLine();
// Generate and display 5 random floating point values from 0 to 5.
Console::WriteLine("Five Doubles between 0 and 5.");
for (int ctr = 0; ctr <= 4; ctr++)
Console::Write("{0,8:N3}", rand->NextDouble() * 5);
}
// The example displays output like the following:
// Five random byte values:
// 194 185 239 54 116
// Five random integer values:
// 507,353,531 1,509,532,693 2,125,074,958 1,409,512,757 652,767,128
// Five random integers between 0 and 100:
// 16 78 94 79 52
// Five random integers between 50 and 100:
// 56 66 96 60 65
// Five Doubles.
// 0.943 0.108 0.744 0.563 0.415
// Five Doubles between 0 and 5.
// 2.934 3.130 0.292 1.432 4.369
// Instantiate random number generator using system-supplied value as seed.
var rand = new Random();
// Generate and display 5 random byte (integer) values.
var bytes = new byte[5];
rand.NextBytes(bytes);
Console.WriteLine("Five random byte values:");
foreach (byte byteValue in bytes)
Console.Write("{0, 5}", byteValue);
Console.WriteLine();
// Generate and display 5 random integers.
Console.WriteLine("Five random integer values:");
for (int ctr = 0; ctr <= 4; ctr++)
Console.Write("{0,15:N0}", rand.Next());
Console.WriteLine();
// Generate and display 5 random integers between 0 and 100.
Console.WriteLine("Five random integers between 0 and 100:");
for (int ctr = 0; ctr <= 4; ctr++)
Console.Write("{0,8:N0}", rand.Next(101));
Console.WriteLine();
// Generate and display 5 random integers from 50 to 100.
Console.WriteLine("Five random integers between 50 and 100:");
for (int ctr = 0; ctr <= 4; ctr++)
Console.Write("{0,8:N0}", rand.Next(50, 101));
Console.WriteLine();
// Generate and display 5 random floating point values from 0 to 1.
Console.WriteLine("Five Doubles.");
for (int ctr = 0; ctr <= 4; ctr++)
Console.Write("{0,8:N3}", rand.NextDouble());
Console.WriteLine();
// Generate and display 5 random floating point values from 0 to 5.
Console.WriteLine("Five Doubles between 0 and 5.");
for (int ctr = 0; ctr <= 4; ctr++)
Console.Write("{0,8:N3}", rand.NextDouble() * 5);
// The example displays output like the following:
// Five random byte values:
// 194 185 239 54 116
// Five random integer values:
// 507,353,531 1,509,532,693 2,125,074,958 1,409,512,757 652,767,128
// Five random integers between 0 and 100:
// 16 78 94 79 52
// Five random integers between 50 and 100:
// 56 66 96 60 65
// Five Doubles.
// 0.943 0.108 0.744 0.563 0.415
// Five Doubles between 0 and 5.
// 2.934 3.130 0.292 1.432 4.369
// Instantiate random number generator using system-supplied value as seed.
let rand = Random()
// Generate and display 5 random byte (integer) values.
let bytes = Array.zeroCreate 5
rand.NextBytes bytes
printfn "Five random byte values:"
for byte in bytes do
printf "%5i" byte
printfn ""
// Generate and display 5 random integers.
printfn "Five random integer values:"
for _ = 0 to 4 do
printf $"{rand.Next(),15:N0}"
printfn ""
// Generate and display 5 random integers between 0 and 100.
printfn "Five random integers between 0 and 100:"
for _ = 0 to 4 do
printf $"{rand.Next 101,8:N0}"
printfn ""
// Generate and display 5 random integers from 50 to 100.
printfn "Five random integers between 50 and 100:"
for _ = 0 to 4 do
printf $"{rand.Next(50, 101),8:N0}"
printfn ""
// Generate and display 5 random floating point values from 0 to 1.
printfn "Five Doubles."
for _ = 0 to 4 do
printf $"{rand.NextDouble(),8:N3}"
printfn ""
// Generate and display 5 random floating point values from 0 to 5.
printfn "Five Doubles between 0 and 5."
for _ = 0 to 4 do
printf $"{rand.NextDouble() * 5.0,8:N3}"
// The example displays output like the following:
// Five random byte values:
// 194 185 239 54 116
// Five random integer values:
// 507,353,531 1,509,532,693 2,125,074,958 1,409,512,757 652,767,128
// Five random integers between 0 and 100:
// 16 78 94 79 52
// Five random integers between 50 and 100:
// 56 66 96 60 65
// Five Doubles.
// 0.943 0.108 0.744 0.563 0.415
// Five Doubles between 0 and 5.
// 2.934 3.130 0.292 1.432 4.369
Module Example
Public Sub Main()
' Instantiate random number generator using system-supplied value as seed.
Dim rand As New Random()
' Generate and display 5 random byte (integer) values.
Dim bytes(4) As Byte
rand.NextBytes(bytes)
Console.WriteLine("Five random byte values:")
For Each byteValue As Byte In bytes
Console.Write("{0, 5}", byteValue)
Next
Console.WriteLine()
' Generate and display 5 random integers.
Console.WriteLine("Five random integer values:")
For ctr As Integer = 0 To 4
Console.Write("{0,15:N0}", rand.Next)
Next
Console.WriteLine()
' Generate and display 5 random integers between 0 and 100.'
Console.WriteLine("Five random integers between 0 and 100:")
For ctr As Integer = 0 To 4
Console.Write("{0,8:N0}", rand.Next(101))
Next
Console.WriteLine()
' Generate and display 5 random integers from 50 to 100.
Console.WriteLine("Five random integers between 50 and 100:")
For ctr As Integer = 0 To 4
Console.Write("{0,8:N0}", rand.Next(50, 101))
Next
Console.WriteLine()
' Generate and display 5 random floating point values from 0 to 1.
Console.WriteLine("Five Doubles.")
For ctr As Integer = 0 To 4
Console.Write("{0,8:N3}", rand.NextDouble())
Next
Console.WriteLine()
' Generate and display 5 random floating point values from 0 to 5.
Console.WriteLine("Five Doubles between 0 and 5.")
For ctr As Integer = 0 To 4
Console.Write("{0,8:N3}", rand.NextDouble() * 5)
Next
End Sub
End Module
' The example displays output like the following:
' Five random byte values:
' 194 185 239 54 116
' Five random integer values:
' 507,353,531 1,509,532,693 2,125,074,958 1,409,512,757 652,767,128
' Five random integers between 0 and 100:
' 16 78 94 79 52
' Five random integers between 50 and 100:
' 56 66 96 60 65
' Five Doubles.
' 0.943 0.108 0.744 0.563 0.415
' Five Doubles between 0 and 5.
' 2.934 3.130 0.292 1.432 4.369
Im folgenden Beispiel wird eine zufällige ganze Zahl generiert, die als Index verwendet wird, um einen Zeichenfolgenwert aus einem Array abzurufen.
using namespace System;
void main()
{
Random^ rnd = gcnew Random();
array<String^>^ malePetNames = { "Rufus", "Bear", "Dakota", "Fido",
"Vanya", "Samuel", "Koani", "Volodya",
"Prince", "Yiska" };
array<String^>^ femalePetNames = { "Maggie", "Penny", "Saya", "Princess",
"Abby", "Laila", "Sadie", "Olivia",
"Starlight", "Talla" };
// Generate random indexes for pet names.
int mIndex = rnd->Next(malePetNames->Length);
int fIndex = rnd->Next(femalePetNames->Length);
// Display the result.
Console::WriteLine("Suggested pet name of the day: ");
Console::WriteLine(" For a male: {0}", malePetNames[mIndex]);
Console::WriteLine(" For a female: {0}", femalePetNames[fIndex]);
}
// The example displays output similar to the following:
// Suggested pet name of the day:
// For a male: Koani
// For a female: Maggie
Random rnd = new Random();
string[] malePetNames = { "Rufus", "Bear", "Dakota", "Fido",
"Vanya", "Samuel", "Koani", "Volodya",
"Prince", "Yiska" };
string[] femalePetNames = { "Maggie", "Penny", "Saya", "Princess",
"Abby", "Laila", "Sadie", "Olivia",
"Starlight", "Talla" };
// Generate random indexes for pet names.
int mIndex = rnd.Next(malePetNames.Length);
int fIndex = rnd.Next(femalePetNames.Length);
// Display the result.
Console.WriteLine("Suggested pet name of the day: ");
Console.WriteLine(" For a male: {0}", malePetNames[mIndex]);
Console.WriteLine(" For a female: {0}", femalePetNames[fIndex]);
// The example displays output similar to the following:
// Suggested pet name of the day:
// For a male: Koani
// For a female: Maggie
let rnd = Random()
let malePetNames =
[| "Rufus"; "Bear"; "Dakota"; "Fido";
"Vanya"; "Samuel"; "Koani"; "Volodya";
"Prince"; "Yiska" |]
let femalePetNames =
[| "Maggie"; "Penny"; "Saya"; "Princess";
"Abby"; "Laila"; "Sadie"; "Olivia";
"Starlight"; "Talla" |]
// Generate random indexes for pet names.
let mIndex = rnd.Next malePetNames.Length
let fIndex = rnd.Next femalePetNames.Length
// Display the result.
printfn "Suggested pet name of the day: "
printfn " For a male: %s" malePetNames.[mIndex]
printfn " For a female: %s" femalePetNames.[fIndex]
// The example displays output similar to the following:
// Suggested pet name of the day:
// For a male: Koani
// For a female: Maggie
Module Example
Public Sub Main()
Dim rnd As New Random()
Dim malePetNames() As String = { "Rufus", "Bear", "Dakota", "Fido",
"Vanya", "Samuel", "Koani", "Volodya",
"Prince", "Yiska" }
Dim femalePetNames() As String = { "Maggie", "Penny", "Saya", "Princess",
"Abby", "Laila", "Sadie", "Olivia",
"Starlight", "Talla" }
' Generate random indexes for pet names.
Dim mIndex As Integer = rnd.Next(malePetNames.Length)
Dim fIndex As Integer = rnd.Next(femalePetNames.Length)
' Display the result.
Console.WriteLine("Suggested pet name of the day: ")
Console.WriteLine(" For a male: {0}", malePetNames(mIndex))
Console.WriteLine(" For a female: {0}", femalePetNames(fIndex))
End Sub
End Module
' The example displays output similar to the following:
' Suggested pet name of the day:
' For a male: Koani
' For a female: Maggie
Hinweise
Pseudozufallszahlen werden mit gleicher Wahrscheinlichkeit aus einem endlichen Satz von Zahlen ausgewählt. Die ausgewählten Zahlen sind nicht vollständig zufällig, da ein mathematischer Algorithmus verwendet wird, um sie auszuwählen, aber sie sind für praktische Zwecke ausreichend zufällig. Die aktuelle Implementierung der Random -Klasse basiert auf einer geänderten Version des subtrahtiven Zufallszahlengeneratoralgorithmus vonUng E. Knuth. Weitere Informationen finden Sie unter D. E. Knuth. The Art of Computer Programming, Volume 2: Seminumerical Algorithms. Addison-Wesley, Reading, MA, dritte Edition, 1997.
Um eine kryptografisch sichere Zufallszahl zu generieren, z. B. eine, die zum Erstellen eines zufälligen Kennworts geeignet ist, verwenden Sie die RNGCryptoServiceProvider -Klasse, oder leiten Sie eine Klasse von System.Security.Cryptography.RandomNumberGenerator ab.
In diesem Thema:
Instanziieren des Zufallszahlengenerators
Vermeiden mehrerer Instanziierungen
Die System.Random-Klasse und Threadsicherheit
Generieren verschiedener Typen von Zufallszahlen
Ersetzen Ihres eigenen Algorithmus
Wie verwenden Sie System.Random für...
Abrufen derselben Sequenz zufälliger Werte
Abrufen eindeutiger Sequenzen von Zufallswerten
Abrufen von ganzen Zahlen in einem angegebenen Bereich
Abrufen von ganzen Zahlen mit einer angegebenen Anzahl von Ziffern
Abrufen von Gleitkommawerten in einem angegebenen Bereich
Generieren von zufälligen booleschen Werten
Generieren zufälliger 64-Bit-Ganzzahlen
Abrufen von Bytes in einem angegebenen Bereich
Abrufen eines Elements aus einem Array oder einer Auflistung nach dem Zufallsprinzip
Abrufen eines eindeutigen Elements aus einem Array oder einer Auflistung
Instanziieren des Zufallszahlengenerators
Sie instanziieren den Zufallszahlengenerator, indem Sie einem Klassenkonstruktor einen Startwert (einen Startwert für den Algorithmus zur Pseudozufallszahlengenerierung) Random bereitstellen. Sie können den Ausgangswert entweder explizit oder implizit angeben:
Der Random(Int32) Konstruktor verwendet einen expliziten Ausgangswert, den Sie bereitstellen.
Der Random() Konstruktor verwendet den Standardwert des Ausgangswerts. Dies ist die gängigste Methode zum Instanziieren des Zufallszahlengenerators.
In .NET Framework ist der Standardwert des Ausgangswerts zeitabhängig. In .NET Core wird der Standardwert des Ausgangswerts vom thread statischen Pseudozufallszahlengenerator erzeugt.
Wenn der gleiche Ausgangswert für separate Objekte verwendet Random wird, generieren sie die gleiche Reihe von Zufallszahlen. Dies kann nützlich sein, um eine Testsammlung zu erstellen, die Zufallswerte verarbeitet, oder um Spiele wiederzugeben, die ihre Daten aus Zufallszahlen ableiten. Beachten Sie jedoch, dass Random Objekte in Prozessen, die unter verschiedenen Versionen der .NET Framework ausgeführt werden, möglicherweise unterschiedliche Folge von Zufallszahlen zurückgeben, auch wenn sie mit identischen Ausgangswerten instanziiert werden.
Um unterschiedliche Sequenzen von Zufallszahlen zu erzeugen, können Sie den Ausgangswert zeitabhängig machen und so mit jeder neuen Instanz von eine andere Reihe Random erzeugen. Der Random(Int32) parametrisierte Konstruktor kann einen Int32 Wert basierend auf der Anzahl der Ticks in der aktuellen Zeit annehmen, während der parameterlose Random() Konstruktor die Systemuhr verwendet, um seinen Startwert zu generieren. Allerdings nur auf der .NET Framework, da die Uhr eine endliche Auflösung aufweist, werden mithilfe des parameterlosen Konstruktors zum Erstellen verschiedener Random Objekte in enger Folge Zufallszahlengeneratoren erstellt, die identische Sequenzen von Zufallszahlen erzeugen. Das folgende Beispiel veranschaulicht, wie zwei Random Objekte, die in einer .NET Framework Anwendung in enger Folge instanziiert werden, eine identische Folge von Zufallszahlen generieren. Auf den meisten Windows Systemen weisen Objekte, die Random innerhalb von 15 Millisekunden voneinander erstellt werden, wahrscheinlich identische Ausgangswerte auf.
using namespace System;
void main()
{
array<Byte>^ bytes1 = gcnew array<Byte>(100);
array<Byte>^ bytes2 = gcnew array<Byte>(100);
Random^ rnd1 = gcnew Random();
Random^ rnd2 = gcnew Random();
rnd1->NextBytes(bytes1);
rnd2->NextBytes(bytes2);
Console::WriteLine("First Series:");
for (int ctr = bytes1->GetLowerBound(0);
ctr <= bytes1->GetUpperBound(0);
ctr++) {
Console::Write("{0, 5}", bytes1[ctr]);
if ((ctr + 1) % 10 == 0) Console::WriteLine();
}
Console::WriteLine();
Console::WriteLine("Second Series:");
for (int ctr = bytes2->GetLowerBound(0);
ctr <= bytes2->GetUpperBound(0);
ctr++) {
Console::Write("{0, 5}", bytes2[ctr]);
if ((ctr + 1) % 10 == 0) Console::WriteLine();
}
}
// The example displays output like the following:
// First Series:
// 97 129 149 54 22 208 120 105 68 177
// 113 214 30 172 74 218 116 230 89 18
// 12 112 130 105 116 180 190 200 187 120
// 7 198 233 158 58 51 50 170 98 23
// 21 1 113 74 146 245 34 255 96 24
// 232 255 23 9 167 240 255 44 194 98
// 18 175 173 204 169 171 236 127 114 23
// 167 202 132 65 253 11 254 56 214 127
// 145 191 104 163 143 7 174 224 247 73
// 52 6 231 255 5 101 83 165 160 231
//
// Second Series:
// 97 129 149 54 22 208 120 105 68 177
// 113 214 30 172 74 218 116 230 89 18
// 12 112 130 105 116 180 190 200 187 120
// 7 198 233 158 58 51 50 170 98 23
// 21 1 113 74 146 245 34 255 96 24
// 232 255 23 9 167 240 255 44 194 98
// 18 175 173 204 169 171 236 127 114 23
// 167 202 132 65 253 11 254 56 214 127
// 145 191 104 163 143 7 174 224 247 73
// 52 6 231 255 5 101 83 165 160 231
byte[] bytes1 = new byte[100];
byte[] bytes2 = new byte[100];
Random rnd1 = new Random();
Random rnd2 = new Random();
rnd1.NextBytes(bytes1);
rnd2.NextBytes(bytes2);
Console.WriteLine("First Series:");
for (int ctr = bytes1.GetLowerBound(0);
ctr <= bytes1.GetUpperBound(0);
ctr++) {
Console.Write("{0, 5}", bytes1[ctr]);
if ((ctr + 1) % 10 == 0) Console.WriteLine();
}
Console.WriteLine();
Console.WriteLine("Second Series:");
for (int ctr = bytes2.GetLowerBound(0);
ctr <= bytes2.GetUpperBound(0);
ctr++) {
Console.Write("{0, 5}", bytes2[ctr]);
if ((ctr + 1) % 10 == 0) Console.WriteLine();
}
// The example displays output like the following:
// First Series:
// 97 129 149 54 22 208 120 105 68 177
// 113 214 30 172 74 218 116 230 89 18
// 12 112 130 105 116 180 190 200 187 120
// 7 198 233 158 58 51 50 170 98 23
// 21 1 113 74 146 245 34 255 96 24
// 232 255 23 9 167 240 255 44 194 98
// 18 175 173 204 169 171 236 127 114 23
// 167 202 132 65 253 11 254 56 214 127
// 145 191 104 163 143 7 174 224 247 73
// 52 6 231 255 5 101 83 165 160 231
//
// Second Series:
// 97 129 149 54 22 208 120 105 68 177
// 113 214 30 172 74 218 116 230 89 18
// 12 112 130 105 116 180 190 200 187 120
// 7 198 233 158 58 51 50 170 98 23
// 21 1 113 74 146 245 34 255 96 24
// 232 255 23 9 167 240 255 44 194 98
// 18 175 173 204 169 171 236 127 114 23
// 167 202 132 65 253 11 254 56 214 127
// 145 191 104 163 143 7 174 224 247 73
// 52 6 231 255 5 101 83 165 160 231
let bytes1 = Array.zeroCreate 100
let bytes2 = Array.zeroCreate 100
let rnd1 = Random()
let rnd2 = Random()
rnd1.NextBytes bytes1
rnd2.NextBytes bytes2
printfn "First Series"
for i = bytes1.GetLowerBound 0 to bytes1.GetUpperBound 0 do
printf "%5i" bytes1.[i]
if (i + 1) % 10 = 0 then printfn ""
printfn ""
printfn "Second Series"
for i = bytes2.GetLowerBound 0 to bytes2.GetUpperBound 0 do
printf "%5i" bytes2.[i]
if (i + 1) % 10 = 0 then printfn ""
// The example displays output like the following:
// First Series:
// 97 129 149 54 22 208 120 105 68 177
// 113 214 30 172 74 218 116 230 89 18
// 12 112 130 105 116 180 190 200 187 120
// 7 198 233 158 58 51 50 170 98 23
// 21 1 113 74 146 245 34 255 96 24
// 232 255 23 9 167 240 255 44 194 98
// 18 175 173 204 169 171 236 127 114 23
// 167 202 132 65 253 11 254 56 214 127
// 145 191 104 163 143 7 174 224 247 73
// 52 6 231 255 5 101 83 165 160 231
//
// Second Series:
// 97 129 149 54 22 208 120 105 68 177
// 113 214 30 172 74 218 116 230 89 18
// 12 112 130 105 116 180 190 200 187 120
// 7 198 233 158 58 51 50 170 98 23
// 21 1 113 74 146 245 34 255 96 24
// 232 255 23 9 167 240 255 44 194 98
// 18 175 173 204 169 171 236 127 114 23
// 167 202 132 65 253 11 254 56 214 127
// 145 191 104 163 143 7 174 224 247 73
// 52 6 231 255 5 101 83 165 160 231
Module modMain
Public Sub Main()
Dim bytes1(99), bytes2(99) As Byte
Dim rnd1 As New Random()
Dim rnd2 As New Random()
rnd1.NextBytes(bytes1)
rnd2.NextBytes(bytes2)
Console.WriteLine("First Series:")
For ctr As Integer = bytes1.GetLowerBound(0) to bytes1.GetUpperBound(0)
Console.Write("{0, 5}", bytes1(ctr))
If (ctr + 1) Mod 10 = 0 Then Console.WriteLine()
Next
Console.WriteLine()
Console.WriteLine("Second Series:")
For ctr As Integer = bytes2.GetLowerBound(0) to bytes2.GetUpperBound(0)
Console.Write("{0, 5}", bytes2(ctr))
If (ctr + 1) Mod 10 = 0 Then Console.WriteLine()
Next
End Sub
End Module
' The example displays output like the following:
' First Series:
' 97 129 149 54 22 208 120 105 68 177
' 113 214 30 172 74 218 116 230 89 18
' 12 112 130 105 116 180 190 200 187 120
' 7 198 233 158 58 51 50 170 98 23
' 21 1 113 74 146 245 34 255 96 24
' 232 255 23 9 167 240 255 44 194 98
' 18 175 173 204 169 171 236 127 114 23
' 167 202 132 65 253 11 254 56 214 127
' 145 191 104 163 143 7 174 224 247 73
' 52 6 231 255 5 101 83 165 160 231
'
' Second Series:
' 97 129 149 54 22 208 120 105 68 177
' 113 214 30 172 74 218 116 230 89 18
' 12 112 130 105 116 180 190 200 187 120
' 7 198 233 158 58 51 50 170 98 23
' 21 1 113 74 146 245 34 255 96 24
' 232 255 23 9 167 240 255 44 194 98
' 18 175 173 204 169 171 236 127 114 23
' 167 202 132 65 253 11 254 56 214 127
' 145 191 104 163 143 7 174 224 247 73
' 52 6 231 255 5 101 83 165 160 231
Um dieses Problem zu vermeiden, erstellen Sie anstelle mehrerer Objekte ein Random einzelnes Objekt. Beachten Sie, dass die Random
-Klasse in .NET Core nicht über diese Einschränkung verfügt.
Vermeiden mehrerer Instanziierungen
Beim .NET Framework werden durch initialisieren von zwei Zufallszahlengeneratoren in einer engen Schleife oder in schneller Folge zwei Zufallszahlengeneratoren erstellt, die identische Sequenzen von Zufallszahlen erzeugen können. In den meisten Fällen ist dies nicht die Absicht des Entwicklers und kann zu Leistungsproblemen führen, da das Instanziieren und Initialisieren eines Zufallszahlengenerators ein relativ aufwendiger Prozess ist.
Um die Leistung zu verbessern und zu vermeiden, dass versehentlich separate Zufallszahlengeneratoren erstellt werden, die identische numerische Sequenzen generieren, wird empfohlen, ein Random Objekt zu erstellen, um im Laufe der Zeit viele Zufallszahlen zu generieren, anstatt neue Objekte zu erstellen, Random um eine Zufallszahl zu generieren.
Die -Klasse ist jedoch Random nicht threadsicher. Wenn Sie Random Methoden aus mehreren Threads aufrufen, befolgen Sie die richtlinien, die im nächsten Abschnitt erläutert werden.
Die System.Random-Klasse und Threadsicherheit
Anstatt einzelne Objekte zu instanziieren, Random empfiehlt es sich, eine einzelne Random Instanz zu erstellen, um alle Zufallszahlen zu generieren, die von Ihrer App benötigt werden. Objekte sind jedoch Random nicht threadsicher. Wenn Ihre App Random Methoden aus mehreren Threads aufruft, müssen Sie ein Synchronisierungsobjekt verwenden, um sicherzustellen, dass jeweils nur ein Thread auf den Zufallszahlengenerator zugreifen kann. Wenn Sie nicht sicherstellen, dass threadsicher auf das Random Objekt zugegriffen wird, geben Aufrufe von Methoden, die Zufallszahlen zurückgeben, 0 zurück.
Im folgenden Beispiel werden die C#-Lock-Anweisung, die F#-Lock-Funktion und die Visual Basic SyncLock-Anweisung verwendet, um sicherzustellen, dass von 11 Threads threadsicher auf einen einzelnen Zufallszahlengenerator zugegriffen wird. Jeder Thread generiert 2 Millionen Zufallszahlen, zählt die Anzahl der generierten Zufallszahlen und berechnet deren Summe und aktualisiert dann die Summen für alle Threads, wenn die Ausführung abgeschlossen ist.
using namespace System;
using namespace System::Threading;
ref class Example
{
private:
[ThreadStatic] static double previous = 0.0;
[ThreadStatic] static int perThreadCtr = 0;
[ThreadStatic] static double perThreadTotal = 0.0;
static CancellationTokenSource^ source;
static CountdownEvent^ countdown;
static Object^ randLock;
static Object^ numericLock;
static Random^ rand;
double totalValue = 0.0;
int totalCount = 0;
public:
Example()
{
rand = gcnew Random();
randLock = gcnew Object();
numericLock = gcnew Object();
countdown = gcnew CountdownEvent(1);
source = gcnew CancellationTokenSource();
}
void Execute()
{
CancellationToken^ token = source->Token;
for (int threads = 1; threads <= 10; threads++)
{
Thread^ newThread = gcnew Thread(gcnew ParameterizedThreadStart(this, &Example::GetRandomNumbers));
newThread->Name = threads.ToString();
newThread->Start(token);
}
this->GetRandomNumbers(token);
countdown->Signal();
// Make sure all threads have finished.
countdown->Wait();
Console::WriteLine("\nTotal random numbers generated: {0:N0}", totalCount);
Console::WriteLine("Total sum of all random numbers: {0:N2}", totalValue);
Console::WriteLine("Random number mean: {0:N4}", totalValue/totalCount);
}
private:
void GetRandomNumbers(Object^ o)
{
CancellationToken^ token = (CancellationToken) o;
double result = 0.0;
countdown->AddCount(1);
try {
for (int ctr = 0; ctr < 2000000; ctr++)
{
// Make sure there's no corruption of Random.
token->ThrowIfCancellationRequested();
Monitor::Enter(randLock);
result = rand->NextDouble();
Monitor::Exit(randLock);
// Check for corruption of Random instance.
if ((result == previous) && result == 0) {
source->Cancel();
}
else {
previous = result;
}
perThreadCtr++;
perThreadTotal += result;
}
Console::WriteLine("Thread {0} finished execution.",
Thread::CurrentThread->Name);
Console::WriteLine("Random numbers generated: {0:N0}", perThreadCtr);
Console::WriteLine("Sum of random numbers: {0:N2}", perThreadTotal);
Console::WriteLine("Random number mean: {0:N4}\n", perThreadTotal/perThreadCtr);
// Update overall totals.
Monitor::Enter(numericLock);
totalCount += perThreadCtr;
totalValue += perThreadTotal;
Monitor::Exit(numericLock);
}
catch (OperationCanceledException^ e) {
Console::WriteLine("Corruption in Thread {1}", e->GetType()->Name,
Thread::CurrentThread->Name);
}
finally {
countdown->Signal();
}
}
};
void main()
{
Example^ ex = gcnew Example();
Thread::CurrentThread->Name = "Main";
ex->Execute();
}
// The example displays output like the following:
// Thread 6 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,491.05
// Random number mean: 0.5002
//
// Thread 10 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,329.64
// Random number mean: 0.4997
//
// Thread 4 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,166.89
// Random number mean: 0.5001
//
// Thread 8 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,628.37
// Random number mean: 0.4998
//
// Thread Main finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,920.89
// Random number mean: 0.5000
//
// Thread 3 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,370.45
// Random number mean: 0.4997
//
// Thread 7 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,330.92
// Random number mean: 0.4997
//
// Thread 9 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,172.79
// Random number mean: 0.5001
//
// Thread 5 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,079.43
// Random number mean: 0.5000
//
// Thread 1 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,817.91
// Random number mean: 0.4999
//
// Thread 2 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,930.63
// Random number mean: 0.5000
//
//
// Total random numbers generated: 22,000,000
// Total sum of all random numbers: 10,998,238.98
// Random number mean: 0.4999
using System;
using System.Threading;
public class Example
{
[ThreadStatic] static double previous = 0.0;
[ThreadStatic] static int perThreadCtr = 0;
[ThreadStatic] static double perThreadTotal = 0.0;
static CancellationTokenSource source;
static CountdownEvent countdown;
static Object randLock, numericLock;
static Random rand;
double totalValue = 0.0;
int totalCount = 0;
public Example()
{
rand = new Random();
randLock = new Object();
numericLock = new Object();
countdown = new CountdownEvent(1);
source = new CancellationTokenSource();
}
public static void Main()
{
Example ex = new Example();
Thread.CurrentThread.Name = "Main";
ex.Execute();
}
private void Execute()
{
CancellationToken token = source.Token;
for (int threads = 1; threads <= 10; threads++)
{
Thread newThread = new Thread(this.GetRandomNumbers);
newThread.Name = threads.ToString();
newThread.Start(token);
}
this.GetRandomNumbers(token);
countdown.Signal();
// Make sure all threads have finished.
countdown.Wait();
source.Dispose();
Console.WriteLine("\nTotal random numbers generated: {0:N0}", totalCount);
Console.WriteLine("Total sum of all random numbers: {0:N2}", totalValue);
Console.WriteLine("Random number mean: {0:N4}", totalValue/totalCount);
}
private void GetRandomNumbers(Object o)
{
CancellationToken token = (CancellationToken) o;
double result = 0.0;
countdown.AddCount(1);
try {
for (int ctr = 0; ctr < 2000000; ctr++)
{
// Make sure there's no corruption of Random.
token.ThrowIfCancellationRequested();
lock (randLock) {
result = rand.NextDouble();
}
// Check for corruption of Random instance.
if ((result == previous) && result == 0) {
source.Cancel();
}
else {
previous = result;
}
perThreadCtr++;
perThreadTotal += result;
}
Console.WriteLine("Thread {0} finished execution.",
Thread.CurrentThread.Name);
Console.WriteLine("Random numbers generated: {0:N0}", perThreadCtr);
Console.WriteLine("Sum of random numbers: {0:N2}", perThreadTotal);
Console.WriteLine("Random number mean: {0:N4}\n", perThreadTotal/perThreadCtr);
// Update overall totals.
lock (numericLock) {
totalCount += perThreadCtr;
totalValue += perThreadTotal;
}
}
catch (OperationCanceledException e) {
Console.WriteLine("Corruption in Thread {1}", e.GetType().Name, Thread.CurrentThread.Name);
}
finally {
countdown.Signal();
}
}
}
// The example displays output like the following:
// Thread 6 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,491.05
// Random number mean: 0.5002
//
// Thread 10 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,329.64
// Random number mean: 0.4997
//
// Thread 4 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,166.89
// Random number mean: 0.5001
//
// Thread 8 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,628.37
// Random number mean: 0.4998
//
// Thread Main finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,920.89
// Random number mean: 0.5000
//
// Thread 3 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,370.45
// Random number mean: 0.4997
//
// Thread 7 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,330.92
// Random number mean: 0.4997
//
// Thread 9 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,172.79
// Random number mean: 0.5001
//
// Thread 5 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,079.43
// Random number mean: 0.5000
//
// Thread 1 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,817.91
// Random number mean: 0.4999
//
// Thread 2 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,930.63
// Random number mean: 0.5000
//
//
// Total random numbers generated: 22,000,000
// Total sum of all random numbers: 10,998,238.98
// Random number mean: 0.4999
open System
open System.Threading
type Example() =
[<ThreadStatic; DefaultValue>]
static val mutable private previous : float
[<ThreadStatic; DefaultValue>]
static val mutable private perThreadCtr : int
[<ThreadStatic; DefaultValue>]
static val mutable private perThreadTotal : float
static let source = new CancellationTokenSource()
static let countdown = new CountdownEvent(1)
static let randLock = obj ()
static let numericLock = obj ()
static let rand = Random()
let mutable totalValue = 0.0
let mutable totalCount = 0
member _.GetRandomNumbers(token: CancellationToken) =
let mutable result = 0.0
countdown.AddCount 1
try
try
for _ = 0 to 1999999 do
// Make sure there's no corruption of Random.
token.ThrowIfCancellationRequested()
lock randLock (fun () ->
result <- rand.NextDouble() )
// Check for corruption of Random instance.
if result = Example.previous && result = 0.0 then
source.Cancel()
else
Example.previous <- result
Example.perThreadCtr <- Example.perThreadCtr + 1
Example.perThreadTotal <- Example.perThreadTotal + result
// Update overall totals.
lock numericLock (fun () ->
// Show result.
printfn "Thread %s finished execution." Thread.CurrentThread.Name
printfn $"Random numbers generated: {Example.perThreadCtr:N0}"
printfn $"Sum of random numbers: {Example.perThreadTotal:N2}"
printfn $"Random number mean: {(Example.perThreadTotal / float Example.perThreadCtr):N4}\n"
// Update overall totals.
totalCount <- totalCount + Example.perThreadCtr
totalValue <- totalValue + Example.perThreadTotal)
with :? OperationCanceledException as e ->
printfn "Corruption in Thread %s %s" (e.GetType().Name) Thread.CurrentThread.Name
finally
countdown.Signal() |> ignore
member this.Execute() =
let token = source.Token
for i = 1 to 10 do
let newThread = Thread(fun () -> this.GetRandomNumbers token)
newThread.Name <- string i
newThread.Start()
this.GetRandomNumbers token
countdown.Signal() |> ignore
countdown.Wait()
source.Dispose()
printfn $"\nTotal random numbers generated: {totalCount:N0}"
printfn $"Total sum of all random numbers: {totalValue:N2}"
printfn $"Random number mean: {(totalValue / float totalCount):N4}"
let ex = Example()
Thread.CurrentThread.Name <- "Main"
ex.Execute()
// The example displays output like the following:
// Thread 6 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,491.05
// Random number mean: 0.5002
//
// Thread 10 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,329.64
// Random number mean: 0.4997
//
// Thread 4 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,166.89
// Random number mean: 0.5001
//
// Thread 8 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,628.37
// Random number mean: 0.4998
//
// Thread Main finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,920.89
// Random number mean: 0.5000
//
// Thread 3 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,370.45
// Random number mean: 0.4997
//
// Thread 7 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,330.92
// Random number mean: 0.4997
//
// Thread 9 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,172.79
// Random number mean: 0.5001
//
// Thread 5 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,079.43
// Random number mean: 0.5000
//
// Thread 1 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,817.91
// Random number mean: 0.4999
//
// Thread 2 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,930.63
// Random number mean: 0.5000
//
//
// Total random numbers generated: 22,000,000
// Total sum of all random numbers: 10,998,238.98
// Random number mean: 0.4999
Imports System.Threading
Module Example
<ThreadStatic> Dim previous As Double = 0.0
<ThreadStatic> Dim perThreadCtr As Integer = 0
<ThreadStatic> Dim perThreadTotal As Double = 0.0
Dim source As New CancellationTokenSource()
Dim countdown As New CountdownEvent(1)
Dim randLock As New Object()
Dim numericLock As New Object()
Dim rand As New Random()
Dim totalValue As Double = 0.0
Dim totalCount As Integer = 0
Public Sub Main()
Thread.CurrentThread.Name = "Main"
Dim token As CancellationToken = source.Token
For threads As Integer = 1 To 10
Dim newThread As New Thread(AddressOf GetRandomNumbers)
newThread.Name = threads.ToString()
newThread.Start(token)
Next
GetRandomNumbers(token)
countdown.Signal()
' Make sure all threads have finished.
countdown.Wait()
Console.WriteLine()
Console.WriteLine("Total random numbers generated: {0:N0}", totalCount)
Console.WriteLine("Total sum of all random numbers: {0:N2}", totalValue)
Console.WriteLine("Random number mean: {0:N4}", totalValue/totalCount)
End Sub
Private Sub GetRandomNumbers(o As Object)
Dim token As CancellationToken = CType(o, CancellationToken)
Dim result As Double = 0.0
countdown.AddCount(1)
Try
For ctr As Integer = 1 To 2000000
' Make sure there's no corruption of Random.
token.ThrowIfCancellationRequested()
SyncLock randLock
result = rand.NextDouble()
End SyncLock
' Check for corruption of Random instance.
If result = previous AndAlso result = 0 Then
source.Cancel()
Else
previous = result
End If
perThreadCtr += 1
perThreadTotal += result
Next
Console.WriteLine("Thread {0} finished execution.",
Thread.CurrentThread.Name)
Console.WriteLine("Random numbers generated: {0:N0}", perThreadCtr)
Console.WriteLine("Sum of random numbers: {0:N2}", perThreadTotal)
Console.WriteLine("Random number mean: {0:N4}", perThreadTotal/perThreadCtr)
Console.WriteLine()
' Update overall totals.
SyncLock numericLock
totalCount += perThreadCtr
totalValue += perThreadTotal
End SyncLock
Catch e As OperationCanceledException
Console.WriteLine("Corruption in Thread {1}", e.GetType().Name, Thread.CurrentThread.Name)
Finally
countdown.Signal()
source.Dispose()
End Try
End Sub
End Module
' The example displays output like the following:
' Thread 6 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 1,000,491.05
' Random number mean: 0.5002
'
' Thread 10 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 999,329.64
' Random number mean: 0.4997
'
' Thread 4 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 1,000,166.89
' Random number mean: 0.5001
'
' Thread 8 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 999,628.37
' Random number mean: 0.4998
'
' Thread Main finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 999,920.89
' Random number mean: 0.5000
'
' Thread 3 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 999,370.45
' Random number mean: 0.4997
'
' Thread 7 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 999,330.92
' Random number mean: 0.4997
'
' Thread 9 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 1,000,172.79
' Random number mean: 0.5001
'
' Thread 5 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 1,000,079.43
' Random number mean: 0.5000
'
' Thread 1 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 999,817.91
' Random number mean: 0.4999
'
' Thread 2 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 999,930.63
' Random number mean: 0.5000
'
'
' Total random numbers generated: 22,000,000
' Total sum of all random numbers: 10,998,238.98
' Random number mean: 0.4999
Im Beispiel wird die Threadsicherheit auf folgende Weise sichergestellt:
Das ThreadStaticAttribute -Attribut wird verwendet, um threadlokale Variablen zu definieren, die die Gesamtzahl der generierten Zufallszahlen und deren Summe für jeden Thread nachverfolgen.
Eine Sperre (die
lock
-Anweisung in C#, dielock
-Funktion in F# und dieSyncLock
-Anweisung in Visual Basic) schützt den Zugriff auf die Variablen für die Gesamtanzahl und Summe aller Zufallszahlen, die in allen Threads generiert werden.Ein Semaphor (das CountdownEvent -Objekt) wird verwendet, um sicherzustellen, dass der Hauptthread blockiert wird, bis alle anderen Threads die Ausführung abgeschlossen haben.
Im Beispiel wird überprüft, ob der Zufallszahlengenerator beschädigt wurde, indem bestimmt wird, ob zwei aufeinanderfolgende Aufrufe von Zufallszahlengenerierungsmethoden 0 zurückgeben. Wenn eine Beschädigung erkannt wird, wird im Beispiel das CancellationTokenSource -Objekt verwendet, um zu signalisieren, dass alle Threads abgebrochen werden sollen.
Bevor jede Zufallszahl generiert wird, überprüft jeder Thread den Zustand des CancellationToken Objekts. Wenn ein Abbruch angefordert wird, ruft das Beispiel die CancellationToken.ThrowIfCancellationRequested -Methode auf, um den Thread abzubrechen.
Das folgende Beispiel ist mit dem ersten identisch, mit der Ausnahme, dass ein Task -Objekt und ein Lambdaausdruck anstelle von -Objekten verwendet Thread werden.
using System;
using System.Collections.Generic;
using System.Threading;
using System.Threading.Tasks;
public class Example
{
static Object randLock, numericLock;
static Random rand;
static CancellationTokenSource source;
double totalValue = 0.0;
int totalCount = 0;
public Example()
{
rand = new Random();
randLock = new Object();
numericLock = new Object();
source = new CancellationTokenSource();
}
public static async Task Main()
{
Example ex = new Example();
Thread.CurrentThread.Name = "Main";
await ex.Execute();
}
private Task Execute()
{
List<Task> tasks = new List<Task>();
for (int ctr = 0; ctr <= 10; ctr++)
{
CancellationToken token = source.Token;
int taskNo = ctr;
tasks.Add(Task.Run( () =>
{
double previous = 0.0;
int taskCtr = 0;
double taskTotal = 0.0;
double result = 0.0;
for (int n = 0; n < 2000000; n++)
{
// Make sure there's no corruption of Random.
token.ThrowIfCancellationRequested();
lock (randLock) {
result = rand.NextDouble();
}
// Check for corruption of Random instance.
if ((result == previous) && result == 0) {
source.Cancel();
}
else {
previous = result;
}
taskCtr++;
taskTotal += result;
}
// Show result.
Console.WriteLine("Task {0} finished execution.", taskNo);
Console.WriteLine("Random numbers generated: {0:N0}", taskCtr);
Console.WriteLine("Sum of random numbers: {0:N2}", taskTotal);
Console.WriteLine("Random number mean: {0:N4}\n", taskTotal/taskCtr);
// Update overall totals.
lock (numericLock) {
totalCount += taskCtr;
totalValue += taskTotal;
}
},
token));
}
try {
await Task.WhenAll(tasks.ToArray());
Console.WriteLine("\nTotal random numbers generated: {0:N0}", totalCount);
Console.WriteLine("Total sum of all random numbers: {0:N2}", totalValue);
Console.WriteLine("Random number mean: {0:N4}", totalValue/totalCount);
}
catch (AggregateException e) {
foreach (Exception inner in e.InnerExceptions) {
TaskCanceledException canc = inner as TaskCanceledException;
if (canc != null)
Console.WriteLine("Task #{0} cancelled.", canc.Task.Id);
else
Console.WriteLine("Exception: {0}", inner.GetType().Name);
}
}
finally {
source.Dispose();
}
}
}
// The example displays output like the following:
// Task 1 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,502.47
// Random number mean: 0.5003
//
// Task 0 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,445.63
// Random number mean: 0.5002
//
// Task 2 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,556.04
// Random number mean: 0.5003
//
// Task 3 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,178.87
// Random number mean: 0.5001
//
// Task 4 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,819.17
// Random number mean: 0.4999
//
// Task 5 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,190.58
// Random number mean: 0.5001
//
// Task 6 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,720.21
// Random number mean: 0.4999
//
// Task 7 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,000.96
// Random number mean: 0.4995
//
// Task 8 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,499.33
// Random number mean: 0.4997
//
// Task 9 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,193.25
// Random number mean: 0.5001
//
// Task 10 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,960.82
// Random number mean: 0.5000
//
//
// Total random numbers generated: 22,000,000
// Total sum of all random numbers: 11,000,067.33
// Random number mean: 0.5000
open System
open System.Threading
open System.Threading.Tasks
type Example() =
static let source = new CancellationTokenSource()
static let rand = Random()
static let randLock = obj ()
static let numericLock = obj ()
let mutable totalValue = 0.0
let mutable totalCount = 0
member _.Execute() =
use source = source // Dispose of the CancellationTokenSource when we're done with it.
let token = source.Token
let tasks =
[| for i = 0 to 10 do
Task.Run(
(fun () ->
let mutable previous = 0.0
let mutable taskCtr = 0
let mutable taskTotal = 0.0
let mutable result = 0.0
for _ = 1 to 2000000 do
// Make sure there's no corruption of Random.
token.ThrowIfCancellationRequested()
lock randLock (fun () -> result <- rand.NextDouble())
// Check for corruption of Random instance.
if result = previous && result = 0.0 then
source.Cancel()
else
previous <- result
taskCtr <- taskCtr + 1
taskTotal <- taskTotal + result
lock numericLock (fun () ->
// Show result.
printfn "Task %i finished execution." i
printfn $"Random numbers generated: {taskCtr:N0}"
printfn $"Sum of random numbers: {taskTotal:N2}"
printfn $"Random number mean: {(taskTotal / float taskCtr):N4}\n"
// Update overall totals.
totalCount <- totalCount + taskCtr
totalValue <- totalValue + taskTotal)),
token
) |]
try
// Run tasks with F# Async.
Task.WhenAll tasks
|> Async.AwaitTask
|> Async.RunSynchronously
printfn $"\nTotal random numbers generated: {totalCount:N0}"
printfn $"Total sum of all random numbers: {totalValue:N2}"
printfn $"Random number mean: {(totalValue / float totalCount):N4}"
with
| :? AggregateException as e ->
for inner in e.InnerExceptions do
match inner with
| :? TaskCanceledException as canc ->
if canc <> null then
printfn $"Task #{canc.Task.Id} cancelled"
else
printfn $"Exception: {inner.GetType().Name}"
| _ -> ()
let ex = Example()
Thread.CurrentThread.Name <- "Main"
ex.Execute()
// The example displays output like the following:
// Task 1 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,502.47
// Random number mean: 0.5003
//
// Task 0 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,445.63
// Random number mean: 0.5002
//
// Task 2 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,556.04
// Random number mean: 0.5003
//
// Task 3 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,178.87
// Random number mean: 0.5001
//
// Task 4 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,819.17
// Random number mean: 0.4999
//
// Task 5 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,190.58
// Random number mean: 0.5001
//
// Task 6 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,720.21
// Random number mean: 0.4999
//
// Task 7 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,000.96
// Random number mean: 0.4995
//
// Task 8 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,499.33
// Random number mean: 0.4997
//
// Task 9 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,193.25
// Random number mean: 0.5001
//
// Task 10 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,960.82
// Random number mean: 0.5000
//
//
// Total random numbers generated: 22,000,000
// Total sum of all random numbers: 11,000,067.33
// Random number mean: 0.5000
Imports System.Collections.Generic
Imports System.Threading
Imports System.Threading.Tasks
Module Example
Dim source As New CancellationTokenSource()
Dim randLock As New Object()
Dim numericLock As New Object()
Dim rand As New Random()
Dim totalValue As Double = 0.0
Dim totalCount As Integer = 0
Public Sub Main()
Dim tasks As New List(Of Task)()
For ctr As Integer = 1 To 10
Dim token As CancellationToken = source.Token
Dim taskNo As Integer = ctr
tasks.Add(Task.Run(
Sub()
Dim previous As Double = 0.0
Dim taskCtr As Integer = 0
Dim taskTotal As Double = 0.0
Dim result As Double = 0.0
For n As Integer = 1 To 2000000
' Make sure there's no corruption of Random.
token.ThrowIfCancellationRequested()
SyncLock randLock
result = rand.NextDouble()
End SyncLock
' Check for corruption of Random instance.
If result = previous AndAlso result = 0 Then
source.Cancel()
Else
previous = result
End If
taskCtr += 1
taskTotal += result
Next
' Show result.
Console.WriteLine("Task {0} finished execution.", taskNo)
Console.WriteLine("Random numbers generated: {0:N0}", taskCtr)
Console.WriteLine("Sum of random numbers: {0:N2}", taskTotal)
Console.WriteLine("Random number mean: {0:N4}", taskTotal/taskCtr)
Console.WriteLine()
' Update overall totals.
SyncLock numericLock
totalCount += taskCtr
totalValue += taskTotal
End SyncLock
End Sub, token))
Next
Try
Task.WaitAll(tasks.ToArray())
Console.WriteLine()
Console.WriteLine("Total random numbers generated: {0:N0}", totalCount)
Console.WriteLine("Total sum of all random numbers: {0:N2}", totalValue)
Console.WriteLine("Random number mean: {0:N4}", totalValue/totalCount)
Catch e As AggregateException
For Each inner As Exception In e.InnerExceptions
Dim canc As TaskCanceledException = TryCast(inner, TaskCanceledException)
If canc IsNot Nothing Then
Console.WriteLine("Task #{0} cancelled.", canc.Task.Id)
Else
Console.WriteLine("Exception: {0}", inner.GetType().Name)
End If
Next
Finally
source.Dispose()
End Try
End Sub
End Module
' The example displays output like the following:
' Task 1 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 1,000,502.47
' Random number mean: 0.5003
'
' Task 0 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 1,000,445.63
' Random number mean: 0.5002
'
' Task 2 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 1,000,556.04
' Random number mean: 0.5003
'
' Task 3 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 1,000,178.87
' Random number mean: 0.5001
'
' Task 4 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 999,819.17
' Random number mean: 0.4999
'
' Task 5 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 1,000,190.58
' Random number mean: 0.5001
'
' Task 6 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 999,720.21
' Random number mean: 0.4999
'
' Task 7 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 999,000.96
' Random number mean: 0.4995
'
' Task 8 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 999,499.33
' Random number mean: 0.4997
'
' Task 9 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 1,000,193.25
' Random number mean: 0.5001
'
' Task 10 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 999,960.82
' Random number mean: 0.5000
'
'
' Total random numbers generated: 22,000,000
' Total sum of all random numbers: 11,000,067.33
' Random number mean: 0.5000
Es unterscheidet sich wie folgt vom ersten Beispiel:
Die Variablen, die die Anzahl der generierten Zufallszahlen und ihre Summe in jeder Aufgabe nachverfolgen sollen, sind für die Aufgabe lokal, sodass das Attribut nicht verwendet werden ThreadStaticAttribute muss.
Die statische Task.WaitAll Methode wird verwendet, um sicherzustellen, dass der Hauptthread nicht abgeschlossen ist, bevor alle Aufgaben abgeschlossen sind. Das Objekt ist nicht CountdownEvent erforderlich.
Die Ausnahme, die sich aus dem Taskabbruch ergibt, wird in der Task.WaitAll -Methode angezeigt. Im vorherigen Beispiel wird es von jedem Thread behandelt.
Generieren verschiedener Typen von Zufallszahlen
Der Zufallszahlengenerator stellt Methoden bereit, mit denen Sie die folgenden Arten von Zufallszahlen generieren können:
Eine Reihe von Byte Werten. Sie bestimmen die Anzahl der Bytewerte, indem Sie ein Array übergeben, das mit der Anzahl von Elementen initialisiert wird, die die Methode an die Methode zurückgeben NextBytes soll. Im folgenden Beispiel werden 20 Bytes generiert.
using namespace System; void main() { Random^ rnd = gcnew Random(); array<Byte>^ bytes = gcnew array<Byte>(20); rnd->NextBytes(bytes); for (int ctr = 1; ctr <= bytes->Length; ctr++) { Console::Write("{0,3} ", bytes[ctr - 1]); if (ctr % 10 == 0) Console::WriteLine(); } } // The example displays output like the following: // 141 48 189 66 134 212 211 71 161 56 // 181 166 220 133 9 252 222 57 62 62
Random rnd = new Random(); Byte[] bytes = new Byte[20]; rnd.NextBytes(bytes); for (int ctr = 1; ctr <= bytes.Length; ctr++) { Console.Write("{0,3} ", bytes[ctr - 1]); if (ctr % 10 == 0) Console.WriteLine(); } // The example displays output like the following: // 141 48 189 66 134 212 211 71 161 56 // 181 166 220 133 9 252 222 57 62 62
let rnd = Random() let bytes = Array.zeroCreate 20 rnd.NextBytes bytes for i = 1 to bytes.Length do printf "%3i " bytes.[i - 1] if (i % 10 = 0) then printfn "" // The example displays output like the following: // 141 48 189 66 134 212 211 71 161 56 // 181 166 220 133 9 252 222 57 62 62
Module Example Public Sub Main() Dim rnd As New Random() Dim bytes(19) As Byte rnd.NextBytes(bytes) For ctr As Integer = 1 To bytes.Length Console.Write("{0,3} ", bytes(ctr - 1)) If ctr Mod 10 = 0 Then Console.WriteLine() Next End Sub End Module ' The example displays output like the following: ' 141 48 189 66 134 212 211 71 161 56 ' 181 166 220 133 9 252 222 57 62 62
Eine einzelne ganze Zahl. Sie können auswählen, ob Sie eine ganze Zahl zwischen 0 und einem Höchstwert ( Int32.MaxValue – 1) durch Aufrufen der Next() -Methode, eine ganze Zahl zwischen 0 und einem bestimmten Wert durch Aufrufen der Next(Int32) -Methode oder eine ganze Zahl innerhalb eines Wertebereichs durch Aufrufen der -Methode auswählen Next(Int32, Int32) möchten. In den parametrisierten Überladungen ist der angegebene Maximalwert exklusiv. Das heißt, die tatsächlich generierte maximale Anzahl ist 1 kleiner als der angegebene Wert.
Im folgenden Beispiel wird die -Methode zum Next(Int32, Int32) Generieren von 10 Zufallszahlen zwischen -10 und 10aufgerufen. Beachten Sie, dass das zweite Argument für die -Methode die exklusive Obergrenze des Bereichs von Zufallswerten angibt, die von der -Methode zurückgegeben werden. Anders ausgedrückt: Die größte ganze Zahl, die die Methode zurückgeben kann, ist eine kleiner als dieser Wert.
using namespace System; void main() { Random^ rnd = gcnew Random(); for (int ctr = 0; ctr < 10; ctr++) { Console::Write("{0,3} ", rnd->Next(-10, 11)); } } // The example displays output like the following: // 2 9 -3 2 4 -7 -3 -8 -8 5
Random rnd = new Random(); for (int ctr = 0; ctr < 10; ctr++) { Console.Write("{0,3} ", rnd.Next(-10, 11)); } // The example displays output like the following: // 2 9 -3 2 4 -7 -3 -8 -8 5
let rnd = Random() for i = 0 to 9 do printf "%3i " (rnd.Next(-10, 11)) // The example displays output like the following: // 2 9 -3 2 4 -7 -3 -8 -8 5
Module Example Public Sub Main() Dim rnd As New Random() For ctr As Integer = 0 To 9 Console.Write("{0,3} ", rnd.Next(-10, 11)) Next End Sub End Module ' The example displays output like the following: ' 2 9 -3 2 4 -7 -3 -8 -8 5
Ein einzelner Gleitkommawert von 0,0 bis kleiner als 1,0 durch Aufrufen der NextDouble -Methode. Die exklusive Obergrenze der von der Methode zurückgegebenen Zufallszahl ist 1, sodass die tatsächliche Obergrenze 0,99999999999999978 beträgt. Im folgenden Beispiel werden 10 zufällige Gleitkommazahlen generiert.
using namespace System; void main() { Random^ rnd = gcnew Random(); for (int ctr = 0; ctr < 10; ctr++) { Console::Write("{0,-19:R} ", rnd->NextDouble()); if ((ctr + 1) % 3 == 0) Console::WriteLine(); } } // The example displays output like the following: // 0.7911680553998649 0.0903414949264105 0.79776258291572455 // 0.615568345233597 0.652644504165577 0.84023809378977776 // 0.099662564741290441 0.91341467383942321 0.96018602045261581 // 0.74772306473354022
Random rnd = new Random(); for (int ctr = 0; ctr < 10; ctr++) { Console.Write("{0,-19:R} ", rnd.NextDouble()); if ((ctr + 1) % 3 == 0) Console.WriteLine(); } // The example displays output like the following: // 0.7911680553998649 0.0903414949264105 0.79776258291572455 // 0.615568345233597 0.652644504165577 0.84023809378977776 // 0.099662564741290441 0.91341467383942321 0.96018602045261581 // 0.74772306473354022
let rnd = Random() for i = 0 to 9 do printf $"{rnd.NextDouble(),-19:R} " if (i + 1) % 3 = 0 then printfn "" // The example displays output like the following: // 0.7911680553998649 0.0903414949264105 0.79776258291572455 // 0.615568345233597 0.652644504165577 0.84023809378977776 // 0.099662564741290441 0.91341467383942321 0.96018602045261581 // 0.74772306473354022
Module Example Public Sub Main() Dim rnd As New Random() For ctr As Integer = 0 To 9 Console.Write("{0,-19:R} ", rnd.NextDouble()) If (ctr + 1) Mod 3 = 0 Then Console.WriteLine() Next End Sub End Module ' The example displays output like the following: ' 0.7911680553998649 0.0903414949264105 0.79776258291572455 ' 0.615568345233597 0.652644504165577 0.84023809378977776 ' 0.099662564741290441 0.91341467383942321 0.96018602045261581 ' 0.74772306473354022
Wichtig
Mit Next(Int32, Int32) der -Methode können Sie den Bereich der zurückgegebenen Zufallszahl angeben. Der maxValue
-Parameter, der den oberen Bereich der zurückgegebenen Zahl angibt, ist jedoch ein exklusiver, kein inklusiver Wert. Dies bedeutet, dass der Methodenaufruf Next(0, 100)
einen Wert zwischen 0 und 99 und nicht zwischen 0 und 100 zurückgibt.
Sie können die -Klasse auch für Aufgaben wie das Random Generieren zufälliger T:System.Boolean-Werte,das Generieren zufälliger Gleitkommawerte mit einem anderen Bereich als 0 bis 1,das Generieren zufälliger 64-Bit-Ganzzahlenund das zufällige Abrufen eines eindeutigen Elements aus einem Array oder einer Auflistungverwenden. Informationen zu diesen und anderen häufigen Aufgaben finden Sie unter How do you use System.Random to... -Abschnitt.
Ersetzen Ihres eigenen Algorithmus
Sie können Ihren eigenen Zufallszahlengenerator implementieren, indem Sie von der -Klasse erben und Ihren Algorithmus für die Random Zufallszahlengenerierung bereitstellen. Um Ihren eigenen Algorithmus anzugeben, müssen Sie die Sample -Methode überschreiben, die den Algorithmus für die Zufallszahlengenerierung implementiert. Sie sollten auch die Next() Methoden , und überschreiben, um Next(Int32, Int32) NextBytes sicherzustellen, dass sie Ihre überschriebene Sample Methode aufrufen. Sie müssen die Methoden und nicht Next(Int32) überschreiben. NextDouble
Ein Beispiel, das von der -Klasse abgeleitet Random wird und den standardbasierten Pseudozufallszahlengenerator ändert, finden Sie auf der Sample Referenzseite.
Wie verwenden Sie System.Random für...
In den folgenden Abschnitten wird Beispielcode für einige der Möglichkeiten erläutert, mit denen Sie zufallszahlen in Ihrer App verwenden können.
Abrufen derselben Sequenz zufälliger Werte
Manchmal möchten Sie die gleiche Sequenz von Zufallszahlen in Softwaretestszenarien und im Spiel generieren. Wenn Sie mit derselben Sequenz von Zufallszahlen testen, können Sie Regressionen erkennen und Fehlerbehebungen bestätigen. Wenn Sie die gleiche Sequenz von Zufallszahlen in Spielen verwenden, können Sie vorherige Spiele wiedergeben.
Sie können die gleiche Sequenz von Zufallszahlen generieren, indem Sie den gleichen Ausgangswert für den Random(Int32) Konstruktor bereitstellen. Der Ausgangswert stellt einen Startwert für den Pseudozufallszahlengenerierungsalgorithmus bereit. Im folgenden Beispiel wird 100100 als beliebiger Ausgangswert zum Instanziieren des Random -Objekts verwendet, 20 zufällige Gleitkommawerte angezeigt und der Ausgangswert beibehalten. Anschließend wird der Ausgangswert wiederhergestellt, ein neuer Zufallszahlengenerator instanziiert und die gleichen 20 zufälligen Gleitkommawerte angezeigt. Beachten Sie, dass das Beispiel unterschiedliche Sequenzen von Zufallszahlen erzeugen kann, wenn sie in verschiedenen Versionen der .NET Framework ausgeführt werden.
using System;
using System.IO;
public class Example
{
public static void Main()
{
int seed = 100100;
ShowRandomNumbers(seed);
Console.WriteLine();
PersistSeed(seed);
DisplayNewRandomNumbers();
}
private static void ShowRandomNumbers(int seed)
{
Random rnd = new Random(seed);
for (int ctr = 0; ctr <= 20; ctr++)
Console.WriteLine(rnd.NextDouble());
}
private static void PersistSeed(int seed)
{
FileStream fs = new FileStream(@".\seed.dat", FileMode.Create);
BinaryWriter bin = new BinaryWriter(fs);
bin.Write(seed);
bin.Close();
}
private static void DisplayNewRandomNumbers()
{
FileStream fs = new FileStream(@".\seed.dat", FileMode.Open);
BinaryReader bin = new BinaryReader(fs);
int seed = bin.ReadInt32();
bin.Close();
Random rnd = new Random(seed);
for (int ctr = 0; ctr <= 20; ctr++)
Console.WriteLine(rnd.NextDouble());
}
}
// The example displays output like the following:
// 0.500193602172748
// 0.0209461245783354
// 0.465869495396442
// 0.195512794514891
// 0.928583675496552
// 0.729333720509584
// 0.381455668891527
// 0.0508996467343064
// 0.019261200921266
// 0.258578445417145
// 0.0177532266908107
// 0.983277184415272
// 0.483650274334313
// 0.0219647376900375
// 0.165910115077118
// 0.572085966622497
// 0.805291457942357
// 0.927985211335116
// 0.4228545699375
// 0.523320379910674
// 0.157783938645285
//
// 0.500193602172748
// 0.0209461245783354
// 0.465869495396442
// 0.195512794514891
// 0.928583675496552
// 0.729333720509584
// 0.381455668891527
// 0.0508996467343064
// 0.019261200921266
// 0.258578445417145
// 0.0177532266908107
// 0.983277184415272
// 0.483650274334313
// 0.0219647376900375
// 0.165910115077118
// 0.572085966622497
// 0.805291457942357
// 0.927985211335116
// 0.4228545699375
// 0.523320379910674
// 0.157783938645285
open System
open System.IO
let showRandomNumbers seed =
let rnd = Random seed
for _ = 0 to 20 do
printfn $"{rnd.NextDouble()}"
let persistSeed (seed: int) =
use bin = new BinaryWriter(new FileStream(@".\seed.dat", FileMode.Create))
bin.Write seed
let displayNewRandomNumbers () =
use bin = new BinaryReader(new FileStream(@".\seed.dat", FileMode.Open))
let seed = bin.ReadInt32()
let rnd = Random seed
for _ = 0 to 20 do
printfn $"{rnd.NextDouble()}"
let seed = 100100
showRandomNumbers seed
printfn ""
persistSeed seed
displayNewRandomNumbers ()
// The example displays output like the following:
// 0.500193602172748
// 0.0209461245783354
// 0.465869495396442
// 0.195512794514891
// 0.928583675496552
// 0.729333720509584
// 0.381455668891527
// 0.0508996467343064
// 0.019261200921266
// 0.258578445417145
// 0.0177532266908107
// 0.983277184415272
// 0.483650274334313
// 0.0219647376900375
// 0.165910115077118
// 0.572085966622497
// 0.805291457942357
// 0.927985211335116
// 0.4228545699375
// 0.523320379910674
// 0.157783938645285
//
// 0.500193602172748
// 0.0209461245783354
// 0.465869495396442
// 0.195512794514891
// 0.928583675496552
// 0.729333720509584
// 0.381455668891527
// 0.0508996467343064
// 0.019261200921266
// 0.258578445417145
// 0.0177532266908107
// 0.983277184415272
// 0.483650274334313
// 0.0219647376900375
// 0.165910115077118
// 0.572085966622497
// 0.805291457942357
// 0.927985211335116
// 0.4228545699375
// 0.523320379910674
// 0.157783938645285
using namespace System;
using namespace System::IO;
ref class RandomMethods
{
internal:
static void ShowRandomNumbers(int seed)
{
Random^ rnd = gcnew Random(seed);
for (int ctr = 0; ctr <= 20; ctr++)
Console::WriteLine(rnd->NextDouble());
}
static void PersistSeed(int seed)
{
FileStream^ fs = gcnew FileStream(".\\seed.dat", FileMode::Create);
BinaryWriter^ bin = gcnew BinaryWriter(fs);
bin->Write(seed);
bin->Close();
}
static void DisplayNewRandomNumbers()
{
FileStream^ fs = gcnew FileStream(".\\seed.dat", FileMode::Open);
BinaryReader^ bin = gcnew BinaryReader(fs);
int seed = bin->ReadInt32();
bin->Close();
Random^ rnd = gcnew Random(seed);
for (int ctr = 0; ctr <= 20; ctr++)
Console::WriteLine(rnd->NextDouble());
}
};
void main()
{
int seed = 100100;
RandomMethods::ShowRandomNumbers(seed);
Console::WriteLine();
RandomMethods::PersistSeed(seed);
RandomMethods::DisplayNewRandomNumbers();
}
// The example displays output like the following:
// 0.500193602172748
// 0.0209461245783354
// 0.465869495396442
// 0.195512794514891
// 0.928583675496552
// 0.729333720509584
// 0.381455668891527
// 0.0508996467343064
// 0.019261200921266
// 0.258578445417145
// 0.0177532266908107
// 0.983277184415272
// 0.483650274334313
// 0.0219647376900375
// 0.165910115077118
// 0.572085966622497
// 0.805291457942357
// 0.927985211335116
// 0.4228545699375
// 0.523320379910674
// 0.157783938645285
//
// 0.500193602172748
// 0.0209461245783354
// 0.465869495396442
// 0.195512794514891
// 0.928583675496552
// 0.729333720509584
// 0.381455668891527
// 0.0508996467343064
// 0.019261200921266
// 0.258578445417145
// 0.0177532266908107
// 0.983277184415272
// 0.483650274334313
// 0.0219647376900375
// 0.165910115077118
// 0.572085966622497
// 0.805291457942357
// 0.927985211335116
// 0.4228545699375
// 0.523320379910674
// 0.157783938645285
Imports System.IO
Module Example
Public Sub Main()
Dim seed As Integer = 100100
ShowRandomNumbers(seed)
Console.WriteLine()
PersistSeed(seed)
DisplayNewRandomNumbers()
End Sub
Private Sub ShowRandomNumbers(seed As Integer)
Dim rnd As New Random(seed)
For ctr As Integer = 0 To 20
Console.WriteLine(rnd.NextDouble())
Next
End Sub
Private Sub PersistSeed(seed As Integer)
Dim fs As New FileStream(".\seed.dat", FileMode.Create)
Dim bin As New BinaryWriter(fs)
bin.Write(seed)
bin.Close()
End Sub
Private Sub DisplayNewRandomNumbers()
Dim fs As New FileStream(".\seed.dat", FileMode.Open)
Dim bin As New BinaryReader(fs)
Dim seed As Integer = bin.ReadInt32()
bin.Close()
Dim rnd As New Random(seed)
For ctr As Integer = 0 To 20
Console.WriteLine(rnd.NextDouble())
Next
End Sub
End Module
' The example displays output like the following:
' 0.500193602172748
' 0.0209461245783354
' 0.465869495396442
' 0.195512794514891
' 0.928583675496552
' 0.729333720509584
' 0.381455668891527
' 0.0508996467343064
' 0.019261200921266
' 0.258578445417145
' 0.0177532266908107
' 0.983277184415272
' 0.483650274334313
' 0.0219647376900375
' 0.165910115077118
' 0.572085966622497
' 0.805291457942357
' 0.927985211335116
' 0.4228545699375
' 0.523320379910674
' 0.157783938645285
'
' 0.500193602172748
' 0.0209461245783354
' 0.465869495396442
' 0.195512794514891
' 0.928583675496552
' 0.729333720509584
' 0.381455668891527
' 0.0508996467343064
' 0.019261200921266
' 0.258578445417145
' 0.0177532266908107
' 0.983277184415272
' 0.483650274334313
' 0.0219647376900375
' 0.165910115077118
' 0.572085966622497
' 0.805291457942357
' 0.927985211335116
' 0.4228545699375
' 0.523320379910674
' 0.157783938645285
Abrufen eindeutiger Sequenzen von Zufallszahlen
Das Bereitstellen unterschiedlicher Ausgangswerte für Instanzen der Random -Klasse bewirkt, dass jeder Zufallszahlengenerator eine andere Sequenz von Werten erzeugt. Sie können einen Startwert entweder explizit durch Aufrufen des Random(Int32) Konstruktors oder implizit durch Aufrufen des Random() Konstruktors bereitstellen. Die meisten Entwickler rufen den parameterlosen Konstruktor auf, der die Systemuhr verwendet. Im folgenden Beispiel wird dieser Ansatz verwendet, um zwei Instanzen zu Random instanziieren. Jede Instanz zeigt eine Reihe von 10 zufälligen ganzen Zahlen an.
using namespace System;
using namespace System::Threading;
void main()
{
Console::WriteLine("Instantiating two random number generators...");
Random^ rnd1 = gcnew Random();
Thread::Sleep(2000);
Random^ rnd2 = gcnew Random();
Console::WriteLine("\nThe first random number generator:");
for (int ctr = 1; ctr <= 10; ctr++)
Console::WriteLine(" {0}", rnd1->Next());
Console::WriteLine("\nThe second random number generator:");
for (int ctr = 1; ctr <= 10; ctr++)
Console::WriteLine(" {0}", rnd2->Next());
}
// The example displays output like the following:
// Instantiating two random number generators...
//
// The first random number generator:
// 643164361
// 1606571630
// 1725607587
// 2138048432
// 496874898
// 1969147632
// 2034533749
// 1840964542
// 412380298
// 47518930
//
// The second random number generator:
// 1251659083
// 1514185439
// 1465798544
// 517841554
// 1821920222
// 195154223
// 1538948391
// 1548375095
// 546062716
// 897797880
using System;
using System.Threading;
public class Example
{
public static void Main()
{
Console.WriteLine("Instantiating two random number generators...");
Random rnd1 = new Random();
Thread.Sleep(2000);
Random rnd2 = new Random();
Console.WriteLine("\nThe first random number generator:");
for (int ctr = 1; ctr <= 10; ctr++)
Console.WriteLine(" {0}", rnd1.Next());
Console.WriteLine("\nThe second random number generator:");
for (int ctr = 1; ctr <= 10; ctr++)
Console.WriteLine(" {0}", rnd2.Next());
}
}
// The example displays output like the following:
// Instantiating two random number generators...
//
// The first random number generator:
// 643164361
// 1606571630
// 1725607587
// 2138048432
// 496874898
// 1969147632
// 2034533749
// 1840964542
// 412380298
// 47518930
//
// The second random number generator:
// 1251659083
// 1514185439
// 1465798544
// 517841554
// 1821920222
// 195154223
// 1538948391
// 1548375095
// 546062716
// 897797880
open System
open System.Threading
printfn "Instantiating two random number generators..."
let rnd1 = Random()
Thread.Sleep 2000
let rnd2 = Random()
printfn "\nThe first random number generator:"
for _ = 1 to 10 do
printfn $" {rnd1.Next()}"
printfn "\nThe second random number generator:"
for _ = 1 to 10 do
printfn $" {rnd2.Next()}"
// The example displays output like the following:
// Instantiating two random number generators...
//
// The first random number generator:
// 643164361
// 1606571630
// 1725607587
// 2138048432
// 496874898
// 1969147632
// 2034533749
// 1840964542
// 412380298
// 47518930
//
// The second random number generator:
// 1251659083
// 1514185439
// 1465798544
// 517841554
// 1821920222
// 195154223
// 1538948391
// 1548375095
// 546062716
// 897797880
Imports System.Threading
Module Example
Public Sub Main()
Console.WriteLine("Instantiating two random number generators...")
Dim rnd1 As New Random()
Thread.Sleep(2000)
Dim rnd2 As New Random()
Console.WriteLine()
Console.WriteLine("The first random number generator:")
For ctr As Integer = 1 To 10
Console.WriteLine(" {0}", rnd1.Next())
Next
Console.WriteLine()
Console.WriteLine("The second random number generator:")
For ctr As Integer = 1 To 10
Console.WriteLine(" {0}", rnd2.Next())
Next
End Sub
End Module
' The example displays output like the following:
' Instantiating two random number generators...
'
' The first random number generator:
' 643164361
' 1606571630
' 1725607587
' 2138048432
' 496874898
' 1969147632
' 2034533749
' 1840964542
' 412380298
' 47518930
'
' The second random number generator:
' 1251659083
' 1514185439
' 1465798544
' 517841554
' 1821920222
' 195154223
' 1538948391
' 1548375095
' 546062716
' 897797880
Aufgrund der endlichen Auflösung erkennt die Systemuhr jedoch keine Zeitunterschiede, die weniger als etwa 15 Millisekunden betragen. Wenn Ihr Code daher die Random() Überladung auf dem .NET Framework aufruft, um zwei Objekte nacheinander zu instanziieren, Random stellen Sie die Objekte möglicherweise versehentlich mit identischen Ausgangswerten bereit. (Diese Einschränkung gilt nicht für die Random -Klasse in .NET Core.) Um dies im vorherigen Beispiel zu sehen, kommentieren Sie den Thread.Sleep Methodenaufruf aus, kompilieren sie und führen das Beispiel erneut aus.
Um dies zu verhindern, empfiehlt es sich, ein einzelnes Objekt anstelle mehrerer Objekte zu Random instanziieren. Da jedoch Random nicht threadsicher ist, müssen Sie ein Synchronisierungsgerät verwenden, wenn Sie von mehreren Threads aus auf eine Random Instanz zugreifen. Weitere Informationen finden Sie weiter oben in diesem Thema unter The Random class and thread safety (Die Random-Klasse und Threadsicherheit). Alternativ können Sie einen Verzögerungsmechanismus wie die Sleep im vorherigen Beispiel verwendete Methode verwenden, um sicherzustellen, dass die Instanziierungen mehr als 15 Millisekunden auseinander liegen.
Abrufen von ganzen Zahlen in einem angegebenen Bereich
Sie können ganze Zahlen in einem angegebenen Bereich abrufen, indem Sie die Next(Int32, Int32) -Methode aufrufen, mit der Sie sowohl die untere als auch die obere Grenze der Zahlen angeben können, die der Zufallszahlengenerator zurückgeben soll. Die Obergrenze ist ein exklusiver Wert, kein inklusiver Wert. Das heißt, sie ist nicht im Bereich der Werte enthalten, die von der -Methode zurückgegeben werden. Im folgenden Beispiel wird diese Methode verwendet, um zufällige ganze Zahlen zwischen -10 und 10 zu generieren. Beachten Sie, dass 11 als Wert des Arguments im Methodenaufruf angegeben wird. Dies ist ein Wert, der größer als der gewünschte Wert maxValue
ist.
using namespace System;
void main()
{
Random^ rnd = gcnew Random();
for (int ctr = 1; ctr <= 15; ctr++) {
Console::Write("{0,3} ", rnd->Next(-10, 11));
if(ctr % 5 == 0) Console::WriteLine();
}
}
// The example displays output like the following:
// -2 -5 -1 -2 10
// -3 6 -4 -8 3
// -7 10 5 -2 4
Random rnd = new Random();
for (int ctr = 1; ctr <= 15; ctr++) {
Console.Write("{0,3} ", rnd.Next(-10, 11));
if(ctr % 5 == 0) Console.WriteLine();
}
// The example displays output like the following:
// -2 -5 -1 -2 10
// -3 6 -4 -8 3
// -7 10 5 -2 4
let rnd = Random()
for i = 1 to 15 do
printf "%3i " (rnd.Next(-10, 11))
if i % 5 = 0 then printfn ""
// The example displays output like the following:
// -2 -5 -1 -2 10
// -3 6 -4 -8 3
// -7 10 5 -2 4
Module Example
Public Sub Main()
Dim rnd As New Random()
For ctr As Integer = 1 To 15
Console.Write("{0,3} ", rnd.Next(-10, 11))
If ctr Mod 5 = 0 Then Console.WriteLine()
Next
End Sub
End Module
' The example displays output like the following:
' -2 -5 -1 -2 10
' -3 6 -4 -8 3
' -7 10 5 -2 4
Abrufen von ganzen Zahlen mit einer angegebenen Anzahl von Ziffern
Sie können die Next(Int32, Int32) -Methode aufrufen, um Zahlen mit einer angegebenen Anzahl von Ziffern abzurufen. Um z. B. Zahlen mit vier Ziffern abzurufen (d. h. Zahlen zwischen 1000 und 9999), rufen Sie die Next(Int32, Int32) -Methode mit dem minValue
Wert 1000 und dem maxValue
Wert 10000 auf, wie im folgenden Beispiel gezeigt.
using namespace System;
void main()
{
Random^ rnd = gcnew Random();
for (int ctr = 1; ctr <= 50; ctr++) {
Console::Write("{0,3} ", rnd->Next(1000, 10000));
if(ctr % 10 == 0) Console::WriteLine();
}
}
// The example displays output like the following:
// 9570 8979 5770 1606 3818 4735 8495 7196 7070 2313
// 5279 6577 5104 5734 4227 3373 7376 6007 8193 5540
// 7558 3934 3819 7392 1113 7191 6947 4963 9179 7907
// 3391 6667 7269 1838 7317 1981 5154 7377 3297 5320
// 9869 8694 2684 4949 2999 3019 2357 5211 9604 2593
Random rnd = new Random();
for (int ctr = 1; ctr <= 50; ctr++) {
Console.Write("{0,3} ", rnd.Next(1000, 10000));
if(ctr % 10 == 0) Console.WriteLine();
}
// The example displays output like the following:
// 9570 8979 5770 1606 3818 4735 8495 7196 7070 2313
// 5279 6577 5104 5734 4227 3373 7376 6007 8193 5540
// 7558 3934 3819 7392 1113 7191 6947 4963 9179 7907
// 3391 6667 7269 1838 7317 1981 5154 7377 3297 5320
// 9869 8694 2684 4949 2999 3019 2357 5211 9604 2593
let rnd = Random()
for i = 1 to 50 do
printf "%3i " (rnd.Next(1000, 10000))
if i % 10 = 0 then printfn ""
// The example displays output like the following:
// 9570 8979 5770 1606 3818 4735 8495 7196 7070 2313
// 5279 6577 5104 5734 4227 3373 7376 6007 8193 5540
// 7558 3934 3819 7392 1113 7191 6947 4963 9179 7907
// 3391 6667 7269 1838 7317 1981 5154 7377 3297 5320
// 9869 8694 2684 4949 2999 3019 2357 5211 9604 2593
Module Example
Public Sub Main()
Dim rnd As New Random()
For ctr As Integer = 1 To 50
Console.Write("{0,3} ", rnd.Next(1000, 10000))
If ctr Mod 10 = 0 Then Console.WriteLine()
Next
End Sub
End Module
' The example displays output like the following:
' 9570 8979 5770 1606 3818 4735 8495 7196 7070 2313
' 5279 6577 5104 5734 4227 3373 7376 6007 8193 5540
' 7558 3934 3819 7392 1113 7191 6947 4963 9179 7907
' 3391 6667 7269 1838 7317 1981 5154 7377 3297 5320
' 9869 8694 2684 4949 2999 3019 2357 5211 9604 2593
Abrufen von Gleitkommawerten in einem angegebenen Bereich
Die NextDouble Methode gibt zufällige Gleitkommawerte zurück, die zwischen 0 und weniger als 1 liegen. Sie möchten jedoch häufig Zufallswerte in einem anderen Bereich generieren.
Wenn das Intervall zwischen dem minimalen und dem maximalen gewünschten Wert 1 ist, können Sie den Unterschied zwischen dem gewünschten Startintervall und 0 der von der -Methode zurückgegebenen Zahl NextDouble hinzufügen. Im folgenden Beispiel werden auf diese Weise 10 Zufallszahlen zwischen -1 und 0 generiert.
using namespace System;
void main()
{
Random^ rnd = gcnew Random();
for (int ctr = 1; ctr <= 10; ctr++)
Console::WriteLine(rnd->NextDouble() - 1);
}
// The example displays output like the following:
// -0.930412760437658
// -0.164699016215605
// -0.9851692803135
// -0.43468508843085
// -0.177202483255976
// -0.776813320245972
// -0.0713201854710096
// -0.0912875561468711
// -0.540621722368813
// -0.232211863730201
Random rnd = new Random();
for (int ctr = 1; ctr <= 10; ctr++)
Console.WriteLine(rnd.NextDouble() - 1);
// The example displays output like the following:
// -0.930412760437658
// -0.164699016215605
// -0.9851692803135
// -0.43468508843085
// -0.177202483255976
// -0.776813320245972
// -0.0713201854710096
// -0.0912875561468711
// -0.540621722368813
// -0.232211863730201
let rnd = Random()
for _ = 1 to 10 do
printfn "%O" (rnd.NextDouble() - 1.0)
// The example displays output like the following:
// -0.930412760437658
// -0.164699016215605
// -0.9851692803135
// -0.43468508843085
// -0.177202483255976
// -0.776813320245972
// -0.0713201854710096
// -0.0912875561468711
// -0.540621722368813
// -0.232211863730201
Module Example
Public Sub Main()
Dim rnd As New Random()
For ctr As Integer = 1 To 10
Console.WriteLine(rnd.NextDouble() - 1)
Next
End Sub
End Module
' The example displays output like the following:
' -0.930412760437658
' -0.164699016215605
' -0.9851692803135
' -0.43468508843085
' -0.177202483255976
' -0.776813320245972
' -0.0713201854710096
' -0.0912875561468711
' -0.540621722368813
' -0.232211863730201
Um zufällige Gleitkommazahlen zu generieren, deren untere Grenze 0 ist, aber die Obergrenze größer als 1 ist (oder bei negativen Zahlen, deren untere Grenze kleiner als -1 und die obere Grenze 0 ist), multiplizieren Sie die Zufallszahl mit der Begrenzung ungleich null. Im folgenden Beispiel werden 20 Millionen zufällige Gleitkommazahlen generiert, die zwischen 0 und Int64.MaxValue liegen. Zeigt auch die Verteilung der von der -Methode generierten Zufallswerte an.
using namespace System;
void main()
{
const Int64 ONE_TENTH = 922337203685477581;
Random^ rnd = gcnew Random();
double number;
array<int>^ count = gcnew array<int>(10);
// Generate 20 million integer values between.
for (int ctr = 1; ctr <= 20000000; ctr++) {
number = rnd->NextDouble() * Int64::MaxValue;
// Categorize random numbers into 10 groups.
int value = (int) (number / ONE_TENTH);
count[value]++;
}
// Display breakdown by range.
Console::WriteLine("{0,28} {1,32} {2,7}\n", "Range", "Count", "Pct.");
for (int ctr = 0; ctr <= 9; ctr++)
Console::WriteLine("{0,25:N0}-{1,25:N0} {2,8:N0} {3,7:P2}", ctr * ONE_TENTH,
ctr < 9 ? ctr * ONE_TENTH + ONE_TENTH - 1 : Int64::MaxValue,
count[ctr], count[ctr]/20000000.0);
}
// The example displays output like the following:
// Range Count Pct.
//
// 0- 922,337,203,685,477,580 1,996,148 9.98 %
// 922,337,203,685,477,581-1,844,674,407,370,955,161 2,000,293 10.00 %
// 1,844,674,407,370,955,162-2,767,011,611,056,432,742 2,000,094 10.00 %
// 2,767,011,611,056,432,743-3,689,348,814,741,910,323 2,000,159 10.00 %
// 3,689,348,814,741,910,324-4,611,686,018,427,387,904 1,999,552 10.00 %
// 4,611,686,018,427,387,905-5,534,023,222,112,865,485 1,998,248 9.99 %
// 5,534,023,222,112,865,486-6,456,360,425,798,343,066 2,000,696 10.00 %
// 6,456,360,425,798,343,067-7,378,697,629,483,820,647 2,001,637 10.01 %
// 7,378,697,629,483,820,648-8,301,034,833,169,298,228 2,002,870 10.01 %
// 8,301,034,833,169,298,229-9,223,372,036,854,775,807 2,000,303 10.00 %
const long ONE_TENTH = 922337203685477581;
Random rnd = new Random();
double number;
int[] count = new int[10];
// Generate 20 million integer values between.
for (int ctr = 1; ctr <= 20000000; ctr++) {
number = rnd.NextDouble() * Int64.MaxValue;
// Categorize random numbers into 10 groups.
count[(int) (number / ONE_TENTH)]++;
}
// Display breakdown by range.
Console.WriteLine("{0,28} {1,32} {2,7}\n", "Range", "Count", "Pct.");
for (int ctr = 0; ctr <= 9; ctr++)
Console.WriteLine("{0,25:N0}-{1,25:N0} {2,8:N0} {3,7:P2}", ctr * ONE_TENTH,
ctr < 9 ? ctr * ONE_TENTH + ONE_TENTH - 1 : Int64.MaxValue,
count[ctr], count[ctr]/20000000.0);
// The example displays output like the following:
// Range Count Pct.
//
// 0- 922,337,203,685,477,580 1,996,148 9.98 %
// 922,337,203,685,477,581-1,844,674,407,370,955,161 2,000,293 10.00 %
// 1,844,674,407,370,955,162-2,767,011,611,056,432,742 2,000,094 10.00 %
// 2,767,011,611,056,432,743-3,689,348,814,741,910,323 2,000,159 10.00 %
// 3,689,348,814,741,910,324-4,611,686,018,427,387,904 1,999,552 10.00 %
// 4,611,686,018,427,387,905-5,534,023,222,112,865,485 1,998,248 9.99 %
// 5,534,023,222,112,865,486-6,456,360,425,798,343,066 2,000,696 10.00 %
// 6,456,360,425,798,343,067-7,378,697,629,483,820,647 2,001,637 10.01 %
// 7,378,697,629,483,820,648-8,301,034,833,169,298,228 2,002,870 10.01 %
// 8,301,034,833,169,298,229-9,223,372,036,854,775,807 2,000,303 10.00 %
[<Literal>]
let ONE_TENTH = 922337203685477581L
let rnd = Random()
// Generate 20 million random integers.
let count =
Array.init 20000000 (fun _ -> rnd.NextDouble() * (float Int64.MaxValue) )
|> Array.countBy (fun x -> x / (float ONE_TENTH) |> int ) // Categorize into 10 groups and count them.
|> Array.map snd
// Display breakdown by range.
printfn "%28s %32s %7s\n" "Range" "Count" "Pct."
for i = 0 to 9 do
let r1 = int64 i * ONE_TENTH
let r2 = if i < 9 then r1 + ONE_TENTH - 1L else Int64.MaxValue
printfn $"{r1,25:N0}-{r2,25:N0} {count.[i],8:N0} {float count.[i] / 20000000.0,7:P2}"
// The example displays output like the following:
// Range Count Pct.
//
// 0- 922,337,203,685,477,580 1,996,148 9.98 %
// 922,337,203,685,477,581-1,844,674,407,370,955,161 2,000,293 10.00 %
// 1,844,674,407,370,955,162-2,767,011,611,056,432,742 2,000,094 10.00 %
// 2,767,011,611,056,432,743-3,689,348,814,741,910,323 2,000,159 10.00 %
// 3,689,348,814,741,910,324-4,611,686,018,427,387,904 1,999,552 10.00 %
// 4,611,686,018,427,387,905-5,534,023,222,112,865,485 1,998,248 9.99 %
// 5,534,023,222,112,865,486-6,456,360,425,798,343,066 2,000,696 10.00 %
// 6,456,360,425,798,343,067-7,378,697,629,483,820,647 2,001,637 10.01 %
// 7,378,697,629,483,820,648-8,301,034,833,169,298,228 2,002,870 10.01 %
// 8,301,034,833,169,298,229-9,223,372,036,854,775,807 2,000,303 10.00 %
Module Example
Public Sub Main()
Const ONE_TENTH As Long = 922337203685477581
Dim rnd As New Random()
Dim number As Long
Dim count(9) As Integer
' Generate 20 million integer values.
For ctr As Integer = 1 To 20000000
number = CLng(rnd.NextDouble() * Int64.MaxValue)
' Categorize random numbers.
count(CInt(number \ ONE_TENTH)) += 1
Next
' Display breakdown by range.
Console.WriteLine("{0,28} {1,32} {2,7}", "Range", "Count", "Pct.")
Console.WriteLine()
For ctr As Integer = 0 To 9
Console.WriteLine("{0,25:N0}-{1,25:N0} {2,8:N0} {3,7:P2}", ctr * ONE_TENTH,
If(ctr < 9, ctr * ONE_TENTH + ONE_TENTH - 1, Int64.MaxValue),
count(ctr), count(ctr)/20000000)
Next
End Sub
End Module
' The example displays output like the following:
' Range Count Pct.
'
' 0- 922,337,203,685,477,580 1,996,148 9.98 %
' 922,337,203,685,477,581-1,844,674,407,370,955,161 2,000,293 10.00 %
' 1,844,674,407,370,955,162-2,767,011,611,056,432,742 2,000,094 10.00 %
' 2,767,011,611,056,432,743-3,689,348,814,741,910,323 2,000,159 10.00 %
' 3,689,348,814,741,910,324-4,611,686,018,427,387,904 1,999,552 10.00 %
' 4,611,686,018,427,387,905-5,534,023,222,112,865,485 1,998,248 9.99 %
' 5,534,023,222,112,865,486-6,456,360,425,798,343,066 2,000,696 10.00 %
' 6,456,360,425,798,343,067-7,378,697,629,483,820,647 2,001,637 10.01 %
' 7,378,697,629,483,820,648-8,301,034,833,169,298,228 2,002,870 10.01 %
' 8,301,034,833,169,298,229-9,223,372,036,854,775,807 2,000,303 10.00 %
Verwenden Sie die folgende Formel, um zufallsbasierte Gleitkommazahlen zwischen zwei beliebigen Werten zu generieren, wie Next(Int32, Int32) dies bei der -Methode für ganze Zahlen der Typ ist:
Random.NextDouble() * (maxValue - minValue) + minValue
Im folgenden Beispiel werden 1 Million Zufallszahlen im Bereich von 10,0 bis 11,0 generiert und ihre Verteilung angezeigt.
using namespace System;
void main()
{
Random^ rnd = gcnew Random();
int lowerBound = 10;
int upperBound = 11;
array<int>^ range = gcnew array<int>(10);
for (int ctr = 1; ctr <= 1000000; ctr++) {
Double value = rnd->NextDouble() * (upperBound - lowerBound) + lowerBound;
range[(int) Math::Truncate((value - lowerBound) * 10)]++;
}
for (int ctr = 0; ctr <= 9; ctr++) {
Double lowerRange = 10 + ctr * .1;
Console::WriteLine("{0:N1} to {1:N1}: {2,8:N0} ({3,7:P2})",
lowerRange, lowerRange + .1, range[ctr],
range[ctr] / 1000000.0);
}
}
// The example displays output like the following:
// 10.0 to 10.1: 99,929 ( 9.99 %)
// 10.1 to 10.2: 100,189 (10.02 %)
// 10.2 to 10.3: 99,384 ( 9.94 %)
// 10.3 to 10.4: 100,240 (10.02 %)
// 10.4 to 10.5: 99,397 ( 9.94 %)
// 10.5 to 10.6: 100,580 (10.06 %)
// 10.6 to 10.7: 100,293 (10.03 %)
// 10.7 to 10.8: 100,135 (10.01 %)
// 10.8 to 10.9: 99,905 ( 9.99 %)
// 10.9 to 11.0: 99,948 ( 9.99 %)
Random rnd = new Random();
int lowerBound = 10;
int upperBound = 11;
int[] range = new int[10];
for (int ctr = 1; ctr <= 1000000; ctr++) {
Double value = rnd.NextDouble() * (upperBound - lowerBound) + lowerBound;
range[(int) Math.Truncate((value - lowerBound) * 10)]++;
}
for (int ctr = 0; ctr <= 9; ctr++) {
Double lowerRange = 10 + ctr * .1;
Console.WriteLine("{0:N1} to {1:N1}: {2,8:N0} ({3,7:P2})",
lowerRange, lowerRange + .1, range[ctr],
range[ctr] / 1000000.0);
}
// The example displays output like the following:
// 10.0 to 10.1: 99,929 ( 9.99 %)
// 10.1 to 10.2: 100,189 (10.02 %)
// 10.2 to 10.3: 99,384 ( 9.94 %)
// 10.3 to 10.4: 100,240 (10.02 %)
// 10.4 to 10.5: 99,397 ( 9.94 %)
// 10.5 to 10.6: 100,580 (10.06 %)
// 10.6 to 10.7: 100,293 (10.03 %)
// 10.7 to 10.8: 100,135 (10.01 %)
// 10.8 to 10.9: 99,905 ( 9.99 %)
// 10.9 to 11.0: 99,948 ( 9.99 %)
let rnd = Random()
let lowerBound = 10.0
let upperBound = 11.0
let range =
Array.init 1000000 (fun _ -> rnd.NextDouble() * (upperBound - lowerBound) + lowerBound)
|> Array.countBy (fun x -> Math.Truncate((x - lowerBound) * 10.0) |> int)
|> Array.map snd
for i = 0 to 9 do
let lowerRange = 10.0 + float i * 0.1
printfn $"{lowerRange:N1} to {lowerRange + 0.1:N1}: {range.[i],8:N0} ({float range.[i] / 1000000.0,6:P2})"
// The example displays output like the following:
// 10.0 to 10.1: 99,929 ( 9.99 %)
// 10.1 to 10.2: 100,189 (10.02 %)
// 10.2 to 10.3: 99,384 ( 9.94 %)
// 10.3 to 10.4: 100,240 (10.02 %)
// 10.4 to 10.5: 99,397 ( 9.94 %)
// 10.5 to 10.6: 100,580 (10.06 %)
// 10.6 to 10.7: 100,293 (10.03 %)
// 10.7 to 10.8: 100,135 (10.01 %)
// 10.8 to 10.9: 99,905 ( 9.99 %)
// 10.9 to 11.0: 99,948 ( 9.99 %)
Module Example
Public Sub Main()
Dim rnd As New Random()
Dim lowerBound As Integer = 10
Dim upperBound As Integer = 11
Dim range(9) As Integer
For ctr As Integer = 1 To 1000000
Dim value As Double = rnd.NextDouble() * (upperBound - lowerBound) + lowerBound
range(CInt(Math.Truncate((value - lowerBound) * 10))) += 1
Next
For ctr As Integer = 0 To 9
Dim lowerRange As Double = 10 + ctr * .1
Console.WriteLine("{0:N1} to {1:N1}: {2,8:N0} ({3,7:P2})",
lowerRange, lowerRange + .1, range(ctr),
range(ctr) / 1000000.0)
Next
End Sub
End Module
' The example displays output like the following:
' 10.0 to 10.1: 99,929 ( 9.99 %)
' 10.1 to 10.2: 100,189 (10.02 %)
' 10.2 to 10.3: 99,384 ( 9.94 %)
' 10.3 to 10.4: 100,240 (10.02 %)
' 10.4 to 10.5: 99,397 ( 9.94 %)
' 10.5 to 10.6: 100,580 (10.06 %)
' 10.6 to 10.7: 100,293 (10.03 %)
' 10.7 to 10.8: 100,135 (10.01 %)
' 10.8 to 10.9: 99,905 ( 9.99 %)
' 10.9 to 11.0: 99,948 ( 9.99 %)
Generieren von zufälligen booleschen Werten
Die Random -Klasse stellt keine Methoden bereit, die Boolean Werte generieren. Hierzu können Sie jedoch eine eigene Klasse oder Methode definieren. Im folgenden Beispiel wird eine -Klasse BooleanGenerator
mit einer einzelnen Methode, , NextBoolean
definiert. Die BooleanGenerator
-Klasse speichert ein Random -Objekt als private Variable. Die NextBoolean
-Methode ruft die Random.Next(Int32, Int32) -Methode auf und übergibt das Ergebnis an die Convert.ToBoolean(Int32) -Methode. Beachten Sie, dass 2 als Argument verwendet wird, um die Obergrenze der Zufallszahl anzugeben. Da dies ein exklusiver Wert ist, gibt der Methodenaufruf entweder 0 oder 1 zurück.
using namespace System;
public ref class BooleanGenerator
{
private:
Random^ rnd;
public:
BooleanGenerator()
{
rnd = gcnew Random();
}
bool NextBoolean()
{
return Convert::ToBoolean(rnd->Next(0, 2));
}
};
void main()
{
// Instantiate the Boolean generator.
BooleanGenerator^ boolGen = gcnew BooleanGenerator();
int totalTrue = 0, totalFalse = 0;
// Generate 1,0000 random Booleans, and keep a running total.
for (int ctr = 0; ctr < 1000000; ctr++) {
bool value = boolGen->NextBoolean();
if (value)
totalTrue++;
else
totalFalse++;
}
Console::WriteLine("Number of true values: {0,7:N0} ({1:P3})",
totalTrue,
((double) totalTrue)/(totalTrue + totalFalse));
Console::WriteLine("Number of false values: {0,7:N0} ({1:P3})",
totalFalse,
((double) totalFalse)/(totalTrue + totalFalse));
}
// The example displays output like the following:
// Number of true values: 500,004 (50.000 %)
// Number of false values: 499,996 (50.000 %)
using System;
public class Example
{
public static void Main()
{
// Instantiate the Boolean generator.
BooleanGenerator boolGen = new BooleanGenerator();
int totalTrue = 0, totalFalse = 0;
// Generate 1,0000 random Booleans, and keep a running total.
for (int ctr = 0; ctr < 1000000; ctr++) {
bool value = boolGen.NextBoolean();
if (value)
totalTrue++;
else
totalFalse++;
}
Console.WriteLine("Number of true values: {0,7:N0} ({1:P3})",
totalTrue,
((double) totalTrue)/(totalTrue + totalFalse));
Console.WriteLine("Number of false values: {0,7:N0} ({1:P3})",
totalFalse,
((double) totalFalse)/(totalTrue + totalFalse));
}
}
public class BooleanGenerator
{
Random rnd;
public BooleanGenerator()
{
rnd = new Random();
}
public bool NextBoolean()
{
return rnd.Next(0, 2) == 1;
}
}
// The example displays output like the following:
// Number of true values: 500,004 (50.000 %)
// Number of false values: 499,996 (50.000 %)
open System
type BooleanGenerator() =
let rnd = Random()
member _.NextBoolean() =
rnd.Next(0, 2) = 1
let boolGen = BooleanGenerator()
let mutable totalTrue, totalFalse = 0, 0
for _ = 1 to 1000000 do
let value = boolGen.NextBoolean()
if value then
totalTrue <- totalTrue + 1
else
totalFalse <- totalFalse + 1
printfn $"Number of true values: {totalTrue,7:N0} ({(double totalTrue) / double (totalTrue + totalFalse):P3})"
printfn $"Number of false values: {totalFalse,7:N0} ({(double totalFalse) / double (totalTrue + totalFalse):P3})"
// The example displays output like the following:
// Number of true values: 500,004 (50.000 %)
// Number of false values: 499,996 (50.000 %)
Module Example
Public Sub Main()
' Instantiate the Boolean generator.
Dim boolGen As New BooleanGenerator()
Dim totalTrue, totalFalse As Integer
' Generate 1,0000 random Booleans, and keep a running total.
For ctr As Integer = 0 To 9999999
Dim value As Boolean = boolGen.NextBoolean()
If value Then
totalTrue += 1
Else
totalFalse += 1
End If
Next
Console.WriteLine("Number of true values: {0,7:N0} ({1:P3})",
totalTrue,
totalTrue/(totalTrue + totalFalse))
Console.WriteLine("Number of false values: {0,7:N0} ({1:P3})",
totalFalse,
totalFalse/(totalTrue + totalFalse))
End Sub
End Module
Public Class BooleanGenerator
Dim rnd As Random
Public Sub New()
rnd = New Random()
End Sub
Public Function NextBoolean() As Boolean
Return Convert.ToBoolean(rnd.Next(0, 2))
End Function
End Class
' The example displays the following output:
' Number of true values: 500,004 (50.000 %)
' Number of false values: 499,996 (50.000 %)
Anstatt eine separate Klasse zum Generieren zufälliger Werte zu Boolean erstellen, könnte das Beispiel einfach eine einzelne Methode definiert haben. In diesem Fall sollte das Objekt jedoch Random als Variable auf Klassenebene definiert worden sein, um das Instanziieren einer neuen Instanz in jedem Methodenaufruf zu Random vermeiden. In Visual Basic kann die Random-Instanz als statische Variable in der -Methode definiert NextBoolean
werden. Das folgende Beispiel stellt eine -Implementierung bereit.
using namespace System;
ref class Example
{
private:
static Random^ rnd = gcnew Random();
public:
static void Execute()
{
int totalTrue = 0, totalFalse = 0;
// Generate 1,0000 random Booleans, and keep a running total.
for (int ctr = 0; ctr < 1000000; ctr++) {
bool value = NextBoolean();
if (value)
totalTrue++;
else
totalFalse++;
}
Console::WriteLine("Number of true values: {0,7:N0} ({1:P3})",
totalTrue,
((double) totalTrue)/(totalTrue + totalFalse));
Console::WriteLine("Number of false values: {0,7:N0} ({1:P3})",
totalFalse,
((double) totalFalse)/(totalTrue + totalFalse));
}
static bool NextBoolean()
{
return Convert::ToBoolean(rnd->Next(0, 2));
}
};
void main()
{
Example::Execute();
}
// The example displays output like the following:
// Number of true values: 499,777 (49.978 %)
// Number of false values: 500,223 (50.022 %)
Random rnd = new Random();
int totalTrue = 0, totalFalse = 0;
// Generate 1,000,000 random Booleans, and keep a running total.
for (int ctr = 0; ctr < 1000000; ctr++) {
bool value = NextBoolean();
if (value)
totalTrue++;
else
totalFalse++;
}
Console.WriteLine("Number of true values: {0,7:N0} ({1:P3})",
totalTrue,
((double) totalTrue)/(totalTrue + totalFalse));
Console.WriteLine("Number of false values: {0,7:N0} ({1:P3})",
totalFalse,
((double) totalFalse)/(totalTrue + totalFalse));
bool NextBoolean()
{
return rnd.Next(0, 2) == 1;
}
// The example displays output like the following:
// Number of true values: 499,777 (49.978 %)
// Number of false values: 500,223 (50.022 %)
let rnd = Random()
let nextBool () =
rnd.Next(0, 2) = 1
let mutable totalTrue, totalFalse = 0, 0
for _ = 1 to 1000000 do
let value = nextBool ()
if value then
totalTrue <- totalTrue + 1
else
totalFalse <- totalFalse + 1
printfn $"Number of true values: {totalTrue,7:N0} ({(double totalTrue) / double (totalTrue + totalFalse):P3})"
printfn $"Number of false values: {totalFalse,7:N0} ({(double totalFalse) / double (totalTrue + totalFalse):P3})"
// The example displays output like the following:
// Number of true values: 499,777 (49.978 %)
// Number of false values: 500,223 (50.022 %)
Module Example
Public Sub Main()
Dim totalTrue, totalFalse As Integer
' Generate 1,0000 random Booleans, and keep a running total.
For ctr As Integer = 0 To 9999999
Dim value As Boolean = NextBoolean()
If value Then
totalTrue += 1
Else
totalFalse += 1
End If
Next
Console.WriteLine("Number of true values: {0,7:N0} ({1:P3})",
totalTrue,
totalTrue/(totalTrue + totalFalse))
Console.WriteLine("Number of false values: {0,7:N0} ({1:P3})",
totalFalse,
totalFalse/(totalTrue + totalFalse))
End Sub
Public Function NextBoolean() As Boolean
Static rnd As New Random()
Return Convert.ToBoolean(rnd.Next(0, 2))
End Function
End Module
' The example displays the following output:
' Number of true values: 499,777 (49.978 %)
' Number of false values: 500,223 (50.022 %)
Generieren zufälliger 64-Bit-Ganzzahlen
Die Überladungen der Next -Methode geben 32-Bit-Ganzzahlen zurück. In einigen Fällen sollten Sie jedoch mit 64-Bit-Ganzzahlen arbeiten. Sie können dies wie folgt tun:
Rufen Sie die NextDouble -Methode auf, um einen Gleitkommawert mit doppelter Genauigkeit abzurufen.
Multiplizieren Sie diesen Wert mit Int64.MaxValue .
Im folgenden Beispiel wird dieses Verfahren verwendet, um 20 Millionen zufällige lange ganze Zahlen zu generieren und in 10 gleich große Gruppen zu kategorisieren. Anschließend wird die Verteilung der Zufallszahlen ausgewertet, indem die Zahl in jeder Gruppe von 0 auf gezählt Int64.MaxValue wird. Wie die Ausgabe des Beispiels zeigt, werden die Zahlen mehr oder weniger gleichmäßig über den Bereich einer langen ganzen Zahl verteilt.
using namespace System;
void main()
{
const Int64 ONE_TENTH = 922337203685477581;
Random^ rnd = gcnew Random();
Int64 number;
array<int>^ count = gcnew array<int>(10);
// Generate 20 million long integers.
for (int ctr = 1; ctr <= 20000000; ctr++) {
number = (Int64) (rnd->NextDouble() * Int64::MaxValue);
// Categorize random numbers.
count[(int) (number / ONE_TENTH)]++;
}
// Display breakdown by range.
Console::WriteLine("{0,28} {1,32} {2,7}\n", "Range", "Count", "Pct.");
for (int ctr = 0; ctr <= 9; ctr++)
Console::WriteLine("{0,25:N0}-{1,25:N0} {2,8:N0} {3,7:P2}", ctr * ONE_TENTH,
ctr < 9 ? ctr * ONE_TENTH + ONE_TENTH - 1 : Int64::MaxValue,
count[ctr], count[ctr]/20000000.0);
}
// The example displays output like the following:
// Range Count Pct.
//
// 0- 922,337,203,685,477,580 1,996,148 9.98 %
// 922,337,203,685,477,581-1,844,674,407,370,955,161 2,000,293 10.00 %
// 1,844,674,407,370,955,162-2,767,011,611,056,432,742 2,000,094 10.00 %
// 2,767,011,611,056,432,743-3,689,348,814,741,910,323 2,000,159 10.00 %
// 3,689,348,814,741,910,324-4,611,686,018,427,387,904 1,999,552 10.00 %
// 4,611,686,018,427,387,905-5,534,023,222,112,865,485 1,998,248 9.99 %
// 5,534,023,222,112,865,486-6,456,360,425,798,343,066 2,000,696 10.00 %
// 6,456,360,425,798,343,067-7,378,697,629,483,820,647 2,001,637 10.01 %
// 7,378,697,629,483,820,648-8,301,034,833,169,298,228 2,002,870 10.01 %
// 8,301,034,833,169,298,229-9,223,372,036,854,775,807 2,000,303 10.00 %
const long ONE_TENTH = 922337203685477581;
Random rnd = new Random();
long number;
int[] count = new int[10];
// Generate 20 million long integers.
for (int ctr = 1; ctr <= 20000000; ctr++) {
number = (long) (rnd.NextDouble() * Int64.MaxValue);
// Categorize random numbers.
count[(int) (number / ONE_TENTH)]++;
}
// Display breakdown by range.
Console.WriteLine("{0,28} {1,32} {2,7}\n", "Range", "Count", "Pct.");
for (int ctr = 0; ctr <= 9; ctr++)
Console.WriteLine("{0,25:N0}-{1,25:N0} {2,8:N0} {3,7:P2}", ctr * ONE_TENTH,
ctr < 9 ? ctr * ONE_TENTH + ONE_TENTH - 1 : Int64.MaxValue,
count[ctr], count[ctr]/20000000.0);
// The example displays output like the following:
// Range Count Pct.
//
// 0- 922,337,203,685,477,580 1,996,148 9.98 %
// 922,337,203,685,477,581-1,844,674,407,370,955,161 2,000,293 10.00 %
// 1,844,674,407,370,955,162-2,767,011,611,056,432,742 2,000,094 10.00 %
// 2,767,011,611,056,432,743-3,689,348,814,741,910,323 2,000,159 10.00 %
// 3,689,348,814,741,910,324-4,611,686,018,427,387,904 1,999,552 10.00 %
// 4,611,686,018,427,387,905-5,534,023,222,112,865,485 1,998,248 9.99 %
// 5,534,023,222,112,865,486-6,456,360,425,798,343,066 2,000,696 10.00 %
// 6,456,360,425,798,343,067-7,378,697,629,483,820,647 2,001,637 10.01 %
// 7,378,697,629,483,820,648-8,301,034,833,169,298,228 2,002,870 10.01 %
// 8,301,034,833,169,298,229-9,223,372,036,854,775,807 2,000,303 10.00 %
[<Literal>]
let ONE_TENTH = 922337203685477581L
let rnd = Random()
let count =
// Generate 20 million random long integers.
Array.init 20000000 (fun _ -> rnd.NextDouble() * (float Int64.MaxValue) |> int64 )
|> Array.countBy (fun x -> x / ONE_TENTH) // Categorize and count random numbers.
|> Array.map snd
// Display breakdown by range.
printfn "%28s %32s %7s\n" "Range" "Count" "Pct."
for i = 0 to 9 do
let r1 = int64 i * ONE_TENTH
let r2 = if i < 9 then r1 + ONE_TENTH - 1L else Int64.MaxValue
printfn $"{r1,25:N0}-{r2,25:N0} {count.[i],8:N0} {float count.[i] / 20000000.0,7:P2}"
// The example displays output like the following:
// Range Count Pct.
//
// 0- 922,337,203,685,477,580 1,996,148 9.98 %
// 922,337,203,685,477,581-1,844,674,407,370,955,161 2,000,293 10.00 %
// 1,844,674,407,370,955,162-2,767,011,611,056,432,742 2,000,094 10.00 %
// 2,767,011,611,056,432,743-3,689,348,814,741,910,323 2,000,159 10.00 %
// 3,689,348,814,741,910,324-4,611,686,018,427,387,904 1,999,552 10.00 %
// 4,611,686,018,427,387,905-5,534,023,222,112,865,485 1,998,248 9.99 %
// 5,534,023,222,112,865,486-6,456,360,425,798,343,066 2,000,696 10.00 %
// 6,456,360,425,798,343,067-7,378,697,629,483,820,647 2,001,637 10.01 %
// 7,378,697,629,483,820,648-8,301,034,833,169,298,228 2,002,870 10.01 %
// 8,301,034,833,169,298,229-9,223,372,036,854,775,807 2,000,303 10.00 %
Module Example
Public Sub Main()
Const ONE_TENTH As Long = 922337203685477581
Dim rnd As New Random()
Dim number As Long
Dim count(9) As Integer
' Generate 20 million long integers.
For ctr As Integer = 1 To 20000000
number = CLng(rnd.NextDouble() * Int64.MaxValue)
' Categorize random numbers.
count(CInt(number \ ONE_TENTH)) += 1
Next
' Display breakdown by range.
Console.WriteLine("{0,28} {1,32} {2,7}", "Range", "Count", "Pct.")
Console.WriteLine()
For ctr As Integer = 0 To 9
Console.WriteLine("{0,25:N0}-{1,25:N0} {2,8:N0} {3,7:P2}", ctr * ONE_TENTH,
If(ctr < 9, ctr * ONE_TENTH + ONE_TENTH - 1, Int64.MaxValue),
count(ctr), count(ctr)/20000000)
Next
End Sub
End Module
' The example displays output like the following:
' Range Count Pct.
'
' 0- 922,337,203,685,477,580 1,996,148 9.98 %
' 922,337,203,685,477,581-1,844,674,407,370,955,161 2,000,293 10.00 %
' 1,844,674,407,370,955,162-2,767,011,611,056,432,742 2,000,094 10.00 %
' 2,767,011,611,056,432,743-3,689,348,814,741,910,323 2,000,159 10.00 %
' 3,689,348,814,741,910,324-4,611,686,018,427,387,904 1,999,552 10.00 %
' 4,611,686,018,427,387,905-5,534,023,222,112,865,485 1,998,248 9.99 %
' 5,534,023,222,112,865,486-6,456,360,425,798,343,066 2,000,696 10.00 %
' 6,456,360,425,798,343,067-7,378,697,629,483,820,647 2,001,637 10.01 %
' 7,378,697,629,483,820,648-8,301,034,833,169,298,228 2,002,870 10.01 %
' 8,301,034,833,169,298,229-9,223,372,036,854,775,807 2,000,303 10.00 %
Eine alternative Technik, bei der die Bitbearbeitung verwendet wird, generiert keine wirklich zufälligen Zahlen. Diese Technik ruft Next() auf, um zwei ganze Zahlen zu generieren, nach links nach 32 Bits zu verschieben und diese zusammen zu verwenden. Diese Technik weist zwei Einschränkungen auf:
Da Bit 31 das Vorzeichenbit ist, ist der Wert in Bit 31 der resultierenden langen ganzen Zahl immer 0. Dies kann behoben werden, indem ein zufälliger Wert von 0 oder 1 generiert, um 31 Bit nach links verschoben und mit der ursprünglichen zufälligen langen ganzen Zahl entfernt wird.
Wichtiger noch, da die Wahrscheinlichkeit, dass der von zurückgegebene Wert Next() 0 ist, nur wenige zufallsbasierte Zahlen im Bereich 0x0-0x00000000FFFFFFFF.
Abrufen von Bytes in einem angegebenen Bereich
Mit den Überladungen der Next -Methode können Sie den Bereich der Zufallszahlen angeben, die NextBytes Methode jedoch nicht. Im folgenden Beispiel wird eine NextBytes
-Methode implementiert, mit der Sie den Bereich der zurückgegebenen Bytes angeben können. Sie definiert eine Random2
Klasse, die von abgeleitet wird Random und ihre NextBytes
-Methode überlädt.
using namespace System;
ref class Random2 : Random
{
public:
Random2()
{}
Random2(int seed) : Random(seed)
{}
void NextBytes(array<Byte>^ bytes, Byte minValue, Byte maxValue)
{
for (int ctr = bytes->GetLowerBound(0); ctr <= bytes->GetUpperBound(0); ctr++)
bytes[ctr] = (Byte) Next(minValue, maxValue);
}
};
void main()
{
Random2^ rnd = gcnew Random2();
array<Byte>^ bytes = gcnew array<Byte>(10000);
array<int>^ total = gcnew array<int>(101);
rnd->NextBytes(bytes, 0, 101);
// Calculate how many of each value we have.
for each (Byte value in bytes)
total[value]++;
// Display the results.
for (int ctr = 0; ctr < total->Length; ctr++) {
Console::Write("{0,3}: {1,-3} ", ctr, total[ctr]);
if ((ctr + 1) % 5 == 0) Console::WriteLine();
}
}
// The example displays output like the following:
// 0: 115 1: 119 2: 92 3: 98 4: 92
// 5: 102 6: 103 7: 84 8: 93 9: 116
// 10: 91 11: 98 12: 106 13: 91 14: 92
// 15: 101 16: 100 17: 96 18: 97 19: 100
// 20: 101 21: 106 22: 112 23: 82 24: 85
// 25: 102 26: 107 27: 98 28: 106 29: 102
// 30: 109 31: 108 32: 94 33: 101 34: 107
// 35: 101 36: 86 37: 100 38: 101 39: 102
// 40: 113 41: 95 42: 96 43: 89 44: 99
// 45: 81 46: 89 47: 105 48: 100 49: 85
// 50: 103 51: 103 52: 93 53: 89 54: 91
// 55: 97 56: 105 57: 97 58: 110 59: 86
// 60: 116 61: 94 62: 117 63: 98 64: 110
// 65: 93 66: 102 67: 100 68: 105 69: 83
// 70: 81 71: 97 72: 85 73: 70 74: 98
// 75: 100 76: 110 77: 114 78: 83 79: 90
// 80: 96 81: 112 82: 102 83: 102 84: 99
// 85: 81 86: 100 87: 93 88: 99 89: 118
// 90: 95 91: 124 92: 108 93: 96 94: 104
// 95: 106 96: 99 97: 99 98: 92 99: 99
// 100: 108
using System;
public class Example
{
public static void Main()
{
Random2 rnd = new Random2();
Byte[] bytes = new Byte[10000];
int[] total = new int[101];
rnd.NextBytes(bytes, 0, 101);
// Calculate how many of each value we have.
foreach (var value in bytes)
total[value]++;
// Display the results.
for (int ctr = 0; ctr < total.Length; ctr++) {
Console.Write("{0,3}: {1,-3} ", ctr, total[ctr]);
if ((ctr + 1) % 5 == 0) Console.WriteLine();
}
}
}
public class Random2 : Random
{
public Random2() : base()
{}
public Random2(int seed) : base(seed)
{}
public void NextBytes(byte[] bytes, byte minValue, byte maxValue)
{
for (int ctr = bytes.GetLowerBound(0); ctr <= bytes.GetUpperBound(0); ctr++)
bytes[ctr] = (byte) Next(minValue, maxValue);
}
}
// The example displays output like the following:
// 0: 115 1: 119 2: 92 3: 98 4: 92
// 5: 102 6: 103 7: 84 8: 93 9: 116
// 10: 91 11: 98 12: 106 13: 91 14: 92
// 15: 101 16: 100 17: 96 18: 97 19: 100
// 20: 101 21: 106 22: 112 23: 82 24: 85
// 25: 102 26: 107 27: 98 28: 106 29: 102
// 30: 109 31: 108 32: 94 33: 101 34: 107
// 35: 101 36: 86 37: 100 38: 101 39: 102
// 40: 113 41: 95 42: 96 43: 89 44: 99
// 45: 81 46: 89 47: 105 48: 100 49: 85
// 50: 103 51: 103 52: 93 53: 89 54: 91
// 55: 97 56: 105 57: 97 58: 110 59: 86
// 60: 116 61: 94 62: 117 63: 98 64: 110
// 65: 93 66: 102 67: 100 68: 105 69: 83
// 70: 81 71: 97 72: 85 73: 70 74: 98
// 75: 100 76: 110 77: 114 78: 83 79: 90
// 80: 96 81: 112 82: 102 83: 102 84: 99
// 85: 81 86: 100 87: 93 88: 99 89: 118
// 90: 95 91: 124 92: 108 93: 96 94: 104
// 95: 106 96: 99 97: 99 98: 92 99: 99
// 100: 108
open System
type Random2() =
inherit Random()
member this.NextBytes(bytes: byte[], minValue: byte, maxValue: byte) =
for i=bytes.GetLowerBound(0) to bytes.GetUpperBound(0) do
bytes.[i] <- this.Next(int minValue, int maxValue) |> byte
let rnd = Random2()
let bytes = Array.zeroCreate 10000
let total = Array.zeroCreate 101
rnd.NextBytes(bytes, 0uy, 101uy)
// Calculate how many of each value we have.
for v in bytes do
total.[int v] <- total.[int v] + 1
// Display the results.
for i = 0 to total.Length - 1 do
printf "%3i: %-3i " i total.[i]
if (i + 1) % 5 = 0 then printfn ""
// The example displays output like the following:
// 0: 115 1: 119 2: 92 3: 98 4: 92
// 5: 102 6: 103 7: 84 8: 93 9: 116
// 10: 91 11: 98 12: 106 13: 91 14: 92
// 15: 101 16: 100 17: 96 18: 97 19: 100
// 20: 101 21: 106 22: 112 23: 82 24: 85
// 25: 102 26: 107 27: 98 28: 106 29: 102
// 30: 109 31: 108 32: 94 33: 101 34: 107
// 35: 101 36: 86 37: 100 38: 101 39: 102
// 40: 113 41: 95 42: 96 43: 89 44: 99
// 45: 81 46: 89 47: 105 48: 100 49: 85
// 50: 103 51: 103 52: 93 53: 89 54: 91
// 55: 97 56: 105 57: 97 58: 110 59: 86
// 60: 116 61: 94 62: 117 63: 98 64: 110
// 65: 93 66: 102 67: 100 68: 105 69: 83
// 70: 81 71: 97 72: 85 73: 70 74: 98
// 75: 100 76: 110 77: 114 78: 83 79: 90
// 80: 96 81: 112 82: 102 83: 102 84: 99
// 85: 81 86: 100 87: 93 88: 99 89: 118
// 90: 95 91: 124 92: 108 93: 96 94: 104
// 95: 106 96: 99 97: 99 98: 92 99: 99
// 100: 108
Module Example
Public Sub Main()
Dim rnd As New Random2()
Dim bytes(9999) As Byte
Dim total(100) As Integer
rnd.NextBytes(bytes, 0, 101)
' Calculate how many of each value we have.
For Each value In bytes
total(value) += 1
Next
' Display the results.
For ctr As Integer = 0 To total.Length - 1
Console.Write("{0,3}: {1,-3} ", ctr, total(ctr))
If (ctr + 1) Mod 5 = 0 Then Console.WriteLine()
Next
End Sub
End Module
Public Class Random2 : Inherits Random
Public Sub New()
MyBase.New()
End Sub
Public Sub New(seed As Integer)
MyBase.New(seed)
End Sub
Public Overloads Sub NextBytes(bytes() As Byte,
minValue As Byte, maxValue As Byte)
For ctr As Integer = bytes.GetLowerbound(0) To bytes.GetUpperBound(0)
bytes(ctr) = CByte(MyBase.Next(minValue, maxValue))
Next
End Sub
End Class
' The example displays output like the following:
' 0: 115 1: 119 2: 92 3: 98 4: 92
' 5: 102 6: 103 7: 84 8: 93 9: 116
' 10: 91 11: 98 12: 106 13: 91 14: 92
' 15: 101 16: 100 17: 96 18: 97 19: 100
' 20: 101 21: 106 22: 112 23: 82 24: 85
' 25: 102 26: 107 27: 98 28: 106 29: 102
' 30: 109 31: 108 32: 94 33: 101 34: 107
' 35: 101 36: 86 37: 100 38: 101 39: 102
' 40: 113 41: 95 42: 96 43: 89 44: 99
' 45: 81 46: 89 47: 105 48: 100 49: 85
' 50: 103 51: 103 52: 93 53: 89 54: 91
' 55: 97 56: 105 57: 97 58: 110 59: 86
' 60: 116 61: 94 62: 117 63: 98 64: 110
' 65: 93 66: 102 67: 100 68: 105 69: 83
' 70: 81 71: 97 72: 85 73: 70 74: 98
' 75: 100 76: 110 77: 114 78: 83 79: 90
' 80: 96 81: 112 82: 102 83: 102 84: 99
' 85: 81 86: 100 87: 93 88: 99 89: 118
' 90: 95 91: 124 92: 108 93: 96 94: 104
' 95: 106 96: 99 97: 99 98: 92 99: 99
' 100: 108
Die NextBytes(Byte[], Byte, Byte)
-Methode umschließt einen Aufruf der Next(Int32, Int32) -Methode und gibt den Minimalwert und einen wert größer als den Maximalwert (in diesem Fall 0 und 101) an, der im Bytearray zurückgegeben werden soll. Da wir sicher sind, dass sich die von der -Methode zurückgegebenen ganzzahligen Werte Next innerhalb des Bereichs des Byte Datentyps befinden, können wir sie (in C# und F#) sicher umwandeln oder (in Visual Basic) von ganzen Zahlen in Bytes konvertieren.
Abrufen eines Elements aus einem Array oder einer Auflistung nach dem Zufallsprinzip
Zufallszahlen dienen häufig als Indizes zum Abrufen von Werten aus Arrays oder Auflistungen. Um einen zufälligen Indexwert abzurufen, können Sie die -Methode aufrufen Next(Int32, Int32) und die untere Grenze des Arrays als Wert des minValue
Arguments und einen wert größer als die Obergrenze des Arrays als Wert des maxValue
Arguments verwenden. Bei einem nullbasierten Array entspricht dies der Length -Eigenschaft oder einem Wert, der größer als der von der -Methode zurückgegebene Wert Array.GetUpperBound ist. Im folgenden Beispiel wird der Name einer Stadt im USA nach dem Zufallsprinzip aus einem Array von Städten abgerufen.
using namespace System;
void main()
{
array<String^>^ cities = { "Atlanta", "Boston", "Chicago", "Detroit",
"Fort Wayne", "Greensboro", "Honolulu", "Indianapolis",
"Jersey City", "Kansas City", "Los Angeles",
"Milwaukee", "New York", "Omaha", "Philadelphia",
"Raleigh", "San Francisco", "Tulsa", "Washington" };
Random^ rnd = gcnew Random();
int index = rnd->Next(0, cities->Length);
Console::WriteLine("Today's city of the day: {0}",
cities[index]);
}
// The example displays output like the following:
// Today's city of the day: Honolulu
String[] cities = { "Atlanta", "Boston", "Chicago", "Detroit",
"Fort Wayne", "Greensboro", "Honolulu", "Indianapolis",
"Jersey City", "Kansas City", "Los Angeles",
"Milwaukee", "New York", "Omaha", "Philadelphia",
"Raleigh", "San Francisco", "Tulsa", "Washington" };
Random rnd = new Random();
int index = rnd.Next(0, cities.Length);
Console.WriteLine("Today's city of the day: {0}",
cities[index]);
// The example displays output like the following:
// Today's city of the day: Honolulu
let cities =
[| "Atlanta"; "Boston"; "Chicago"; "Detroit";
"Fort Wayne"; "Greensboro"; "Honolulu"; "Indianapolis";
"Jersey City"; "Kansas City"; "Los Angeles";
"Milwaukee"; "New York"; "Omaha"; "Philadelphia";
"Raleigh"; "San Francisco"; "Tulsa"; "Washington" |]
let rnd = Random()
let index = rnd.Next(0,cities.Length)
printfn "Today's city of the day: %s" cities.[index]
// The example displays output like the following:
// Today's city of the day: Honolulu
Module Example
Public Sub Main()
Dim cities() As String = { "Atlanta", "Boston", "Chicago", "Detroit",
"Fort Wayne", "Greensboro", "Honolulu", "Indianapolis",
"Jersey City", "Kansas City", "Los Angeles",
"Milwaukee", "New York", "Omaha", "Philadelphia",
"Raleigh", "San Francisco", "Tulsa", "Washington" }
Dim rnd As New Random()
Dim index As Integer = rnd.Next(0, cities.Length)
Console.WriteLine("Today's city of the day: {0}",
cities(index))
End Sub
End Module
' The example displays output like the following:
' Today's city of the day: Honolulu
Abrufen eines eindeutigen Elements aus einem Array oder einer Auflistung
Ein Zufallszahlengenerator kann immer doppelte Werte zurückgeben. Wenn der Zahlenbereich kleiner wird oder die Anzahl der generierten Werte größer wird, steigt die Wahrscheinlichkeit von Duplikaten. Wenn zufällige Werte eindeutig sein müssen, werden mehr Zahlen generiert, um Duplikate zu kompensieren, was zu einer zunehmend schlechteren Leistung führt.
Es gibt eine Reihe von Techniken, um dieses Szenario zu behandeln. Eine gängige Lösung besteht darin, ein Array oder eine Auflistung zu erstellen, das bzw. die die abzurufenden Werte enthält, und ein paralleles Array, das zufällige Gleitkommazahlen enthält. Das zweite Array wird zum Zeitpunkt der Erstellung des ersten Arrays mit Zufallszahlen aufgefüllt, und die Array.Sort(Array, Array) -Methode wird verwendet, um das erste Array mithilfe der Werte im parallelen Array zu sortieren.
Wenn Sie z. B. ein Solitgame-Spiel entwickeln, möchten Sie sicherstellen, dass jede Karte nur einmal verwendet wird. Anstatt Zufallszahlen zu generieren, um eine Karte abzurufen und nachzuverfolgen, ob diese Karte bereits verarbeitet wurde, können Sie ein paralleles Array von Zufallszahlen erstellen, die zum Sortieren des Kartenstapels verwendet werden können. Nachdem der Stapel sortiert wurde, kann Ihre App einen Zeiger beibehalten, um den Index der nächsten Karte auf dem Stapel anzugeben.
Dieser Ansatz wird anhand des folgenden Beispiels veranschaulicht. Sie definiert eine Card
Klasse, die eine Wiedergabekarte darstellt, und eine Dealer
Klasse, die einen Stapel gemischter Karten abwickelt. Der Dealer
Klassenkonstruktor füllt zwei Arrays auf: ein Array, das über einen Klassenbereich verfügt deck
und alle Karten im Stapel darstellt, und ein order
lokales Array, das die gleiche Anzahl von Elementen wie das deck
Array aufweist und mit zufällig generierten Werten aufgefüllt Double wird. Die Array.Sort(Array, Array) -Methode wird dann aufgerufen, um das Array basierend auf den Werten im Array zu deck
order
sortieren.
using namespace System;
public enum class Suit { Hearts, Diamonds, Spades, Clubs };
public enum class FaceValue { Ace = 1, Two, Three, Four, Five, Six,
Seven, Eight, Nine, Ten, Jack, Queen,
King };
// A class that represents an individual card in a playing deck.
ref class Card
{
public:
Suit Suit;
FaceValue FaceValue;
String^ ToString() override
{
return String::Format("{0:F} of {1:F}", this->FaceValue, this->Suit);
}
};
ref class Dealer
{
private:
Random^ rnd;
// A deck of cards, without Jokers.
array<Card^>^ deck = gcnew array<Card^>(52);
// Parallel array for sorting cards.
array<Double>^ order = gcnew array<Double>(52);
// A pointer to the next card to deal.
int ptr = 0;
// A flag to indicate the deck is used.
bool mustReshuffle = false;
public:
Dealer()
{
rnd = gcnew Random();
// Initialize the deck.
int deckCtr = 0;
for each (auto suit in Enum::GetValues(Suit::typeid)) {
for each (FaceValue faceValue in Enum::GetValues(FaceValue::typeid)) {
Card^ card = gcnew Card();
card->Suit = (Suit) suit;
card->FaceValue = (FaceValue) faceValue;
deck[deckCtr] = card;
deckCtr++;
}
}
for (int ctr = 0; ctr < order->Length; ctr++)
order[ctr] = rnd->NextDouble();
Array::Sort(order, deck);
}
array<Card^>^ Deal(int numberToDeal)
{
if (mustReshuffle) {
Console::WriteLine("There are no cards left in the deck");
return nullptr;
}
array<Card^>^ cardsDealt = gcnew array<Card^>(numberToDeal);
for (int ctr = 0; ctr < numberToDeal; ctr++) {
cardsDealt[ctr] = deck[ptr];
ptr++;
if (ptr == deck->Length)
mustReshuffle = true;
if (mustReshuffle & ctr < numberToDeal - 1) {
Console::WriteLine("Can only deal the {0} cards remaining on the deck.",
ctr + 1);
return cardsDealt;
}
}
return cardsDealt;
}
};
void ShowCards(array<Card^>^ cards)
{
for each (Card^ card in cards)
if (card != nullptr)
Console::WriteLine("{0} of {1}", card->FaceValue, card->Suit);
};
void main()
{
Dealer^ dealer = gcnew Dealer();
ShowCards(dealer->Deal(20));
}
// The example displays output like the following:
// Six of Diamonds
// King of Clubs
// Eight of Clubs
// Seven of Clubs
// Queen of Clubs
// King of Hearts
// Three of Spades
// Ace of Clubs
// Four of Hearts
// Three of Diamonds
// Nine of Diamonds
// Two of Hearts
// Ace of Hearts
// Three of Hearts
// Four of Spades
// Eight of Hearts
// Queen of Diamonds
// Two of Clubs
// Four of Diamonds
// Jack of Hearts
using System;
// A class that represents an individual card in a playing deck.
public class Card
{
public Suit Suit;
public FaceValue FaceValue;
public override String ToString()
{
return String.Format("{0:F} of {1:F}", this.FaceValue, this.Suit);
}
}
public enum Suit { Hearts, Diamonds, Spades, Clubs };
public enum FaceValue { Ace = 1, Two, Three, Four, Five, Six,
Seven, Eight, Nine, Ten, Jack, Queen,
King };
public class Dealer
{
Random rnd;
// A deck of cards, without Jokers.
Card[] deck = new Card[52];
// Parallel array for sorting cards.
Double[] order = new Double[52];
// A pointer to the next card to deal.
int ptr = 0;
// A flag to indicate the deck is used.
bool mustReshuffle = false;
public Dealer()
{
rnd = new Random();
// Initialize the deck.
int deckCtr = 0;
foreach (var suit in Enum.GetValues(typeof(Suit))) {
foreach (var faceValue in Enum.GetValues(typeof(FaceValue))) {
Card card = new Card();
card.Suit = (Suit) suit;
card.FaceValue = (FaceValue) faceValue;
deck[deckCtr] = card;
deckCtr++;
}
}
for (int ctr = 0; ctr < order.Length; ctr++)
order[ctr] = rnd.NextDouble();
Array.Sort(order, deck);
}
public Card[] Deal(int numberToDeal)
{
if (mustReshuffle) {
Console.WriteLine("There are no cards left in the deck");
return null;
}
Card[] cardsDealt = new Card[numberToDeal];
for (int ctr = 0; ctr < numberToDeal; ctr++) {
cardsDealt[ctr] = deck[ptr];
ptr++;
if (ptr == deck.Length)
mustReshuffle = true;
if (mustReshuffle & ctr < numberToDeal - 1) {
Console.WriteLine("Can only deal the {0} cards remaining on the deck.",
ctr + 1);
return cardsDealt;
}
}
return cardsDealt;
}
}
public class Example
{
public static void Main()
{
Dealer dealer = new Dealer();
ShowCards(dealer.Deal(20));
}
private static void ShowCards(Card[] cards)
{
foreach (var card in cards)
if (card != null)
Console.WriteLine("{0} of {1}", card.FaceValue, card.Suit);
}
}
// The example displays output like the following:
// Six of Diamonds
// King of Clubs
// Eight of Clubs
// Seven of Clubs
// Queen of Clubs
// King of Hearts
// Three of Spades
// Ace of Clubs
// Four of Hearts
// Three of Diamonds
// Nine of Diamonds
// Two of Hearts
// Ace of Hearts
// Three of Hearts
// Four of Spades
// Eight of Hearts
// Queen of Diamonds
// Two of Clubs
// Four of Diamonds
// Jack of Hearts
open System
type Suit =
| Clubs
| Diamonds
| Hearts
| Spades
type Face =
| Ace | Two | Three
| Four | Five | Six
| Seven | Eight | Nine
| Ten | Jack | Queen | King
type Card = { Face: Face; Suit: Suit }
let suits = [ Clubs; Diamonds; Hearts; Spades ]
let faces = [ Ace; Two; Three; Four; Five; Six; Seven; Eight; Nine; Ten; Jack; Queen; King ]
type Dealer() =
let rnd = Random()
let mutable pos = 0
// Parallel array for sorting cards.
let order = Array.init (suits.Length * faces.Length) (fun _ -> rnd.NextDouble() )
// A deck of cards, without Jokers.
let deck = [|
for s in suits do
for f in faces do
{ Face = f; Suit = s } |]
// Shuffle the deck.
do Array.Sort(order, deck)
// Deal a number of cards from the deck, return None if failed
member _.Deal(numberToDeal) : Card [] option =
if numberToDeal = 0 || pos = deck.Length then
printfn "There are no cards left in the deck"
None
else
let cards = deck.[pos .. numberToDeal + pos - 1]
if numberToDeal > deck.Length - pos then
printfn "Can only deal the %i cards remaining on the deck." (deck.Length - pos)
pos <- min (pos + numberToDeal) deck.Length
Some cards
let showCards cards =
for card in cards do
printfn $"{card.Face} of {card.Suit}"
let dealer = Dealer()
dealer.Deal 20
|> Option.iter showCards
// The example displays output like the following:
// Six of Diamonds
// King of Clubs
// Eight of Clubs
// Seven of Clubs
// Queen of Clubs
// King of Hearts
// Three of Spades
// Ace of Clubs
// Four of Hearts
// Three of Diamonds
// Nine of Diamonds
// Two of Hearts
// Ace of Hearts
// Three of Hearts
// Four of Spades
// Eight of Hearts
// Queen of Diamonds
// Two of Clubs
// Four of Diamonds
// Jack of Hearts
' A class that represents an individual card in a playing deck.
Public Class Card
Public Suit As Suit
Public FaceValue As FaceValue
Public Overrides Function ToString() As String
Return String.Format("{0:F} of {1:F}", Me.FaceValue, Me.Suit)
End Function
End Class
Public Enum Suit As Integer
Hearts = 0
Diamonds = 1
Spades = 2
Clubs = 3
End Enum
Public Enum FaceValue As Integer
Ace = 1
Two = 2
Three = 3
Four = 4
Five = 5
Six = 6
Seven = 7
Eight = 8
Nine = 9
Ten = 10
Jack = 11
Queen = 12
King = 13
End Enum
Public Class Dealer
Dim rnd As Random
' A deck of cards, without Jokers.
Dim deck(51) As Card
' Parallel array for sorting cards.
Dim order(51) As Double
' A pointer to the next card to deal.
Dim ptr As Integer = 0
' A flag to indicate the deck is used.
Dim mustReshuffle As Boolean
Public Sub New()
rnd = New Random()
' Initialize the deck.
Dim deckCtr As Integer = 0
For Each Suit In [Enum].GetValues(GetType(Suit))
For Each faceValue In [Enum].GetValues(GetType(FaceValue))
Dim card As New Card()
card.Suit = CType(Suit, Suit)
card.FaceValue = CType(faceValue, FaceValue)
deck(deckCtr) = card
deckCtr += 1
Next
Next
For ctr As Integer = 0 To order.Length - 1
order(ctr) = rnd.NextDouble()
Next
Array.Sort(order, deck)
End Sub
Public Function Deal(numberToDeal As Integer) As Card()
If mustReshuffle Then
Console.WriteLine("There are no cards left in the deck")
Return Nothing
End If
Dim cardsDealt(numberToDeal - 1) As Card
For ctr As Integer = 0 To numberToDeal - 1
cardsDealt(ctr) = deck(ptr)
ptr += 1
If ptr = deck.Length Then
mustReshuffle = True
End If
If mustReshuffle And ctr < numberToDeal - 1
Console.WriteLine("Can only deal the {0} cards remaining on the deck.",
ctr + 1)
Return cardsDealt
End If
Next
Return cardsDealt
End Function
End Class
Public Module Example
Public Sub Main()
Dim dealer As New Dealer()
ShowCards(dealer.Deal(20))
End Sub
Private Sub ShowCards(cards() As Card)
For Each card In cards
If card IsNot Nothing Then _
Console.WriteLine("{0} of {1}", card.FaceValue, card.Suit)
Next
End Sub
End Module
' The example displays output like the following:
' Six of Diamonds
' King of Clubs
' Eight of Clubs
' Seven of Clubs
' Queen of Clubs
' King of Hearts
' Three of Spades
' Ace of Clubs
' Four of Hearts
' Three of Diamonds
' Nine of Diamonds
' Two of Hearts
' Ace of Hearts
' Three of Hearts
' Four of Spades
' Eight of Hearts
' Queen of Diamonds
' Two of Clubs
' Four of Diamonds
' Jack of Hearts
Hinweise für Vererber
Im .NET Framework 1.0 und 1.1 erforderte eine Mindestimplementierung einer klasse, die von abgeleitet wurde, Random das Überschreiben der Sample() -Methode, um einen neuen oder geänderten Algorithmus zum Generieren von Zufallszahlen zu definieren. Die abgeleitete Klasse kann sich dann auf die Basisklassenimplementierungen der Next() Methoden , , , und Next(Int32) Next(Int32, Int32) NextBytes(Byte[]) NextDouble() verlassen, um die Implementierung der abgeleiteten Klasse der Sample() -Methode aufzurufen.
Im .NET Framework 2.0 und höher hat sich das Verhalten der Next() Next(Int32, Int32) Methoden , und NextBytes(Byte[]) geändert, sodass diese Methoden nicht notwendigerweise die implementierung der abgeleiteten Klasse der Sample() -Methode aufrufen. Daher sollten von diesem abgeleitete Klassen Random auch diese drei Methoden überschreiben, die auf die .NET Framework 2.0 und höher ausgerichtet sind.
Hinweise für Aufrufer
Es ist nicht garantiert, dass die Implementierung des Random Zufallszahlengenerators in der -Klasse in hauptversionen der .NET Framework gleich bleibt. Daher sollten Sie nicht davon ausgehen, dass der gleiche Ausgangswert in verschiedenen Versionen der .NET Framework zu derselben Pseudozufallssequenz führt.
Konstruktoren
Random() |
Hiermit wird unter Verwendung eines Standardstartwerts eine neue Instanz der Random-Klasse initialisiert. |
Random(Int32) |
Initialisiert eine neue Instanz der Random-Klasse unter Verwendung des angegebenen Startwerts. |
Eigenschaften
Shared |
Stellt eine threadsichere Random Instanz bereit, die gleichzeitig von jedem Thread verwendet werden kann. |
Methoden
Equals(Object) |
Bestimmt, ob das angegebene Objekt gleich dem aktuellen Objekt ist. (Geerbt von Object) |
GetHashCode() |
Fungiert als Standardhashfunktion. (Geerbt von Object) |
GetType() |
Ruft den Type der aktuellen Instanz ab. (Geerbt von Object) |
MemberwiseClone() |
Erstellt eine flache Kopie des aktuellen Object. (Geerbt von Object) |
Next() |
Gibt eine nicht negative Zufallsganzzahl zurück. |
Next(Int32) |
Gibt eine nicht negative Zufallsganzzahl zurück, die kleiner als das angegebene Maximum ist. |
Next(Int32, Int32) |
Gibt eine zufällige ganze Zahl zurück, die in einem angegebenen Bereich liegt. |
NextBytes(Byte[]) |
Füllt die Elemente eines angegebenen Bytearrays mit Zufallszahlen. |
NextBytes(Span<Byte>) |
Füllt die Elemente einer festgelegten Bytespanne mit zufälligen Zahlen. |
NextDouble() |
Gibt eine zufällige Gleitkommazahl zurück, die größer oder gleich 0,0 und kleiner als 1,0 ist. |
NextInt64() |
Gibt eine nicht negative Zufallsganzzahl zurück. |
NextInt64(Int64) |
Gibt eine nicht negative Zufallsganzzahl zurück, die kleiner als das angegebene Maximum ist. |
NextInt64(Int64, Int64) |
Gibt eine zufällige ganze Zahl zurück, die in einem angegebenen Bereich liegt. |
NextSingle() |
Gibt eine zufällige Gleitkommazahl zurück, die größer oder gleich 0,0 und kleiner als 1,0 ist. |
Sample() |
Gibt eine zufällige Gleitkommazahl zwischen 0,0 und 1,0 zurück. |
ToString() |
Gibt eine Zeichenfolge zurück, die das aktuelle Objekt darstellt. (Geerbt von Object) |