Deploy a Java application with Quarkus on an Azure Kubernetes Service cluster
This article shows you how to quickly deploy Red Hat Quarkus on Azure Kubernetes Service (AKS) with a simple CRUD application. The application is a "to do list" with a JavaScript front end and a REST endpoint. Azure Database for PostgreSQL provides the persistence layer for the app. The article shows you how to test your app locally and deploy it to AKS.
Prerequisites
- If you don't have an Azure subscription, create an Azure free account before you begin.
- Azure Cloud Shell has all of these prerequisites preinstalled. For more, see Quickstart for Azure Cloud Shell.
- If you're running the commands in this guide locally (instead of using Azure Cloud Shell), complete the following steps:
- Prepare a local machine with Unix-like operating system installed (for example, Ubuntu, macOS, or Windows Subsystem for Linux).
- Install a Java SE implementation (for example, Microsoft build of OpenJDK).
- Install Maven 3.5.0 or higher.
- Install Docker or Podman for your OS.
- Install jq.
- Install cURL.
- Install the Quarkus CLI.
- Azure CLI for Unix-like environments. This article requires only the Bash variant of Azure CLI.
- This article requires at least version 2.31.0 of Azure CLI. If using Azure Cloud Shell, the latest version is already installed.
Create the app project
Use the following command to clone the sample Java project for this article. The sample is on GitHub.
git clone https://github.com/Azure-Samples/quarkus-azure
cd quarkus-azure
git checkout 2023-07-17
cd aks-quarkus
If you see a message about being in detached HEAD state, this message is safe to ignore. Because this article doesn't require any commits, detached HEAD state is appropriate.
Test your Quarkus app locally
The steps in this section show you how to run the app locally.
Quarkus supports the automatic provisioning of unconfigured services in development and test mode. Quarkus refers to this capability as dev services. Let's say you include a Quarkus feature, such as connecting to a database service. You want to test the app, but haven't yet fully configured the connection to a real database. Quarkus automatically starts a stub version of the relevant service and connects your application to it. For more information, see Dev Services Overview in the Quarkus documentation.
Make sure your container environment, Docker or Podman, is running and use the following command to enter Quarkus dev mode:
quarkus dev
Instead of quarkus dev
, you can accomplish the same thing with Maven by using mvn quarkus:dev
.
You may be asked if you want to send telemetry of your usage of Quarkus dev mode. If so, answer as you like.
Quarkus dev mode enables live reload with background compilation. If you modify any aspect of your app source code and refresh your browser, you can see the changes. If there are any issues with compilation or deployment, an error page lets you know. Quarkus dev mode listens for a debugger on port 5005. If you want to wait for the debugger to attach before running, pass -Dsuspend
on the command line. If you don’t want the debugger at all, you can use -Ddebug=false
.
The output should look like the following example:
__ ____ __ _____ ___ __ ____ ______
--/ __ \/ / / / _ | / _ \/ //_/ / / / __/
-/ /_/ / /_/ / __ |/ , _/ ,< / /_/ /\ \
--\___\_\____/_/ |_/_/|_/_/|_|\____/___/
INFO [io.quarkus] (Quarkus Main Thread) quarkus-todo-demo-app-aks 1.0.0-SNAPSHOT on JVM (powered by Quarkus 3.2.0.Final) started in 3.377s. Listening on: http://localhost:8080
INFO [io.quarkus] (Quarkus Main Thread) Profile dev activated. Live Coding activated.
INFO [io.quarkus] (Quarkus Main Thread) Installed features: [agroal, cdi, hibernate-orm, hibernate-orm-panache, hibernate-validator, jdbc-postgresql, narayana-jta, resteasy-reactive, resteasy-reactive-jackson, smallrye-context-propagation, vertx]
--
Tests paused
Press [e] to edit command line args (currently ''), [r] to resume testing, [o] Toggle test output, [:] for the terminal, [h] for more options>
Press w on the terminal where Quarkus dev mode is running. The w key opens your default web browser to show the Todo
application. You can also access the application GUI at http://localhost:8080
directly.
Try selecting a few todo items in the todo list. The UI indicates selection with a strikethrough text style. You can also add a new todo item to the todo list by typing Verify Todo apps and pressing ENTER, as shown in the following screenshot:
Access the RESTful API (/api
) to get all todo items that store in the local PostgreSQL database:
curl --verbose http://localhost:8080/api | jq .
The output should look like the following example:
* Connected to localhost (127.0.0.1) port 8080 (#0)
> GET /api HTTP/1.1
> Host: localhost:8080
> User-Agent: curl/7.88.1
> Accept: */*
>
< HTTP/1.1 200 OK
< content-length: 664
< Content-Type: application/json;charset=UTF-8
<
{ [664 bytes data]
100 664 100 664 0 0 13278 0 --:--:-- --:--:-- --:--:-- 15441
* Connection #0 to host localhost left intact
[
{
"id": 1,
"title": "Introduction to Quarkus Todo App",
"completed": false,
"order": 0,
"url": null
},
{
"id": 2,
"title": "Quarkus on Azure App Service",
"completed": false,
"order": 1,
"url": "https://learn.microsoft.com/en-us/azure/developer/java/eclipse-microprofile/deploy-microprofile-quarkus-java-app-with-maven-plugin"
},
{
"id": 3,
"title": "Quarkus on Azure Container Apps",
"completed": false,
"order": 2,
"url": "https://learn.microsoft.com/en-us/training/modules/deploy-java-quarkus-azure-container-app-postgres/"
},
{
"id": 4,
"title": "Quarkus on Azure Functions",
"completed": false,
"order": 3,
"url": "https://learn.microsoft.com/en-us/azure/azure-functions/functions-create-first-quarkus"
},
{
"id": 5,
"title": "Verify Todo apps",
"completed": false,
"order": 5,
"url": null
}
]
Press q to exit Quarkus dev mode.
Create the Azure resources to run the Quarkus app
The steps in this section show you how to create the following Azure resources to run the Quarkus sample app:
- Azure Database for PostgreSQL
- Azure Container Registry (ACR)
- Azure Kubernetes Service (AKS)
Some of these resources must have unique names within the scope of the Azure subscription. To ensure this uniqueness, you can use the initials, sequence, date, suffix pattern. To apply this pattern, name your resources by listing your initials, some sequence number, today's date, and some kind of resource specific suffix - for example, rg
for "resource group". Use the following commands to define some environment variables to use later:
export UNIQUE_VALUE=<your unique value, such as ejb010717>
export RESOURCE_GROUP_NAME=${UNIQUE_VALUE}rg
export LOCATION=<your desired Azure region for deploying your resources. For example, eastus>
export REGISTRY_NAME=${UNIQUE_VALUE}reg
export DB_SERVER_NAME=${UNIQUE_VALUE}db
export CLUSTER_NAME=${UNIQUE_VALUE}aks
export AKS_NS=${UNIQUE_VALUE}ns
Create an Azure Database for PostgreSQL
Azure Database for PostgreSQL is a managed service to run, manage, and scale highly available PostgreSQL databases in the Azure cloud. This section directs you to a separate quickstart that shows you how to create a single Azure Database for PostgreSQL server and connect to it. However, when you follow the steps in the quickstart, you need to use the settings in the following table to customize the database deployment for the sample Quarkus app. Replace the environment variables with their actual values when filling out the fields in the Azure portal.
Setting | Value | Description |
---|---|---|
Resource group | ${RESOURCE_GROUP_NAME} |
Select Create new. The deployment creates this new resource group. |
Server name | ${DB_SERVER_NAME} |
This value forms part of the hostname for the database server. |
Location | ${LOCATION} |
Select a location from the dropdown list. Take note of the location. You must use this same location for other Azure resources you create. |
Admin username | quarkus | The sample code assumes this value. |
Password | Secret123456 | The sample code assumes this value. |
With these value substitutions in mind, follow the steps in Quickstart: Create an Azure Database for PostgreSQL server by using the Azure portal up to the "Configure a firewall rule" section. Then, in the "Configure a firewall rule" section, be sure to select Yes for Allow access to Azure services, then select Save. If you neglect to do this, your Quarkus app can't access the database and simply fails to ever start.
After you complete the steps in the quickstart through the "Configure a firewall rule" section, including the step to allow access to Azure services, return to this article.
Create a Todo database in PostgreSQL
The PostgreSQL server that you created earlier is empty. It doesn't have any database that you can use with the Quarkus application. Create a new database called todo
by using the following command:
az postgres db create \
--resource-group ${RESOURCE_GROUP_NAME} \
--name todo \
--server-name ${DB_SERVER_NAME}
You must use todo
as the name of the database because the sample code assumes that database name.
If the command is successful, the output looks similar to the following example:
{
"charset": "UTF8",
"collation": "English_United States.1252",
"id": "/subscriptions/REDACTED/resourceGroups/ejb010718rg/providers/Microsoft.DBforPostgreSQL/servers/ejb010718db/databases/todo",
"name": "todo",
"resourceGroup": "ejb010718rg",
"type": "Microsoft.DBforPostgreSQL/servers/databases"
}
Create a Microsoft Azure Container Registry instance
Because Quarkus is a cloud native technology, it has built-in support for creating containers that run in Kubernetes. Kubernetes is entirely dependent on having a container registry from which it finds the container images to run. AKS has built-in support for Azure Container Registry (ACR).
Use the az acr create command to create the ACR instance. The following example creates an ACR instance named with the value of your environment variable ${REGISTRY_NAME}
:
az acr create \
--resource-group $RESOURCE_GROUP_NAME \
--location ${LOCATION} \
--name $REGISTRY_NAME \
--sku Basic \
--admin-enabled
After a short time, you should see JSON output that contains the following lines:
"provisioningState": "Succeeded",
"publicNetworkAccess": "Enabled",
"resourceGroup": "<YOUR_RESOURCE_GROUP>",
Connect your docker to the ACR instance
Sign in to the ACR instance. Signing in lets you push an image. Use the following commands to verify the connection:
export LOGIN_SERVER=$(az acr show \
--name $REGISTRY_NAME \
--query 'loginServer' \
--output tsv)
echo $LOGIN_SERVER
export USER_NAME=$(az acr credential show \
--name $REGISTRY_NAME \
--query 'username' \
--output tsv)
echo $USER_NAME
export PASSWORD=$(az acr credential show \
--name $REGISTRY_NAME \
--query 'passwords[0].value' \
--output tsv)
echo $PASSWORD
docker login $LOGIN_SERVER -u $USER_NAME -p $PASSWORD
If you're using Podman instead of Docker, make the necessary changes to the command.
If you've signed into the ACR instance successfully, you should see Login Succeeded
at the end of command output.
Create an AKS cluster
Use the az aks create command to create an AKS cluster. The following example creates a cluster named with the value of your environment variable ${CLUSTER_NAME}
with one node. The cluster is connected to the ACR instance you created in a preceding step. This command takes several minutes to complete.
az aks create \
--resource-group $RESOURCE_GROUP_NAME \
--location ${LOCATION} \
--name $CLUSTER_NAME \
--attach-acr $REGISTRY_NAME \
--node-count 1 \
--generate-ssh-keys \
--enable-managed-identity
After a few minutes, the command completes and returns JSON-formatted information about the cluster, including the following output:
"nodeResourceGroup": "MC_<your resource_group_name>_<your cluster name>_<your region>",
"privateFqdn": null,
"provisioningState": "Succeeded",
"resourceGroup": "<your resource group name>",
Connect to the AKS cluster
To manage a Kubernetes cluster, you use kubectl
, the Kubernetes command-line client. If you use Azure Cloud Shell, kubectl
is already installed. To install kubectl
locally, use the az aks install-cli command, as shown in the following example:
az aks install-cli
For more information about kubectl
, see Command line tool (kubectl) in the Kubernetes documentation.
To configure kubectl
to connect to your Kubernetes cluster, use the az aks get-credentials command, as shown in the following example. This command downloads credentials and configures the Kubernetes CLI to use them.
az aks get-credentials \
--resource-group $RESOURCE_GROUP_NAME \
--name $CLUSTER_NAME \
--overwrite-existing \
--admin
Successful output includes text similar to the following example:
Merged "ejb010718aks-admin" as current context in /Users/edburns/.kube/config
You might find it useful to alias k
to kubectl
. If so, use the following command:
alias k=kubectl
To verify the connection to your cluster, use the kubectl get
command to return a list of the cluster nodes, as shown in the following example:
kubectl get nodes
The following example output shows the single node created in the previous steps. Make sure that the status of the node is Ready:
NAME STATUS ROLES AGE VERSION
aks-nodepool1-xxxxxxxx-yyyyyyyyyy Ready agent 76s v1.23.8
Create a new namespace in AKS
Use the following command to create a new namespace in your Kubernetes service for your Quarkus app:
kubectl create namespace ${AKS_NS}
The output should look like the following example:
namespace/<your namespace> created
Customize the cloud native configuration
As a cloud native technology, Quarkus offers the ability to automatically configure resources for standard Kubernetes, Red Hat OpenShift, and Knative. For more information, see the Quarkus Kubernetes guide, Quarkus OpenShift guide and Quarkus Knative guide. Developers can deploy the application to a target Kubernetes cluster by applying the generated manifests.
To generate the appropriate Kubernetes resources, use the following command to add the quarkus-kubernetes
and container-image-jib
extensions in your local terminal:
quarkus ext add kubernetes container-image-jib
Quarkus modifies the POM to ensure these extensions are listed as <dependencies>
. If asked to install something called JBang
, answer yes and allow it to be installed.
The output should look like the following example:
[SUCCESS] ✅ Extension io.quarkus:quarkus-kubernetes has been installed
[SUCCESS] ✅ Extension io.quarkus:quarkus-container-image-jib has been installed
To verify the extensions are added, you can run git diff
and examine the output.
As a cloud native technology, Quarkus supports the notion of configuration profiles. Quarkus has the following three built-in profiles:
dev
- Activated when in development modetest
- Activated when running testsprod
- The default profile when not running in development or test mode
Quarkus supports any number of named profiles, as needed.
The remaining steps in this section direct you to uncomment and customize values in the src/main/resources/application.properties file. Ensure that all lines starting with # %prod.
are uncommented by removing the leading #
.
The prod.
prefix indicates that these properties are active when running in the prod
profile. For more information on configuration profiles, see the Quarkus documentation.
Database configuration
Add the following database configuration variables. Replace the values of <DB_SERVER_NAME_VALUE>
with the actual values of the ${DB_SERVER_NAME}
environment variable.
# Database configurations
%prod.quarkus.datasource.db-kind=postgresql
%prod.quarkus.datasource.jdbc.url=jdbc:postgresql://<DB_SERVER_NAME_VALUE>.postgres.database.azure.com:5432/todo
%prod.quarkus.datasource.jdbc.driver=org.postgresql.Driver
%prod.quarkus.datasource.username=quarkus@<DB_SERVER_NAME_VALUE>
%prod.quarkus.datasource.password=Secret123456
%prod.quarkus.hibernate-orm.database.generation=drop-and-create
Kubernetes configuration
Add the following Kubernetes configuration variables. Make sure to set service-type
to load-balancer
to access the app externally.
# AKS configurations
%prod.quarkus.kubernetes.deployment-target=kubernetes
%prod.quarkus.kubernetes.service-type=load-balancer
Container image configuration
As a cloud native technology, Quarkus supports generating OCI container images compatible with Docker and Podman. Add the following container-image variables. Replace the values of <LOGIN_SERVER_VALUE>
and <USER_NAME_VALUE>
with the values of the actual values of the ${LOGIN_SERVER}
and ${USER_NAME}
environment variables, respectively.
# Container Image Build
%prod.quarkus.container-image.build=true
%prod.quarkus.container-image.registry=<LOGIN_SERVER_VALUE>
%prod.quarkus.container-image.group=<USER_NAME_VALUE>
%prod.quarkus.container-image.name=todo-quarkus-aks
%prod.quarkus.container-image.tag=1.0
Build the container image and push it to ACR
Now, use the following command to build the application itself. This command uses the Kubernetes and Jib extensions to build the container image.
quarkus build --no-tests
The output should end with BUILD SUCCESS
. The Kubernetes manifest files are generated in target/kubernetes, as shown in the following example:
tree target/kubernetes
target/kubernetes
├── kubernetes.json
└── kubernetes.yml
0 directories, 2 files
You can verify whether the container image is generated as well using docker
or podman
command line (CLI). Output looks similar to the following example:
docker images | grep todo
<LOGIN_SERVER_VALUE>/<USER_NAME_VALUE>/todo-quarkus-aks 1.0 b13c389896b7 18 minutes ago 420MB
Push the container images to ACR by using the following command:
export TODO_QUARKUS_TAG=$(docker images | grep todo-quarkus-aks | head -n1 | cut -d " " -f1)
echo ${TODO_QUARKUS_TAG}
docker push ${TODO_QUARKUS_TAG}:1.0
The output should look similar to the following example:
The push refers to repository [<LOGIN_SERVER_VALUE>/<USER_NAME_VALUE>/todo-quarkus-aks]
dfd615499b3a: Pushed
56f5cf1aa271: Pushed
4218d39b228e: Pushed
b0538737ed64: Pushed
d13845d85ee5: Pushed
60609ec85f86: Pushed
1.0: digest: sha256:0ffd70d6d5bb3a4621c030df0d22cf1aa13990ca1880664d08967bd5bab1f2b6 size: 1995
Now that you've pushed the app to ACR, you can tell AKS to run the app.
Deploy the Quarkus app to AKS
The steps in this section show you how to run the Quarkus sample app on the Azure resources you've created.
Use kubectl apply to deploy the Quarkus app to AKS
Deploy the Kubernetes resources using kubectl
on the command line, as shown in the following example:
kubectl apply -f target/kubernetes/kubernetes.yml -n ${AKS_NS}
The output should look like the following example:
deployment.apps/quarkus-todo-demo-app-aks created
Verify the app is running by using the following command:
kubectl -n $AKS_NS get pods
If the value of the STATUS
field shows anything other than Running
, troubleshoot and resolve the problem before continuing. It may help to examine the pod logs by using the following command:
kubectl -n $AKS_NS logs $(kubectl -n $AKS_NS get pods | grep quarkus-todo-demo-app-aks | cut -d " " -f1)
Get the EXTERNAL-IP
to access the Todo application by using the following command:
kubectl get svc -n ${AKS_NS}
The output should look like the following example:
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
quarkus-todo-demo-app-aks LoadBalancer 10.0.236.101 20.12.126.200 80:30963/TCP 37s
You can use the following command to save the value of EXTERNAL-IP
to an environment variable as a fully qualified URL:
export QUARKUS_URL=http://$(kubectl get svc -n ${AKS_NS} | grep quarkus-todo-demo-app-aks | cut -d " " -f10)
echo $QUARKUS_URL
Open a new web browser to the value of ${QUARKUS_URL}
. Then, add a new todo item with the text Deployed the Todo app to AKS
. Also, select the Introduction to Quarkus Todo App
item as complete.
Access the RESTful API (/api
) to get all todo items stored in the Azure PostgreSQL database, as shown in the following example:
curl --verbose ${QUARKUS_URL}/api | jq .
The output should look like the following example:
* Connected to 20.237.68.225 (20.237.68.225) port 80 (#0)
> GET /api HTTP/1.1
> Host: 20.237.68.225
> User-Agent: curl/7.88.1
> Accept: */*
>
< HTTP/1.1 200 OK
< content-length: 828
< Content-Type: application/json;charset=UTF-8
<
[
{
"id": 2,
"title": "Quarkus on Azure App Service",
"completed": false,
"order": 1,
"url": "https://learn.microsoft.com/en-us/azure/developer/java/eclipse-microprofile/deploy-microprofile-quarkus-java-app-with-maven-plugin"
},
{
"id": 3,
"title": "Quarkus on Azure Container Apps",
"completed": false,
"order": 2,
"url": "https://learn.microsoft.com/en-us/training/modules/deploy-java-quarkus-azure-container-app-postgres/"
},
{
"id": 4,
"title": "Quarkus on Azure Functions",
"completed": false,
"order": 3,
"url": "https://learn.microsoft.com/en-us/azure/azure-functions/functions-create-first-quarkus"
},
{
"id": 5,
"title": "Deployed the Todo app to AKS",
"completed": false,
"order": 5,
"url": null
},
{
"id": 1,
"title": "Introduction to Quarkus Todo App",
"completed": true,
"order": 0,
"url": null
}
]
Verify the database has been updated using Azure Cloud Shell
Open Azure Cloud Shell in the Azure portal by selecting the Cloud Shell icon, as shown in the following screenshot:
Run the following command locally and paste the result into Azure Cloud Shell:
echo psql --host=${DB_SERVER_NAME}.postgres.database.azure.com --port=5432 --username=quarkus@${DB_SERVER_NAME} --dbname=todo
When asked for the password, use the value you used when you created the database.
Use the following query to get all the todo items:
select * from todo;
The output should look similar to the following example, and should include the same items in the Todo app GUI shown previously:
If you see MORE
in the output, type q to exit the pager.
Enter \q to exit from the psql
program and return to the Cloud Shell.
Clean up resources
To avoid Azure charges, you should clean up unneeded resources. When the cluster is no longer needed, use the az group delete command to remove the resource group, container service, container registry, and all related resources.
git reset --hard
docker rmi ${TODO_QUARKUS_TAG}:1.0
docker rmi postgres
az group delete --name $RESOURCE_GROUP_NAME --yes --no-wait
You may also want to use docker rmi
to delete the container images postgres
and testcontainers
generated by Quarkus dev mode.
Next steps
Feedback
Submit and view feedback for