BinaryReader.Read Method
Definition
Important
Some information relates to prerelease product that may be substantially modified before it’s released. Microsoft makes no warranties, express or implied, with respect to the information provided here.
Reads bytes from the underlying stream and advances the current position of the stream.
Overloads
Read() |
Reads characters from the underlying stream and advances the current position of the stream in accordance with the |
Read(Span<Byte>) |
Reads a sequence of bytes from the current stream and advances the position within the stream by the number of bytes read. |
Read(Span<Char>) |
Reads, from the current stream, the same number of characters as the length of the provided buffer, writes them in the provided buffer, and advances the current position in accordance with the |
Read(Byte[], Int32, Int32) |
Reads the specified number of bytes from the stream, starting from a specified point in the byte array. |
Read(Char[], Int32, Int32) |
Reads the specified number of characters from the stream, starting from a specified point in the character array. |
Read()
- Source:
- BinaryReader.cs
- Source:
- BinaryReader.cs
- Source:
- BinaryReader.cs
Reads characters from the underlying stream and advances the current position of the stream in accordance with the Encoding
used and the specific character being read from the stream.
public:
virtual int Read();
public virtual int Read ();
abstract member Read : unit -> int
override this.Read : unit -> int
Public Overridable Function Read () As Integer
Returns
The next character from the input stream, or -1 if no characters are currently available.
Exceptions
An I/O error occurred.
The stream is closed.
Examples
The following example shows how to read and write data using memory as a backing store. This example displays a list of invalid file path characters to the console. Although the code tries to display a list of all invalid file path characters, not all of the characters are within the displayable set of characters. Because the list of invalid characters can vary based on the system, output for this code may also vary.
using namespace System;
using namespace System::IO;
int main()
{
int i;
array<Char>^invalidPathChars = Path::InvalidPathChars;
MemoryStream^ memStream = gcnew MemoryStream;
BinaryWriter^ binWriter = gcnew BinaryWriter( memStream );
// Write to memory.
binWriter->Write( "Invalid file path characters are: " );
for ( i = 0; i < invalidPathChars->Length; i++ )
{
binWriter->Write( invalidPathChars[ i ] );
}
// Create the reader using the same MemoryStream
// as used with the writer.
BinaryReader^ binReader = gcnew BinaryReader( memStream );
// Set Position to the beginning of the stream.
binReader->BaseStream->Position = 0;
// Read the data from memory and write it to the console.
Console::Write( binReader->ReadString() );
array<Char>^memoryData = gcnew array<Char>(memStream->Length - memStream->Position);
for ( i = 0; i < memoryData->Length; i++ )
{
memoryData[ i ] = Convert::ToChar( binReader->Read() );
}
Console::WriteLine( memoryData );
}
using System;
using System.IO;
class BinaryRW
{
static void Main()
{
int i = 0;
char[] invalidPathChars = Path.InvalidPathChars;
MemoryStream memStream = new MemoryStream();
BinaryWriter binWriter = new BinaryWriter(memStream);
// Write to memory.
binWriter.Write("Invalid file path characters are: ");
for(i = 0; i < invalidPathChars.Length; i++)
{
binWriter.Write(invalidPathChars[i]);
}
// Create the reader using the same MemoryStream
// as used with the writer.
BinaryReader binReader = new BinaryReader(memStream);
// Set Position to the beginning of the stream.
memStream.Position = 0;
// Read the data from memory and write it to the console.
Console.Write(binReader.ReadString());
char[] memoryData =
new char[memStream.Length - memStream.Position];
for(i = 0; i < memoryData.Length; i++)
{
memoryData[i] = Convert.ToChar(binReader.Read());
}
Console.WriteLine(memoryData);
}
}
open System
open System.IO
let invalidPathChars = Path.GetInvalidPathChars()
let memStream = new MemoryStream()
let binWriter = new BinaryWriter(memStream)
// Write to memory.
printf "Invalid file path characters are: "
for i = 0 to invalidPathChars.Length - 1 do
binWriter.Write invalidPathChars[i]
// Create the reader using the same MemoryStream
// as used with the writer.
let binReader = new BinaryReader(memStream)
// Set Position to the beginning of the stream.
memStream.Position <- 0
// Read the data from memory and write it to the console.
printf $"{binReader.ReadString()}"
let memoryData =
[| for _ = 0L to memStream.Length - memStream.Position - 1L do
Convert.ToChar(binReader.Read()) |]
printfn $"{memoryData}"
Imports System.IO
Public Class BinaryRW
Shared Sub Main()
Dim i As Integer = 0
Dim invalidPathChars() As Char = Path.InvalidPathChars
Dim memStream As new MemoryStream()
Dim binWriter As New BinaryWriter(memStream)
' Write to memory.
binWriter.Write("Invalid file path characters are: ")
For i = 0 To invalidPathChars.Length - 1
binWriter.Write(invalidPathChars(i))
Next i
' Create the reader using the same MemoryStream
' as used with the writer.
Dim binReader As New BinaryReader(memStream)
' Set Position to the beginning of the stream.
memStream.Position = 0
' Read the data from memory and write it to the console.
Console.Write(binReader.ReadString())
Dim memoryData( _
CInt(memStream.Length - memStream.Position) - 1) As Char
For i = 0 To memoryData.Length - 1
memoryData(i) = Convert.ToChar(binReader.Read())
Next i
Console.WriteLine(memoryData)
End Sub
End Class
Remarks
BinaryReader does not restore the file position after an unsuccessful read.
For a list of common I/O tasks, see Common I/O Tasks.
See also
Applies to
Read(Span<Byte>)
- Source:
- BinaryReader.cs
- Source:
- BinaryReader.cs
- Source:
- BinaryReader.cs
Reads a sequence of bytes from the current stream and advances the position within the stream by the number of bytes read.
public:
virtual int Read(Span<System::Byte> buffer);
public virtual int Read (Span<byte> buffer);
abstract member Read : Span<byte> -> int
override this.Read : Span<byte> -> int
Public Overridable Function Read (buffer As Span(Of Byte)) As Integer
Parameters
A region of memory. When this method returns, the contents of this region are replaced by the bytes read from the current source.
Returns
The total number of bytes read into the buffer. This can be less than the number of bytes allocated in the buffer if that many bytes are not currently available, or zero (0) if the end of the stream has been reached.
Exceptions
The stream is closed.
An I/O error occurred.
Applies to
Read(Span<Char>)
- Source:
- BinaryReader.cs
- Source:
- BinaryReader.cs
- Source:
- BinaryReader.cs
Reads, from the current stream, the same number of characters as the length of the provided buffer, writes them in the provided buffer, and advances the current position in accordance with the Encoding
used and the specific character being read from the stream.
public:
virtual int Read(Span<char> buffer);
public virtual int Read (Span<char> buffer);
abstract member Read : Span<char> -> int
override this.Read : Span<char> -> int
Public Overridable Function Read (buffer As Span(Of Char)) As Integer
Parameters
A span of characters. When this method returns, the contents of this region are replaced by the characters read from the current source.
Returns
The total number of characters read into the buffer. This might be less than the number of characters requested if that many characters are not currently available, or it might be zero if the end of the stream is reached.
Exceptions
The stream is closed.
An I/O error occurred.
Applies to
Read(Byte[], Int32, Int32)
- Source:
- BinaryReader.cs
- Source:
- BinaryReader.cs
- Source:
- BinaryReader.cs
Reads the specified number of bytes from the stream, starting from a specified point in the byte array.
public:
virtual int Read(cli::array <System::Byte> ^ buffer, int index, int count);
public virtual int Read (byte[] buffer, int index, int count);
abstract member Read : byte[] * int * int -> int
override this.Read : byte[] * int * int -> int
Public Overridable Function Read (buffer As Byte(), index As Integer, count As Integer) As Integer
Parameters
- buffer
- Byte[]
The buffer to read data into.
- index
- Int32
The starting point in the buffer at which to begin reading into the buffer.
- count
- Int32
The number of bytes to read.
Returns
The number of bytes read into buffer
. This might be less than the number of bytes requested if that many bytes are not available, or it might be zero if the end of the stream is reached.
Exceptions
The buffer length minus index
is less than count
.
-or-
The number of decoded characters to read is greater than count
. This can happen if a Unicode decoder returns fallback characters or a surrogate pair.
buffer
is null
.
index
or count
is negative.
The stream is closed.
An I/O error occurred.
Examples
The following example shows how to write binary data by using memory as a backing store. It displays a message to the console that indicates whether the data was written correctly.
using System;
using System.IO;
namespace BinaryRW
{
class Program
{
static void Main(string[] args)
{
const int arrayLength = 1000;
byte[] dataArray = new byte[arrayLength];
byte[] verifyArray = new byte[arrayLength];
new Random().NextBytes(dataArray);
using (BinaryWriter binWriter = new BinaryWriter(new MemoryStream()))
{
Console.WriteLine("Writing the data.");
binWriter.Write(dataArray, 0, arrayLength);
using (BinaryReader binReader = new BinaryReader(binWriter.BaseStream))
{
binReader.BaseStream.Position = 0;
if (binReader.Read(verifyArray, 0, arrayLength) != arrayLength)
{
Console.WriteLine("Error writing the data.");
return;
}
}
}
for (int i = 0; i < arrayLength; i++)
{
if (verifyArray[i] != dataArray[i])
{
Console.WriteLine("Error writing the data.");
return;
}
}
Console.WriteLine("The data was written and verified.");
}
}
}
open System
open System.IO
let arrayLength = 1000
let dataArray = Array.zeroCreate<byte> arrayLength
let verifyArray = Array.zeroCreate<byte> arrayLength
Random().NextBytes dataArray
do
use binWriter = new BinaryWriter(new MemoryStream())
printfn "Writing the data."
binWriter.Write(dataArray, 0, arrayLength)
use binReader = new BinaryReader(binWriter.BaseStream)
binReader.BaseStream.Position <- 0
if binReader.Read(verifyArray, 0, arrayLength) <> arrayLength then
printfn "Error writing the data."
else
for i = 0 to arrayLength - 1 do
if verifyArray[i] <> dataArray[i] then
printfn "Error writing the data."
else
printfn "The data was written and verified."
Imports System.IO
Module Module1
Sub Main()
Const upperBound As Integer = 1000
Dim dataArray(upperBound) As Byte
Dim verifyArray(upperBound) As Byte
Dim randomGenerator As New Random
randomGenerator.NextBytes(dataArray)
Using binWriter As New BinaryWriter(New MemoryStream())
Console.WriteLine("Writing the data.")
binWriter.Write(dataArray, 0, dataArray.Length)
Using binReader As New BinaryReader(binWriter.BaseStream)
binReader.BaseStream.Position = 0
If binReader.Read(verifyArray, 0, dataArray.Length) <> dataArray.Length Then
Console.WriteLine("Error writing the data.")
Return
End If
End Using
End Using
For i As Integer = 0 To upperBound
If verifyArray(i) <> dataArray(i) Then
Console.WriteLine("Error writing the data.")
Return
End If
Next i
Console.WriteLine("The data was written and verified.")
End Sub
End Module
This example reads the contents of a file and displays each byte's numeric value in 16-column format. The end of the file that is being read is detected when the Read method returns zero bytes.
using System;
using System.IO;
using System.Text;
public class DumpFileSample
{
private static readonly int CHUNK_SIZE = 1024;
public static void Main(String[] args)
{
if ((args.Length == 0) || !File.Exists(args[0]))
{
Console.WriteLine("Please provide an existing file name.");
}
else
{
using (FileStream fs = new FileStream(args[0], FileMode.Open, FileAccess.Read))
{
using (BinaryReader br = new BinaryReader(fs, new ASCIIEncoding()))
{
byte[] chunk;
chunk = br.ReadBytes(CHUNK_SIZE);
while(chunk.Length > 0)
{
DumpBytes(chunk, chunk.Length);
chunk = br.ReadBytes(CHUNK_SIZE);
}
}
}
}
}
public static void DumpBytes(byte[] bdata, int len)
{
int i;
int j = 0;
char dchar;
// 3 * 16 chars for hex display, 16 chars for text and 8 chars
// for the 'gutter' int the middle.
StringBuilder dumptext = new StringBuilder(" ", 16 * 4 + 8);
for (i = 0; i < len; i++)
{
dumptext.Insert(j * 3, String.Format("{0:X2} ", (int)bdata[i]));
dchar = (char)bdata[i];
//' replace 'non-printable' chars with a '.'.
if (Char.IsWhiteSpace(dchar) || Char.IsControl(dchar))
{
dchar = '.';
}
dumptext.Append(dchar);
j++;
if (j == 16)
{
Console.WriteLine(dumptext);
dumptext.Length = 0;
dumptext.Append(" ");
j = 0;
}
}
// display the remaining line
if (j > 0)
{
for (i = j; i < 16; i++)
{
dumptext.Insert(j * 3, " ");
}
Console.WriteLine(dumptext);
}
}
}
open System
open System.IO
open System.Text
let CHUNK_SIZE = 1024
let dumpBytes (bdata: byte[]) len =
let mutable j = 0
// 3 * 16 chars for hex display, 16 chars for text and 8 chars
// for the 'gutter' int the middle.
let dumptext = StringBuilder(" ", 16 * 4 + 8)
for i = 0 to len - 1 do
dumptext.Insert(j * 3, $"{int bdata[i]:X2} ") |> ignore
let dchar = char bdata[i]
//' replace 'non-printable' chars with a '.'.
let dchar =
if Char.IsWhiteSpace dchar || Char.IsControl dchar then
'.'
else
dchar
dumptext.Append dchar |> ignore
j <- j + 1
if j = 16 then
printfn $"{dumptext}"
dumptext.Length <- 0
dumptext.Append " " |> ignore
j <- 0
// display the remaining line
if j > 0 then
for i = j to 15 do
dumptext.Insert(j * 3, " ") |> ignore
printfn $"{dumptext}"
[<EntryPoint>]
let main args =
if args.Length = 0 || File.Exists args[0] |> not then
printfn "Please provide an existing file name."
else
use fs = new FileStream(args[0], FileMode.Open, FileAccess.Read)
use br = new BinaryReader(fs, ASCIIEncoding())
let mutable chunk = br.ReadBytes CHUNK_SIZE
while chunk.Length > 0 do
dumpBytes chunk chunk.Length
chunk <- br.ReadBytes CHUNK_SIZE
0
Imports System.IO
Imports System.Text
Module Module1
Private ReadOnly CHUNK_SIZE As Integer = 1024
Public Sub Main(args() As String)
If ((args.Length = 0) OrElse Not File.Exists(args(0))) Then
Console.WriteLine("Please provide an existing file name.")
Else
Using fs As FileStream = New FileStream(args(0), FileMode.Open, FileAccess.Read)
Using br As New BinaryReader(fs, New ASCIIEncoding())
Dim chunk(CHUNK_SIZE) As Byte
chunk = br.ReadBytes(CHUNK_SIZE)
While chunk.Length > 0
DumpBytes(chunk, chunk.Length)
chunk = br.ReadBytes(CHUNK_SIZE)
End While
End Using
End Using
End If
End Sub
Public Sub DumpBytes(bdata() As Byte, len As Integer)
Dim i As Integer
Dim j As Integer = 0
Dim dchar As Char
' 3 * 16 chars for hex display, 16 chars for text and 8 chars
' for the 'gutter' int the middle.
Dim dumptext As New StringBuilder(" ", 16 * 4 + 8)
For i = 0 To len - 1
dumptext.Insert(j * 3, String.Format("{0:X2} ", CType(bdata(i), Integer)))
dchar = Convert.ToChar(bdata(i))
' replace 'non-printable' chars with a '.'.
If Char.IsWhiteSpace(dchar) Or Char.IsControl(dchar) Then
dchar = "."
End If
dumptext.Append(dchar)
j += 1
If j = 16 Then
Console.WriteLine(dumptext)
dumptext.Length = 0
dumptext.Append(" ")
j = 0
End If
Next i
' display the remaining line
If j > 0 Then
' add blank hex spots to align the 'gutter'.
For i = j To 15
dumptext.Insert(j * 3, " ")
Next i
Console.WriteLine(dumptext)
End If
End Sub
End Module
Remarks
BinaryReader does not restore the file position after an unsuccessful read operation.
For a list of common I/O tasks, see Common I/O Tasks.
See also
Applies to
Read(Char[], Int32, Int32)
- Source:
- BinaryReader.cs
- Source:
- BinaryReader.cs
- Source:
- BinaryReader.cs
Reads the specified number of characters from the stream, starting from a specified point in the character array.
public:
virtual int Read(cli::array <char> ^ buffer, int index, int count);
public virtual int Read (char[] buffer, int index, int count);
abstract member Read : char[] * int * int -> int
override this.Read : char[] * int * int -> int
Public Overridable Function Read (buffer As Char(), index As Integer, count As Integer) As Integer
Parameters
- buffer
- Char[]
The buffer to read data into.
- index
- Int32
The starting point in the buffer at which to begin reading into the buffer.
- count
- Int32
The number of characters to read.
Returns
The total number of characters read into the buffer. This might be less than the number of characters requested if that many characters are not currently available, or it might be zero if the end of the stream is reached.
Exceptions
The buffer length minus index
is less than count
.
-or-
The number of decoded characters to read is greater than count
. This can happen if a Unicode decoder returns fallback characters or a surrogate pair.
buffer
is null
.
index
or count
is negative.
The stream is closed.
An I/O error occurred.
Examples
The following example shows how to read and write data using memory as a backing store. This example displays a list of invalid file path characters to the console. Although the code tries to display a list of all invalid file path characters, not all of the characters are within the displayable set of characters. Because the list of invalid characters can vary based on the system, output for this code may also vary.
using namespace System;
using namespace System::IO;
int main()
{
array<Char>^invalidPathChars = Path::InvalidPathChars;
MemoryStream^ memStream = gcnew MemoryStream;
BinaryWriter^ binWriter = gcnew BinaryWriter( memStream );
// Write to memory.
binWriter->Write( "Invalid file path characters are: " );
binWriter->Write( Path::InvalidPathChars, 0, Path::InvalidPathChars->Length );
// Create the reader using the same MemoryStream
// as used with the writer.
BinaryReader^ binReader = gcnew BinaryReader( memStream );
// Set Position to the beginning of the stream.
binReader->BaseStream->Position = 0;
// Read the data from memory and write it to the console.
Console::Write( binReader->ReadString() );
int arraySize = (int)(memStream->Length - memStream->Position);
array<Char>^memoryData = gcnew array<Char>(arraySize);
binReader->Read( memoryData, 0, arraySize );
Console::WriteLine( memoryData );
}
using System;
using System.IO;
class BinaryRW
{
static void Main()
{
char[] invalidPathChars = Path.InvalidPathChars;
MemoryStream memStream = new MemoryStream();
BinaryWriter binWriter = new BinaryWriter(memStream);
// Write to memory.
binWriter.Write("Invalid file path characters are: ");
binWriter.Write(
Path.InvalidPathChars, 0, Path.InvalidPathChars.Length);
// Create the reader using the same MemoryStream
// as used with the writer.
BinaryReader binReader = new BinaryReader(memStream);
// Set Position to the beginning of the stream.
memStream.Position = 0;
// Read the data from memory and write it to the console.
Console.Write(binReader.ReadString());
int arraySize = (int)(memStream.Length - memStream.Position);
char[] memoryData = new char[arraySize];
binReader.Read(memoryData, 0, arraySize);
Console.WriteLine(memoryData);
}
}
open System.IO
let invalidPathChars = Path.GetInvalidPathChars()
let memStream = new MemoryStream()
let binWriter = new BinaryWriter(memStream)
// Write to memory.
binWriter.Write "Invalid file path characters are: "
binWriter.Write(invalidPathChars, 0, invalidPathChars.Length)
// Create the reader using the same MemoryStream
// as used with the writer.
let binReader = new BinaryReader(memStream)
// Set Position to the beginning of the stream.
memStream.Position <- 0
// Read the data from memory and write it to the console.
printf $"{binReader.ReadString()}"
let arraySize = memStream.Length - memStream.Position |> int
let memoryData = Array.zeroCreate<char> arraySize
binReader.Read(memoryData, 0, arraySize) |> ignore
printfn $"{memoryData}"
Imports System.IO
Public Class BinaryRW
Shared Sub Main()
Dim invalidPathChars() As Char = Path.InvalidPathChars
Dim memStream As new MemoryStream()
Dim binWriter As New BinaryWriter(memStream)
' Write to memory.
binWriter.Write("Invalid file path characters are: ")
binWriter.Write(Path.InvalidPathChars, 0, _
Path.InvalidPathChars.Length)
' Create the reader using the same MemoryStream
' as used with the writer.
Dim binReader As New BinaryReader(memStream)
' Set Position to the beginning of the stream.
memStream.Position = 0
' Read the data from memory and write it to the console.
Console.Write(binReader.ReadString())
Dim upperBound As Integer = _
CInt(memStream.Length - memStream.Position) - 1
Dim memoryData(upperBound) As Char
binReader.Read(memoryData, 0, upperBound)
Console.WriteLine(memoryData)
End Sub
End Class
Remarks
BinaryReader does not restore the file position after an unsuccessful read operation.
For a list of common I/O tasks, see Common I/O Tasks.