Microsoft.MachineLearningServices workspaces/jobs 2022-12-01-preview
Bicep resource definition
The workspaces/jobs resource type can be deployed with operations that target:
- Resource groups - See resource group deployment commands
For a list of changed properties in each API version, see change log.
Resource format
To create a Microsoft.MachineLearningServices/workspaces/jobs resource, add the following Bicep to your template.
resource symbolicname 'Microsoft.MachineLearningServices/workspaces/jobs@2022-12-01-preview' = {
name: 'string'
parent: resourceSymbolicName
properties: {
componentId: 'string'
computeId: 'string'
description: 'string'
displayName: 'string'
experimentName: 'string'
identity: {
identityType: 'string'
// For remaining properties, see IdentityConfiguration objects
}
isArchived: bool
properties: {
{customized property}: 'string'
}
services: {
{customized property}: {
endpoint: 'string'
jobServiceType: 'string'
nodes: {
nodesValueType: 'string'
// For remaining properties, see Nodes objects
}
port: int
properties: {
{customized property}: 'string'
}
}
}
tags: {}
jobType: 'string'
// For remaining properties, see JobBaseProperties objects
}
}
JobBaseProperties objects
Set the jobType property to specify the type of object.
For AutoML, use:
jobType: 'AutoML'
environmentId: 'string'
environmentVariables: {
{customized property}: 'string'
}
outputs: {
{customized property}: {
description: 'string'
jobOutputType: 'string'
// For remaining properties, see JobOutput objects
}
}
resources: {
dockerArgs: 'string'
instanceCount: int
instanceType: 'string'
properties: {
{customized property}: any()
}
shmSize: 'string'
}
taskDetails: {
logVerbosity: 'string'
targetColumnName: 'string'
trainingData: {
description: 'string'
jobInputType: 'string'
mode: 'string'
uri: 'string'
}
taskType: 'string'
// For remaining properties, see AutoMLVertical objects
}
For Command, use:
jobType: 'Command'
autologgerSettings: {
mlflowAutologger: 'string'
}
codeId: 'string'
command: 'string'
distribution: {
distributionType: 'string'
// For remaining properties, see DistributionConfiguration objects
}
environmentId: 'string'
environmentVariables: {
{customized property}: 'string'
}
inputs: {
{customized property}: {
description: 'string'
jobInputType: 'string'
// For remaining properties, see JobInput objects
}
}
limits: {
jobLimitsType: 'string'
timeout: 'string'
}
outputs: {
{customized property}: {
description: 'string'
jobOutputType: 'string'
// For remaining properties, see JobOutput objects
}
}
resources: {
dockerArgs: 'string'
instanceCount: int
instanceType: 'string'
properties: {
{customized property}: any()
}
shmSize: 'string'
}
For Labeling, use:
jobType: 'Labeling'
dataConfiguration: {
dataId: 'string'
incrementalDataRefresh: 'string'
}
jobInstructions: {
uri: 'string'
}
labelCategories: {
{customized property}: {
classes: {
{customized property}: {
displayName: 'string'
subclasses: {
{customized property}: {}
}
}
displayName: 'string'
multiSelect: 'string'
}
}
labelingJobMediaProperties: {
mediaType: 'string'
// For remaining properties, see LabelingJobMediaProperties objects
}
mlAssistConfiguration: {
mlAssist: 'string'
// For remaining properties, see MLAssistConfiguration objects
}
For Pipeline, use:
jobType: 'Pipeline'
inputs: {
{customized property}: {
description: 'string'
jobInputType: 'string'
// For remaining properties, see JobInput objects
}
}
jobs: {
{customized property}: any()
}
outputs: {
{customized property}: {
description: 'string'
jobOutputType: 'string'
// For remaining properties, see JobOutput objects
}
}
settings: any()
sourceJobId: 'string'
For Spark, use:
jobType: 'Spark'
archives: [
'string'
]
args: 'string'
codeId: 'string'
conf: {
{customized property}: 'string'
}
entry: {
sparkJobEntryType: 'string'
// For remaining properties, see SparkJobEntry objects
}
environmentId: 'string'
files: [
'string'
]
inputs: {
{customized property}: {
description: 'string'
jobInputType: 'string'
// For remaining properties, see JobInput objects
}
}
jars: [
'string'
]
outputs: {
{customized property}: {
description: 'string'
jobOutputType: 'string'
// For remaining properties, see JobOutput objects
}
}
pyFiles: [
'string'
]
resources: {
instanceType: 'string'
runtimeVersion: 'string'
}
For Sweep, use:
jobType: 'Sweep'
earlyTermination: {
delayEvaluation: int
evaluationInterval: int
policyType: 'string'
// For remaining properties, see EarlyTerminationPolicy objects
}
inputs: {
{customized property}: {
description: 'string'
jobInputType: 'string'
// For remaining properties, see JobInput objects
}
}
limits: {
jobLimitsType: 'string'
maxConcurrentTrials: int
maxTotalTrials: int
timeout: 'string'
trialTimeout: 'string'
}
objective: {
goal: 'string'
primaryMetric: 'string'
}
outputs: {
{customized property}: {
description: 'string'
jobOutputType: 'string'
// For remaining properties, see JobOutput objects
}
}
samplingAlgorithm: {
samplingAlgorithmType: 'string'
// For remaining properties, see SamplingAlgorithm objects
}
searchSpace: any()
trial: {
codeId: 'string'
command: 'string'
distribution: {
distributionType: 'string'
// For remaining properties, see DistributionConfiguration objects
}
environmentId: 'string'
environmentVariables: {
{customized property}: 'string'
}
resources: {
dockerArgs: 'string'
instanceCount: int
instanceType: 'string'
properties: {
{customized property}: any()
}
shmSize: 'string'
}
}
IdentityConfiguration objects
Set the identityType property to specify the type of object.
For AMLToken, use:
identityType: 'AMLToken'
For Managed, use:
identityType: 'Managed'
clientId: 'string'
objectId: 'string'
resourceId: 'string'
For UserIdentity, use:
identityType: 'UserIdentity'
Nodes objects
Set the nodesValueType property to specify the type of object.
For All, use:
nodesValueType: 'All'
JobOutput objects
Set the jobOutputType property to specify the type of object.
For custom_model, use:
jobOutputType: 'custom_model'
assetName: 'string'
assetVersion: 'string'
mode: 'string'
uri: 'string'
For mlflow_model, use:
jobOutputType: 'mlflow_model'
assetName: 'string'
assetVersion: 'string'
mode: 'string'
uri: 'string'
For mltable, use:
jobOutputType: 'mltable'
assetName: 'string'
assetVersion: 'string'
mode: 'string'
uri: 'string'
For triton_model, use:
jobOutputType: 'triton_model'
assetName: 'string'
assetVersion: 'string'
mode: 'string'
uri: 'string'
For uri_file, use:
jobOutputType: 'uri_file'
assetName: 'string'
assetVersion: 'string'
mode: 'string'
uri: 'string'
For uri_folder, use:
jobOutputType: 'uri_folder'
assetName: 'string'
assetVersion: 'string'
mode: 'string'
uri: 'string'
AutoMLVertical objects
Set the taskType property to specify the type of object.
For Classification, use:
taskType: 'Classification'
cvSplitColumnNames: [
'string'
]
featurizationSettings: {
blockedTransformers: [
'string'
]
columnNameAndTypes: {
{customized property}: 'string'
}
datasetLanguage: 'string'
enableDnnFeaturization: bool
mode: 'string'
transformerParams: {
{customized property}: [
{
fields: [
'string'
]
parameters: any()
}
]
}
}
fixedParameters: {
booster: 'string'
boostingType: 'string'
growPolicy: 'string'
learningRate: int
maxBin: int
maxDepth: int
maxLeaves: int
minDataInLeaf: int
minSplitGain: int
modelName: 'string'
nEstimators: int
numLeaves: int
preprocessorName: 'string'
regAlpha: int
regLambda: int
subsample: int
subsampleFreq: int
treeMethod: 'string'
withMean: bool
withStd: bool
}
limitSettings: {
enableEarlyTermination: bool
exitScore: int
maxConcurrentTrials: int
maxCoresPerTrial: int
maxNodes: int
maxTrials: int
sweepConcurrentTrials: int
sweepTrials: int
timeout: 'string'
trialTimeout: 'string'
}
nCrossValidations: {
mode: 'string'
// For remaining properties, see NCrossValidations objects
}
positiveLabel: 'string'
primaryMetric: 'string'
searchSpace: [
{
booster: 'string'
boostingType: 'string'
growPolicy: 'string'
learningRate: 'string'
maxBin: 'string'
maxDepth: 'string'
maxLeaves: 'string'
minDataInLeaf: 'string'
minSplitGain: 'string'
modelName: 'string'
nEstimators: 'string'
numLeaves: 'string'
preprocessorName: 'string'
regAlpha: 'string'
regLambda: 'string'
subsample: 'string'
subsampleFreq: 'string'
treeMethod: 'string'
withMean: 'string'
withStd: 'string'
}
]
sweepSettings: {
earlyTermination: {
delayEvaluation: int
evaluationInterval: int
policyType: 'string'
// For remaining properties, see EarlyTerminationPolicy objects
}
samplingAlgorithm: 'string'
}
testData: {
description: 'string'
jobInputType: 'string'
mode: 'string'
uri: 'string'
}
testDataSize: int
trainingSettings: {
allowedTrainingAlgorithms: [
'string'
]
blockedTrainingAlgorithms: [
'string'
]
enableDnnTraining: bool
enableModelExplainability: bool
enableOnnxCompatibleModels: bool
enableStackEnsemble: bool
enableVoteEnsemble: bool
ensembleModelDownloadTimeout: 'string'
stackEnsembleSettings: {
stackMetaLearnerKWargs: any()
stackMetaLearnerTrainPercentage: int
stackMetaLearnerType: 'string'
}
trainingMode: 'string'
}
validationData: {
description: 'string'
jobInputType: 'string'
mode: 'string'
uri: 'string'
}
validationDataSize: int
weightColumnName: 'string'
For Forecasting, use:
taskType: 'Forecasting'
cvSplitColumnNames: [
'string'
]
featurizationSettings: {
blockedTransformers: [
'string'
]
columnNameAndTypes: {
{customized property}: 'string'
}
datasetLanguage: 'string'
enableDnnFeaturization: bool
mode: 'string'
transformerParams: {
{customized property}: [
{
fields: [
'string'
]
parameters: any()
}
]
}
}
fixedParameters: {
booster: 'string'
boostingType: 'string'
growPolicy: 'string'
learningRate: int
maxBin: int
maxDepth: int
maxLeaves: int
minDataInLeaf: int
minSplitGain: int
modelName: 'string'
nEstimators: int
numLeaves: int
preprocessorName: 'string'
regAlpha: int
regLambda: int
subsample: int
subsampleFreq: int
treeMethod: 'string'
withMean: bool
withStd: bool
}
forecastingSettings: {
countryOrRegionForHolidays: 'string'
cvStepSize: int
featureLags: 'string'
forecastHorizon: {
mode: 'string'
// For remaining properties, see ForecastHorizon objects
}
frequency: 'string'
seasonality: {
mode: 'string'
// For remaining properties, see Seasonality objects
}
shortSeriesHandlingConfig: 'string'
targetAggregateFunction: 'string'
targetLags: {
mode: 'string'
// For remaining properties, see TargetLags objects
}
targetRollingWindowSize: {
mode: 'string'
// For remaining properties, see TargetRollingWindowSize objects
}
timeColumnName: 'string'
timeSeriesIdColumnNames: [
'string'
]
useStl: 'string'
}
limitSettings: {
enableEarlyTermination: bool
exitScore: int
maxConcurrentTrials: int
maxCoresPerTrial: int
maxNodes: int
maxTrials: int
sweepConcurrentTrials: int
sweepTrials: int
timeout: 'string'
trialTimeout: 'string'
}
nCrossValidations: {
mode: 'string'
// For remaining properties, see NCrossValidations objects
}
primaryMetric: 'string'
searchSpace: [
{
booster: 'string'
boostingType: 'string'
growPolicy: 'string'
learningRate: 'string'
maxBin: 'string'
maxDepth: 'string'
maxLeaves: 'string'
minDataInLeaf: 'string'
minSplitGain: 'string'
modelName: 'string'
nEstimators: 'string'
numLeaves: 'string'
preprocessorName: 'string'
regAlpha: 'string'
regLambda: 'string'
subsample: 'string'
subsampleFreq: 'string'
treeMethod: 'string'
withMean: 'string'
withStd: 'string'
}
]
sweepSettings: {
earlyTermination: {
delayEvaluation: int
evaluationInterval: int
policyType: 'string'
// For remaining properties, see EarlyTerminationPolicy objects
}
samplingAlgorithm: 'string'
}
testData: {
description: 'string'
jobInputType: 'string'
mode: 'string'
uri: 'string'
}
testDataSize: int
trainingSettings: {
allowedTrainingAlgorithms: [
'string'
]
blockedTrainingAlgorithms: [
'string'
]
enableDnnTraining: bool
enableModelExplainability: bool
enableOnnxCompatibleModels: bool
enableStackEnsemble: bool
enableVoteEnsemble: bool
ensembleModelDownloadTimeout: 'string'
stackEnsembleSettings: {
stackMetaLearnerKWargs: any()
stackMetaLearnerTrainPercentage: int
stackMetaLearnerType: 'string'
}
trainingMode: 'string'
}
validationData: {
description: 'string'
jobInputType: 'string'
mode: 'string'
uri: 'string'
}
validationDataSize: int
weightColumnName: 'string'
For ImageClassification, use:
taskType: 'ImageClassification'
limitSettings: {
maxConcurrentTrials: int
maxTrials: int
timeout: 'string'
}
modelSettings: {
advancedSettings: 'string'
amsGradient: bool
augmentations: 'string'
beta1: int
beta2: int
checkpointFrequency: int
checkpointModel: {
description: 'string'
jobInputType: 'string'
mode: 'string'
uri: 'string'
}
checkpointRunId: 'string'
distributed: bool
earlyStopping: bool
earlyStoppingDelay: int
earlyStoppingPatience: int
enableOnnxNormalization: bool
evaluationFrequency: int
gradientAccumulationStep: int
layersToFreeze: int
learningRate: int
learningRateScheduler: 'string'
modelName: 'string'
momentum: int
nesterov: bool
numberOfEpochs: int
numberOfWorkers: int
optimizer: 'string'
randomSeed: int
stepLRGamma: int
stepLRStepSize: int
trainingBatchSize: int
trainingCropSize: int
validationBatchSize: int
validationCropSize: int
validationResizeSize: int
warmupCosineLRCycles: int
warmupCosineLRWarmupEpochs: int
weightDecay: int
weightedLoss: int
}
primaryMetric: 'string'
searchSpace: [
{
amsGradient: 'string'
augmentations: 'string'
beta1: 'string'
beta2: 'string'
distributed: 'string'
earlyStopping: 'string'
earlyStoppingDelay: 'string'
earlyStoppingPatience: 'string'
enableOnnxNormalization: 'string'
evaluationFrequency: 'string'
gradientAccumulationStep: 'string'
layersToFreeze: 'string'
learningRate: 'string'
learningRateScheduler: 'string'
modelName: 'string'
momentum: 'string'
nesterov: 'string'
numberOfEpochs: 'string'
numberOfWorkers: 'string'
optimizer: 'string'
randomSeed: 'string'
stepLRGamma: 'string'
stepLRStepSize: 'string'
trainingBatchSize: 'string'
trainingCropSize: 'string'
validationBatchSize: 'string'
validationCropSize: 'string'
validationResizeSize: 'string'
warmupCosineLRCycles: 'string'
warmupCosineLRWarmupEpochs: 'string'
weightDecay: 'string'
weightedLoss: 'string'
}
]
sweepSettings: {
earlyTermination: {
delayEvaluation: int
evaluationInterval: int
policyType: 'string'
// For remaining properties, see EarlyTerminationPolicy objects
}
samplingAlgorithm: 'string'
}
validationData: {
description: 'string'
jobInputType: 'string'
mode: 'string'
uri: 'string'
}
validationDataSize: int
For ImageClassificationMultilabel, use:
taskType: 'ImageClassificationMultilabel'
limitSettings: {
maxConcurrentTrials: int
maxTrials: int
timeout: 'string'
}
modelSettings: {
advancedSettings: 'string'
amsGradient: bool
augmentations: 'string'
beta1: int
beta2: int
checkpointFrequency: int
checkpointModel: {
description: 'string'
jobInputType: 'string'
mode: 'string'
uri: 'string'
}
checkpointRunId: 'string'
distributed: bool
earlyStopping: bool
earlyStoppingDelay: int
earlyStoppingPatience: int
enableOnnxNormalization: bool
evaluationFrequency: int
gradientAccumulationStep: int
layersToFreeze: int
learningRate: int
learningRateScheduler: 'string'
modelName: 'string'
momentum: int
nesterov: bool
numberOfEpochs: int
numberOfWorkers: int
optimizer: 'string'
randomSeed: int
stepLRGamma: int
stepLRStepSize: int
trainingBatchSize: int
trainingCropSize: int
validationBatchSize: int
validationCropSize: int
validationResizeSize: int
warmupCosineLRCycles: int
warmupCosineLRWarmupEpochs: int
weightDecay: int
weightedLoss: int
}
primaryMetric: 'string'
searchSpace: [
{
amsGradient: 'string'
augmentations: 'string'
beta1: 'string'
beta2: 'string'
distributed: 'string'
earlyStopping: 'string'
earlyStoppingDelay: 'string'
earlyStoppingPatience: 'string'
enableOnnxNormalization: 'string'
evaluationFrequency: 'string'
gradientAccumulationStep: 'string'
layersToFreeze: 'string'
learningRate: 'string'
learningRateScheduler: 'string'
modelName: 'string'
momentum: 'string'
nesterov: 'string'
numberOfEpochs: 'string'
numberOfWorkers: 'string'
optimizer: 'string'
randomSeed: 'string'
stepLRGamma: 'string'
stepLRStepSize: 'string'
trainingBatchSize: 'string'
trainingCropSize: 'string'
validationBatchSize: 'string'
validationCropSize: 'string'
validationResizeSize: 'string'
warmupCosineLRCycles: 'string'
warmupCosineLRWarmupEpochs: 'string'
weightDecay: 'string'
weightedLoss: 'string'
}
]
sweepSettings: {
earlyTermination: {
delayEvaluation: int
evaluationInterval: int
policyType: 'string'
// For remaining properties, see EarlyTerminationPolicy objects
}
samplingAlgorithm: 'string'
}
validationData: {
description: 'string'
jobInputType: 'string'
mode: 'string'
uri: 'string'
}
validationDataSize: int
For ImageInstanceSegmentation, use:
taskType: 'ImageInstanceSegmentation'
limitSettings: {
maxConcurrentTrials: int
maxTrials: int
timeout: 'string'
}
modelSettings: {
advancedSettings: 'string'
amsGradient: bool
augmentations: 'string'
beta1: int
beta2: int
boxDetectionsPerImage: int
boxScoreThreshold: int
checkpointFrequency: int
checkpointModel: {
description: 'string'
jobInputType: 'string'
mode: 'string'
uri: 'string'
}
checkpointRunId: 'string'
distributed: bool
earlyStopping: bool
earlyStoppingDelay: int
earlyStoppingPatience: int
enableOnnxNormalization: bool
evaluationFrequency: int
gradientAccumulationStep: int
imageSize: int
layersToFreeze: int
learningRate: int
learningRateScheduler: 'string'
maxSize: int
minSize: int
modelName: 'string'
modelSize: 'string'
momentum: int
multiScale: bool
nesterov: bool
nmsIouThreshold: int
numberOfEpochs: int
numberOfWorkers: int
optimizer: 'string'
randomSeed: int
stepLRGamma: int
stepLRStepSize: int
tileGridSize: 'string'
tileOverlapRatio: int
tilePredictionsNmsThreshold: int
trainingBatchSize: int
validationBatchSize: int
validationIouThreshold: int
validationMetricType: 'string'
warmupCosineLRCycles: int
warmupCosineLRWarmupEpochs: int
weightDecay: int
}
primaryMetric: 'MeanAveragePrecision'
searchSpace: [
{
amsGradient: 'string'
augmentations: 'string'
beta1: 'string'
beta2: 'string'
boxDetectionsPerImage: 'string'
boxScoreThreshold: 'string'
distributed: 'string'
earlyStopping: 'string'
earlyStoppingDelay: 'string'
earlyStoppingPatience: 'string'
enableOnnxNormalization: 'string'
evaluationFrequency: 'string'
gradientAccumulationStep: 'string'
imageSize: 'string'
layersToFreeze: 'string'
learningRate: 'string'
learningRateScheduler: 'string'
maxSize: 'string'
minSize: 'string'
modelName: 'string'
modelSize: 'string'
momentum: 'string'
multiScale: 'string'
nesterov: 'string'
nmsIouThreshold: 'string'
numberOfEpochs: 'string'
numberOfWorkers: 'string'
optimizer: 'string'
randomSeed: 'string'
stepLRGamma: 'string'
stepLRStepSize: 'string'
tileGridSize: 'string'
tileOverlapRatio: 'string'
tilePredictionsNmsThreshold: 'string'
trainingBatchSize: 'string'
validationBatchSize: 'string'
validationIouThreshold: 'string'
validationMetricType: 'string'
warmupCosineLRCycles: 'string'
warmupCosineLRWarmupEpochs: 'string'
weightDecay: 'string'
}
]
sweepSettings: {
earlyTermination: {
delayEvaluation: int
evaluationInterval: int
policyType: 'string'
// For remaining properties, see EarlyTerminationPolicy objects
}
samplingAlgorithm: 'string'
}
validationData: {
description: 'string'
jobInputType: 'string'
mode: 'string'
uri: 'string'
}
validationDataSize: int
For ImageObjectDetection, use:
taskType: 'ImageObjectDetection'
limitSettings: {
maxConcurrentTrials: int
maxTrials: int
timeout: 'string'
}
modelSettings: {
advancedSettings: 'string'
amsGradient: bool
augmentations: 'string'
beta1: int
beta2: int
boxDetectionsPerImage: int
boxScoreThreshold: int
checkpointFrequency: int
checkpointModel: {
description: 'string'
jobInputType: 'string'
mode: 'string'
uri: 'string'
}
checkpointRunId: 'string'
distributed: bool
earlyStopping: bool
earlyStoppingDelay: int
earlyStoppingPatience: int
enableOnnxNormalization: bool
evaluationFrequency: int
gradientAccumulationStep: int
imageSize: int
layersToFreeze: int
learningRate: int
learningRateScheduler: 'string'
maxSize: int
minSize: int
modelName: 'string'
modelSize: 'string'
momentum: int
multiScale: bool
nesterov: bool
nmsIouThreshold: int
numberOfEpochs: int
numberOfWorkers: int
optimizer: 'string'
randomSeed: int
stepLRGamma: int
stepLRStepSize: int
tileGridSize: 'string'
tileOverlapRatio: int
tilePredictionsNmsThreshold: int
trainingBatchSize: int
validationBatchSize: int
validationIouThreshold: int
validationMetricType: 'string'
warmupCosineLRCycles: int
warmupCosineLRWarmupEpochs: int
weightDecay: int
}
primaryMetric: 'MeanAveragePrecision'
searchSpace: [
{
amsGradient: 'string'
augmentations: 'string'
beta1: 'string'
beta2: 'string'
boxDetectionsPerImage: 'string'
boxScoreThreshold: 'string'
distributed: 'string'
earlyStopping: 'string'
earlyStoppingDelay: 'string'
earlyStoppingPatience: 'string'
enableOnnxNormalization: 'string'
evaluationFrequency: 'string'
gradientAccumulationStep: 'string'
imageSize: 'string'
layersToFreeze: 'string'
learningRate: 'string'
learningRateScheduler: 'string'
maxSize: 'string'
minSize: 'string'
modelName: 'string'
modelSize: 'string'
momentum: 'string'
multiScale: 'string'
nesterov: 'string'
nmsIouThreshold: 'string'
numberOfEpochs: 'string'
numberOfWorkers: 'string'
optimizer: 'string'
randomSeed: 'string'
stepLRGamma: 'string'
stepLRStepSize: 'string'
tileGridSize: 'string'
tileOverlapRatio: 'string'
tilePredictionsNmsThreshold: 'string'
trainingBatchSize: 'string'
validationBatchSize: 'string'
validationIouThreshold: 'string'
validationMetricType: 'string'
warmupCosineLRCycles: 'string'
warmupCosineLRWarmupEpochs: 'string'
weightDecay: 'string'
}
]
sweepSettings: {
earlyTermination: {
delayEvaluation: int
evaluationInterval: int
policyType: 'string'
// For remaining properties, see EarlyTerminationPolicy objects
}
samplingAlgorithm: 'string'
}
validationData: {
description: 'string'
jobInputType: 'string'
mode: 'string'
uri: 'string'
}
validationDataSize: int
For Regression, use:
taskType: 'Regression'
cvSplitColumnNames: [
'string'
]
featurizationSettings: {
blockedTransformers: [
'string'
]
columnNameAndTypes: {
{customized property}: 'string'
}
datasetLanguage: 'string'
enableDnnFeaturization: bool
mode: 'string'
transformerParams: {
{customized property}: [
{
fields: [
'string'
]
parameters: any()
}
]
}
}
fixedParameters: {
booster: 'string'
boostingType: 'string'
growPolicy: 'string'
learningRate: int
maxBin: int
maxDepth: int
maxLeaves: int
minDataInLeaf: int
minSplitGain: int
modelName: 'string'
nEstimators: int
numLeaves: int
preprocessorName: 'string'
regAlpha: int
regLambda: int
subsample: int
subsampleFreq: int
treeMethod: 'string'
withMean: bool
withStd: bool
}
limitSettings: {
enableEarlyTermination: bool
exitScore: int
maxConcurrentTrials: int
maxCoresPerTrial: int
maxNodes: int
maxTrials: int
sweepConcurrentTrials: int
sweepTrials: int
timeout: 'string'
trialTimeout: 'string'
}
nCrossValidations: {
mode: 'string'
// For remaining properties, see NCrossValidations objects
}
primaryMetric: 'string'
searchSpace: [
{
booster: 'string'
boostingType: 'string'
growPolicy: 'string'
learningRate: 'string'
maxBin: 'string'
maxDepth: 'string'
maxLeaves: 'string'
minDataInLeaf: 'string'
minSplitGain: 'string'
modelName: 'string'
nEstimators: 'string'
numLeaves: 'string'
preprocessorName: 'string'
regAlpha: 'string'
regLambda: 'string'
subsample: 'string'
subsampleFreq: 'string'
treeMethod: 'string'
withMean: 'string'
withStd: 'string'
}
]
sweepSettings: {
earlyTermination: {
delayEvaluation: int
evaluationInterval: int
policyType: 'string'
// For remaining properties, see EarlyTerminationPolicy objects
}
samplingAlgorithm: 'string'
}
testData: {
description: 'string'
jobInputType: 'string'
mode: 'string'
uri: 'string'
}
testDataSize: int
trainingSettings: {
allowedTrainingAlgorithms: [
'string'
]
blockedTrainingAlgorithms: [
'string'
]
enableDnnTraining: bool
enableModelExplainability: bool
enableOnnxCompatibleModels: bool
enableStackEnsemble: bool
enableVoteEnsemble: bool
ensembleModelDownloadTimeout: 'string'
stackEnsembleSettings: {
stackMetaLearnerKWargs: any()
stackMetaLearnerTrainPercentage: int
stackMetaLearnerType: 'string'
}
trainingMode: 'string'
}
validationData: {
description: 'string'
jobInputType: 'string'
mode: 'string'
uri: 'string'
}
validationDataSize: int
weightColumnName: 'string'
For TextClassification, use:
taskType: 'TextClassification'
featurizationSettings: {
datasetLanguage: 'string'
}
fixedParameters: {
gradientAccumulationSteps: int
learningRate: int
learningRateScheduler: 'string'
modelName: 'string'
numberOfEpochs: int
trainingBatchSize: int
validationBatchSize: int
warmupRatio: int
weightDecay: int
}
limitSettings: {
maxConcurrentTrials: int
maxNodes: int
maxTrials: int
timeout: 'string'
trialTimeout: 'string'
}
primaryMetric: 'string'
searchSpace: [
{
gradientAccumulationSteps: 'string'
learningRate: 'string'
learningRateScheduler: 'string'
modelName: 'string'
numberOfEpochs: 'string'
trainingBatchSize: 'string'
validationBatchSize: 'string'
warmupRatio: 'string'
weightDecay: 'string'
}
]
sweepSettings: {
earlyTermination: {
delayEvaluation: int
evaluationInterval: int
policyType: 'string'
// For remaining properties, see EarlyTerminationPolicy objects
}
samplingAlgorithm: 'string'
}
validationData: {
description: 'string'
jobInputType: 'string'
mode: 'string'
uri: 'string'
}
For TextClassificationMultilabel, use:
taskType: 'TextClassificationMultilabel'
featurizationSettings: {
datasetLanguage: 'string'
}
fixedParameters: {
gradientAccumulationSteps: int
learningRate: int
learningRateScheduler: 'string'
modelName: 'string'
numberOfEpochs: int
trainingBatchSize: int
validationBatchSize: int
warmupRatio: int
weightDecay: int
}
limitSettings: {
maxConcurrentTrials: int
maxNodes: int
maxTrials: int
timeout: 'string'
trialTimeout: 'string'
}
searchSpace: [
{
gradientAccumulationSteps: 'string'
learningRate: 'string'
learningRateScheduler: 'string'
modelName: 'string'
numberOfEpochs: 'string'
trainingBatchSize: 'string'
validationBatchSize: 'string'
warmupRatio: 'string'
weightDecay: 'string'
}
]
sweepSettings: {
earlyTermination: {
delayEvaluation: int
evaluationInterval: int
policyType: 'string'
// For remaining properties, see EarlyTerminationPolicy objects
}
samplingAlgorithm: 'string'
}
validationData: {
description: 'string'
jobInputType: 'string'
mode: 'string'
uri: 'string'
}
For TextNER, use:
taskType: 'TextNER'
featurizationSettings: {
datasetLanguage: 'string'
}
fixedParameters: {
gradientAccumulationSteps: int
learningRate: int
learningRateScheduler: 'string'
modelName: 'string'
numberOfEpochs: int
trainingBatchSize: int
validationBatchSize: int
warmupRatio: int
weightDecay: int
}
limitSettings: {
maxConcurrentTrials: int
maxNodes: int
maxTrials: int
timeout: 'string'
trialTimeout: 'string'
}
searchSpace: [
{
gradientAccumulationSteps: 'string'
learningRate: 'string'
learningRateScheduler: 'string'
modelName: 'string'
numberOfEpochs: 'string'
trainingBatchSize: 'string'
validationBatchSize: 'string'
warmupRatio: 'string'
weightDecay: 'string'
}
]
sweepSettings: {
earlyTermination: {
delayEvaluation: int
evaluationInterval: int
policyType: 'string'
// For remaining properties, see EarlyTerminationPolicy objects
}
samplingAlgorithm: 'string'
}
validationData: {
description: 'string'
jobInputType: 'string'
mode: 'string'
uri: 'string'
}
NCrossValidations objects
Set the mode property to specify the type of object.
For Auto, use:
mode: 'Auto'
For Custom, use:
mode: 'Custom'
value: int
EarlyTerminationPolicy objects
Set the policyType property to specify the type of object.
For Bandit, use:
policyType: 'Bandit'
slackAmount: int
slackFactor: int
For MedianStopping, use:
policyType: 'MedianStopping'
For TruncationSelection, use:
policyType: 'TruncationSelection'
truncationPercentage: int
ForecastHorizon objects
Set the mode property to specify the type of object.
For Auto, use:
mode: 'Auto'
For Custom, use:
mode: 'Custom'
value: int
Seasonality objects
Set the mode property to specify the type of object.
For Auto, use:
mode: 'Auto'
For Custom, use:
mode: 'Custom'
value: int
TargetLags objects
Set the mode property to specify the type of object.
For Auto, use:
mode: 'Auto'
For Custom, use:
mode: 'Custom'
values: [
int
]
TargetRollingWindowSize objects
Set the mode property to specify the type of object.
For Auto, use:
mode: 'Auto'
For Custom, use:
mode: 'Custom'
value: int
DistributionConfiguration objects
Set the distributionType property to specify the type of object.
For Mpi, use:
distributionType: 'Mpi'
processCountPerInstance: int
For PyTorch, use:
distributionType: 'PyTorch'
processCountPerInstance: int
For TensorFlow, use:
distributionType: 'TensorFlow'
parameterServerCount: int
workerCount: int
JobInput objects
Set the jobInputType property to specify the type of object.
For custom_model, use:
jobInputType: 'custom_model'
mode: 'string'
uri: 'string'
For literal, use:
jobInputType: 'literal'
value: 'string'
For mlflow_model, use:
jobInputType: 'mlflow_model'
mode: 'string'
uri: 'string'
For mltable, use:
jobInputType: 'mltable'
mode: 'string'
uri: 'string'
For triton_model, use:
jobInputType: 'triton_model'
mode: 'string'
uri: 'string'
For uri_file, use:
jobInputType: 'uri_file'
mode: 'string'
uri: 'string'
For uri_folder, use:
jobInputType: 'uri_folder'
mode: 'string'
uri: 'string'
LabelingJobMediaProperties objects
Set the mediaType property to specify the type of object.
For Image, use:
mediaType: 'Image'
annotationType: 'string'
For Text, use:
mediaType: 'Text'
annotationType: 'string'
MLAssistConfiguration objects
Set the mlAssist property to specify the type of object.
For Disabled, use:
mlAssist: 'Disabled'
For Enabled, use:
mlAssist: 'Enabled'
inferencingComputeBinding: 'string'
trainingComputeBinding: 'string'
SparkJobEntry objects
Set the sparkJobEntryType property to specify the type of object.
For SparkJobPythonEntry, use:
sparkJobEntryType: 'SparkJobPythonEntry'
file: 'string'
For SparkJobScalaEntry, use:
sparkJobEntryType: 'SparkJobScalaEntry'
className: 'string'
SamplingAlgorithm objects
Set the samplingAlgorithmType property to specify the type of object.
For Bayesian, use:
samplingAlgorithmType: 'Bayesian'
For Grid, use:
samplingAlgorithmType: 'Grid'
For Random, use:
samplingAlgorithmType: 'Random'
logbase: 'string'
rule: 'string'
seed: int
Property values
workspaces/jobs
Name | Description | Value |
---|---|---|
name | The resource name See how to set names and types for child resources in Bicep. |
string (required) |
parent | In Bicep, you can specify the parent resource for a child resource. You only need to add this property when the child resource is declared outside of the parent resource. For more information, see Child resource outside parent resource. |
Symbolic name for resource of type: workspaces |
properties | [Required] Additional attributes of the entity. | JobBaseProperties (required) |
JobBaseProperties
Name | Description | Value |
---|---|---|
componentId | ARM resource ID of the component resource. | string |
computeId | ARM resource ID of the compute resource. | string |
description | The asset description text. | string |
displayName | Display name of job. | string |
experimentName | The name of the experiment the job belongs to. If not set, the job is placed in the "Default" experiment. | string |
identity | Identity configuration. If set, this should be one of AmlToken, ManagedIdentity, UserIdentity or null. Defaults to AmlToken if null. |
IdentityConfiguration |
isArchived | Is the asset archived? | bool |
properties | The asset property dictionary. | ResourceBaseProperties |
services | List of JobEndpoints. For local jobs, a job endpoint will have an endpoint value of FileStreamObject. |
JobBaseServices |
tags | Tag dictionary. Tags can be added, removed, and updated. | object |
jobType | Set the object type | AutoML Command Labeling Pipeline Spark Sweep (required) |
IdentityConfiguration
Name | Description | Value |
---|---|---|
identityType | Set the object type | AMLToken Managed UserIdentity (required) |
AmlToken
Name | Description | Value |
---|---|---|
identityType | [Required] Specifies the type of identity framework. | 'AMLToken' (required) |
ManagedIdentity
Name | Description | Value |
---|---|---|
identityType | [Required] Specifies the type of identity framework. | 'Managed' (required) |
clientId | Specifies a user-assigned identity by client ID. For system-assigned, do not set this field. | string Constraints: Min length = 36 Max length = 36 Pattern = ^[0-9a-fA-F]{8}-([0-9a-fA-F]{4}-){3}[0-9a-fA-F]{12}$ |
objectId | Specifies a user-assigned identity by object ID. For system-assigned, do not set this field. | string Constraints: Min length = 36 Max length = 36 Pattern = ^[0-9a-fA-F]{8}-([0-9a-fA-F]{4}-){3}[0-9a-fA-F]{12}$ |
resourceId | Specifies a user-assigned identity by ARM resource ID. For system-assigned, do not set this field. | string |
UserIdentity
Name | Description | Value |
---|---|---|
identityType | [Required] Specifies the type of identity framework. | 'UserIdentity' (required) |
ResourceBaseProperties
Name | Description | Value |
---|---|---|
{customized property} | string |
JobBaseServices
Name | Description | Value |
---|---|---|
{customized property} | JobService |
JobService
Name | Description | Value |
---|---|---|
endpoint | Url for endpoint. | string |
jobServiceType | Endpoint type. | string |
nodes | Nodes that user would like to start the service on. If Nodes is not set or set to null, the service will only be started on leader node. |
Nodes |
port | Port for endpoint set by user. | int |
properties | Additional properties to set on the endpoint. | JobServiceProperties |
Nodes
Name | Description | Value |
---|---|---|
nodesValueType | Set the object type | All (required) |
AllNodes
Name | Description | Value |
---|---|---|
nodesValueType | [Required] Type of the Nodes value | 'All' (required) |
JobServiceProperties
Name | Description | Value |
---|---|---|
{customized property} | string |
AutoMLJob
Name | Description | Value |
---|---|---|
jobType | [Required] Specifies the type of job. | 'AutoML' (required) |
environmentId | The ARM resource ID of the Environment specification for the job. This is optional value to provide, if not provided, AutoML will default this to Production AutoML curated environment version when running the job. |
string |
environmentVariables | Environment variables included in the job. | AutoMLJobEnvironmentVariables |
outputs | Mapping of output data bindings used in the job. | AutoMLJobOutputs |
resources | Compute Resource configuration for the job. | JobResourceConfiguration |
taskDetails | [Required] This represents scenario which can be one of Tables/NLP/Image | AutoMLVertical (required) |
AutoMLJobEnvironmentVariables
Name | Description | Value |
---|---|---|
{customized property} | string |
AutoMLJobOutputs
Name | Description | Value |
---|---|---|
{customized property} | JobOutput |
JobOutput
Name | Description | Value |
---|---|---|
description | Description for the output. | string |
jobOutputType | Set the object type | custom_model mlflow_model mltable triton_model uri_file uri_folder (required) |
CustomModelJobOutput
Name | Description | Value |
---|---|---|
jobOutputType | [Required] Specifies the type of job. | 'custom_model' (required) |
assetName | Output Asset Name. | string |
assetVersion | Output Asset Version. | string |
mode | Output Asset Delivery Mode. | 'Direct' 'ReadWriteMount' 'Upload' |
uri | Output Asset URI. | string |
MLFlowModelJobOutput
Name | Description | Value |
---|---|---|
jobOutputType | [Required] Specifies the type of job. | 'mlflow_model' (required) |
assetName | Output Asset Name. | string |
assetVersion | Output Asset Version. | string |
mode | Output Asset Delivery Mode. | 'Direct' 'ReadWriteMount' 'Upload' |
uri | Output Asset URI. | string |
MLTableJobOutput
Name | Description | Value |
---|---|---|
jobOutputType | [Required] Specifies the type of job. | 'mltable' (required) |
assetName | Output Asset Name. | string |
assetVersion | Output Asset Version. | string |
mode | Output Asset Delivery Mode. | 'Direct' 'ReadWriteMount' 'Upload' |
uri | Output Asset URI. | string |
TritonModelJobOutput
Name | Description | Value |
---|---|---|
jobOutputType | [Required] Specifies the type of job. | 'triton_model' (required) |
assetName | Output Asset Name. | string |
assetVersion | Output Asset Version. | string |
mode | Output Asset Delivery Mode. | 'Direct' 'ReadWriteMount' 'Upload' |
uri | Output Asset URI. | string |
UriFileJobOutput
Name | Description | Value |
---|---|---|
jobOutputType | [Required] Specifies the type of job. | 'uri_file' (required) |
assetName | Output Asset Name. | string |
assetVersion | Output Asset Version. | string |
mode | Output Asset Delivery Mode. | 'Direct' 'ReadWriteMount' 'Upload' |
uri | Output Asset URI. | string |
UriFolderJobOutput
Name | Description | Value |
---|---|---|
jobOutputType | [Required] Specifies the type of job. | 'uri_folder' (required) |
assetName | Output Asset Name. | string |
assetVersion | Output Asset Version. | string |
mode | Output Asset Delivery Mode. | 'Direct' 'ReadWriteMount' 'Upload' |
uri | Output Asset URI. | string |
JobResourceConfiguration
Name | Description | Value |
---|---|---|
dockerArgs | Extra arguments to pass to the Docker run command. This would override any parameters that have already been set by the system, or in this section. This parameter is only supported for Azure ML compute types. | string |
instanceCount | Optional number of instances or nodes used by the compute target. | int |
instanceType | Optional type of VM used as supported by the compute target. | string |
properties | Additional properties bag. | ResourceConfigurationProperties |
shmSize | Size of the docker container's shared memory block. This should be in the format of (number)(unit) where number as to be greater than 0 and the unit can be one of b(bytes), k(kilobytes), m(megabytes), or g(gigabytes). | string Constraints: Pattern = \d+[bBkKmMgG] |
ResourceConfigurationProperties
Name | Description | Value |
---|---|---|
{customized property} | For Bicep, you can use the any() function. |
AutoMLVertical
Name | Description | Value |
---|---|---|
logVerbosity | Log verbosity for the job. | 'Critical' 'Debug' 'Error' 'Info' 'NotSet' 'Warning' |
targetColumnName | Target column name: This is prediction values column. Also known as label column name in context of classification tasks. |
string |
trainingData | [Required] Training data input. | MLTableJobInput (required) |
taskType | Set the object type | Classification Forecasting ImageClassification ImageClassificationMultilabel ImageInstanceSegmentation ImageObjectDetection Regression TextClassification TextClassificationMultilabel TextNER (required) |
MLTableJobInput
Name | Description | Value |
---|---|---|
description | Description for the input. | string |
jobInputType | [Required] Specifies the type of job. | 'custom_model' 'literal' 'mlflow_model' 'mltable' 'triton_model' 'uri_file' 'uri_folder' (required) |
mode | Input Asset Delivery Mode. | 'Direct' 'Download' 'EvalDownload' 'EvalMount' 'ReadOnlyMount' 'ReadWriteMount' |
uri | [Required] Input Asset URI. | string (required) Constraints: Pattern = [a-zA-Z0-9_] |
Classification
Name | Description | Value |
---|---|---|
taskType | [Required] Task type for AutoMLJob. | 'Classification' (required) |
cvSplitColumnNames | Columns to use for CVSplit data. | string[] |
featurizationSettings | Featurization inputs needed for AutoML job. | TableVerticalFeaturizationSettings |
fixedParameters | Model/training parameters that will remain constant throughout training. | TableFixedParameters |
limitSettings | Execution constraints for AutoMLJob. | TableVerticalLimitSettings |
nCrossValidations | Number of cross validation folds to be applied on training dataset when validation dataset is not provided. |
NCrossValidations |
positiveLabel | Positive label for binary metrics calculation. | string |
primaryMetric | Primary metric for the task. | 'AUCWeighted' 'Accuracy' 'AveragePrecisionScoreWeighted' 'NormMacroRecall' 'PrecisionScoreWeighted' |
searchSpace | Search space for sampling different combinations of models and their hyperparameters. | TableParameterSubspace[] |
sweepSettings | Settings for model sweeping and hyperparameter tuning. | TableSweepSettings |
testData | Test data input. | MLTableJobInput |
testDataSize | The fraction of test dataset that needs to be set aside for validation purpose. Values between (0.0 , 1.0) Applied when validation dataset is not provided. |
int |
trainingSettings | Inputs for training phase for an AutoML Job. | ClassificationTrainingSettings |
validationData | Validation data inputs. | MLTableJobInput |
validationDataSize | The fraction of training dataset that needs to be set aside for validation purpose. Values between (0.0 , 1.0) Applied when validation dataset is not provided. |
int |
weightColumnName | The name of the sample weight column. Automated ML supports a weighted column as an input, causing rows in the data to be weighted up or down. | string |
TableVerticalFeaturizationSettings
Name | Description | Value |
---|---|---|
blockedTransformers | These transformers shall not be used in featurization. | String array containing any of: 'CatTargetEncoder' 'CountVectorizer' 'HashOneHotEncoder' 'LabelEncoder' 'NaiveBayes' 'OneHotEncoder' 'TextTargetEncoder' 'TfIdf' 'WoETargetEncoder' 'WordEmbedding' |
columnNameAndTypes | Dictionary of column name and its type (int, float, string, datetime etc). | TableVerticalFeaturizationSettingsColumnNameAndTypes |
datasetLanguage | Dataset language, useful for the text data. | string |
enableDnnFeaturization | Determines whether to use Dnn based featurizers for data featurization. | bool |
mode | Featurization mode - User can keep the default 'Auto' mode and AutoML will take care of necessary transformation of the data in featurization phase. If 'Off' is selected then no featurization is done. If 'Custom' is selected then user can specify additional inputs to customize how featurization is done. |
'Auto' 'Custom' 'Off' |
transformerParams | User can specify additional transformers to be used along with the columns to which it would be applied and parameters for the transformer constructor. | TableVerticalFeaturizationSettingsTransformerParams |
TableVerticalFeaturizationSettingsColumnNameAndTypes
Name | Description | Value |
---|---|---|
{customized property} | string |
TableVerticalFeaturizationSettingsTransformerParams
Name | Description | Value |
---|---|---|
{customized property} | ColumnTransformer[] |
ColumnTransformer
Name | Description | Value |
---|---|---|
fields | Fields to apply transformer logic on. | string[] |
parameters | Different properties to be passed to transformer. Input expected is dictionary of key,value pairs in JSON format. |
For Bicep, you can use the any() function. |
TableFixedParameters
Name | Description | Value |
---|---|---|
booster | Specify the boosting type, e.g gbdt for XGBoost. | string |
boostingType | Specify the boosting type, e.g gbdt for LightGBM. | string |
growPolicy | Specify the grow policy, which controls the way new nodes are added to the tree. | string |
learningRate | The learning rate for the training procedure. | int |
maxBin | Specify the Maximum number of discrete bins to bucket continuous features . | int |
maxDepth | Specify the max depth to limit the tree depth explicitly. | int |
maxLeaves | Specify the max leaves to limit the tree leaves explicitly. | int |
minDataInLeaf | The minimum number of data per leaf. | int |
minSplitGain | Minimum loss reduction required to make a further partition on a leaf node of the tree. | int |
modelName | The name of the model to train. | string |
nEstimators | Specify the number of trees (or rounds) in an model. | int |
numLeaves | Specify the number of leaves. | int |
preprocessorName | The name of the preprocessor to use. | string |
regAlpha | L1 regularization term on weights. | int |
regLambda | L2 regularization term on weights. | int |
subsample | Subsample ratio of the training instance. | int |
subsampleFreq | Frequency of subsample. | int |
treeMethod | Specify the tree method. | string |
withMean | If true, center before scaling the data with StandardScalar. | bool |
withStd | If true, scaling the data with Unit Variance with StandardScalar. | bool |
TableVerticalLimitSettings
Name | Description | Value |
---|---|---|
enableEarlyTermination | Enable early termination, determines whether or not if AutoMLJob will terminate early if there is no score improvement in last 20 iterations. | bool |
exitScore | Exit score for the AutoML job. | int |
maxConcurrentTrials | Maximum Concurrent iterations. | int |
maxCoresPerTrial | Max cores per iteration. | int |
maxNodes | Maximum nodes to use for the experiment. | int |
maxTrials | Number of iterations. | int |
sweepConcurrentTrials | Number of concurrent sweeping runs that user wants to trigger. | int |
sweepTrials | Number of sweeping runs that user wants to trigger. | int |
timeout | AutoML job timeout. | string |
trialTimeout | Iteration timeout. | string |
NCrossValidations
Name | Description | Value |
---|---|---|
mode | Set the object type | Auto Custom (required) |
AutoNCrossValidations
Name | Description | Value |
---|---|---|
mode | [Required] Mode for determining N-Cross validations. | 'Auto' (required) |
CustomNCrossValidations
Name | Description | Value |
---|---|---|
mode | [Required] Mode for determining N-Cross validations. | 'Custom' (required) |
value | [Required] N-Cross validations value. | int (required) |
TableParameterSubspace
Name | Description | Value |
---|---|---|
booster | Specify the boosting type, e.g gbdt for XGBoost. | string |
boostingType | Specify the boosting type, e.g gbdt for LightGBM. | string |
growPolicy | Specify the grow policy, which controls the way new nodes are added to the tree. | string |
learningRate | The learning rate for the training procedure. | string |
maxBin | Specify the Maximum number of discrete bins to bucket continuous features . | string |
maxDepth | Specify the max depth to limit the tree depth explicitly. | string |
maxLeaves | Specify the max leaves to limit the tree leaves explicitly. | string |
minDataInLeaf | The minimum number of data per leaf. | string |
minSplitGain | Minimum loss reduction required to make a further partition on a leaf node of the tree. | string |
modelName | The name of the model to train. | string |
nEstimators | Specify the number of trees (or rounds) in an model. | string |
numLeaves | Specify the number of leaves. | string |
preprocessorName | The name of the preprocessor to use. | string |
regAlpha | L1 regularization term on weights. | string |
regLambda | L2 regularization term on weights. | string |
subsample | Subsample ratio of the training instance. | string |
subsampleFreq | Frequency of subsample | string |
treeMethod | Specify the tree method. | string |
withMean | If true, center before scaling the data with StandardScalar. | string |
withStd | If true, scaling the data with Unit Variance with StandardScalar. | string |
TableSweepSettings
Name | Description | Value |
---|---|---|
earlyTermination | Type of early termination policy for the sweeping job. | EarlyTerminationPolicy |
samplingAlgorithm | [Required] Type of sampling algorithm. | 'Bayesian' 'Grid' 'Random' (required) |
EarlyTerminationPolicy
Name | Description | Value |
---|---|---|
delayEvaluation | Number of intervals by which to delay the first evaluation. | int |
evaluationInterval | Interval (number of runs) between policy evaluations. | int |
policyType | Set the object type | Bandit MedianStopping TruncationSelection (required) |
BanditPolicy
Name | Description | Value |
---|---|---|
policyType | [Required] Name of policy configuration | 'Bandit' (required) |
slackAmount | Absolute distance allowed from the best performing run. | int |
slackFactor | Ratio of the allowed distance from the best performing run. | int |
MedianStoppingPolicy
Name | Description | Value |
---|---|---|
policyType | [Required] Name of policy configuration | 'MedianStopping' (required) |
TruncationSelectionPolicy
Name | Description | Value |
---|---|---|
policyType | [Required] Name of policy configuration | 'TruncationSelection' (required) |
truncationPercentage | The percentage of runs to cancel at each evaluation interval. | int |
ClassificationTrainingSettings
Name | Description | Value |
---|---|---|
allowedTrainingAlgorithms | Allowed models for classification task. | String array containing any of: 'BernoulliNaiveBayes' 'DecisionTree' 'ExtremeRandomTrees' 'GradientBoosting' 'KNN' 'LightGBM' 'LinearSVM' 'LogisticRegression' 'MultinomialNaiveBayes' 'RandomForest' 'SGD' 'SVM' 'XGBoostClassifier' |
blockedTrainingAlgorithms | Blocked models for classification task. | String array containing any of: 'BernoulliNaiveBayes' 'DecisionTree' 'ExtremeRandomTrees' 'GradientBoosting' 'KNN' 'LightGBM' 'LinearSVM' 'LogisticRegression' 'MultinomialNaiveBayes' 'RandomForest' 'SGD' 'SVM' 'XGBoostClassifier' |
enableDnnTraining | Enable recommendation of DNN models. | bool |
enableModelExplainability | Flag to turn on explainability on best model. | bool |
enableOnnxCompatibleModels | Flag for enabling onnx compatible models. | bool |
enableStackEnsemble | Enable stack ensemble run. | bool |
enableVoteEnsemble | Enable voting ensemble run. | bool |
ensembleModelDownloadTimeout | During VotingEnsemble and StackEnsemble model generation, multiple fitted models from the previous child runs are downloaded. Configure this parameter with a higher value than 300 secs, if more time is needed. |
string |
stackEnsembleSettings | Stack ensemble settings for stack ensemble run. | StackEnsembleSettings |
trainingMode | TrainingMode mode - Setting to 'auto' is same as setting it to 'non-distributed' for now, however in the future may result in mixed mode or heuristics based mode selection. Default is 'auto'. If 'Distributed' then only distributed featurization is used and distributed algorithms are chosen. If 'NonDistributed' then only non distributed algorithms are chosen. |
'Auto' 'Distributed' 'NonDistributed' |
StackEnsembleSettings
Name | Description | Value |
---|---|---|
stackMetaLearnerKWargs | Optional parameters to pass to the initializer of the meta-learner. | For Bicep, you can use the any() function. |
stackMetaLearnerTrainPercentage | Specifies the proportion of the training set (when choosing train and validation type of training) to be reserved for training the meta-learner. Default value is 0.2. | int |
stackMetaLearnerType | The meta-learner is a model trained on the output of the individual heterogeneous models. | 'ElasticNet' 'ElasticNetCV' 'LightGBMClassifier' 'LightGBMRegressor' 'LinearRegression' 'LogisticRegression' 'LogisticRegressionCV' 'None' |
Forecasting
Name | Description | Value |
---|---|---|
taskType | [Required] Task type for AutoMLJob. | 'Forecasting' (required) |
cvSplitColumnNames | Columns to use for CVSplit data. | string[] |
featurizationSettings | Featurization inputs needed for AutoML job. | TableVerticalFeaturizationSettings |
fixedParameters | Model/training parameters that will remain constant throughout training. | TableFixedParameters |
forecastingSettings | Forecasting task specific inputs. | ForecastingSettings |
limitSettings | Execution constraints for AutoMLJob. | TableVerticalLimitSettings |
nCrossValidations | Number of cross validation folds to be applied on training dataset when validation dataset is not provided. |
NCrossValidations |
primaryMetric | Primary metric for forecasting task. | 'NormalizedMeanAbsoluteError' 'NormalizedRootMeanSquaredError' 'R2Score' 'SpearmanCorrelation' |
searchSpace | Search space for sampling different combinations of models and their hyperparameters. | TableParameterSubspace[] |
sweepSettings | Settings for model sweeping and hyperparameter tuning. | TableSweepSettings |
testData | Test data input. | MLTableJobInput |
testDataSize | The fraction of test dataset that needs to be set aside for validation purpose. Values between (0.0 , 1.0) Applied when validation dataset is not provided. |
int |
trainingSettings | Inputs for training phase for an AutoML Job. | ForecastingTrainingSettings |
validationData | Validation data inputs. | MLTableJobInput |
validationDataSize | The fraction of training dataset that needs to be set aside for validation purpose. Values between (0.0 , 1.0) Applied when validation dataset is not provided. |
int |
weightColumnName | The name of the sample weight column. Automated ML supports a weighted column as an input, causing rows in the data to be weighted up or down. | string |
ForecastingSettings
Name | Description | Value |
---|---|---|
countryOrRegionForHolidays | Country or region for holidays for forecasting tasks. These should be ISO 3166 two-letter country/region codes, for example 'US' or 'GB'. |
string |
cvStepSize | Number of periods between the origin time of one CV fold and the next fold. For example, if CVStepSize = 3 for daily data, the origin time for each fold will bethree days apart. |
int |
featureLags | Flag for generating lags for the numeric features with 'auto' or null. | 'Auto' 'None' |
forecastHorizon | The desired maximum forecast horizon in units of time-series frequency. | ForecastHorizon |
frequency | When forecasting, this parameter represents the period with which the forecast is desired, for example daily, weekly, yearly, etc. The forecast frequency is dataset frequency by default. | string |
seasonality | Set time series seasonality as an integer multiple of the series frequency. If seasonality is set to 'auto', it will be inferred. |
Seasonality |
shortSeriesHandlingConfig | The parameter defining how if AutoML should handle short time series. | 'Auto' 'Drop' 'None' 'Pad' |
targetAggregateFunction | The function to be used to aggregate the time series target column to conform to a user specified frequency. If the TargetAggregateFunction is set i.e. not 'None', but the freq parameter is not set, the error is raised. The possible target aggregation functions are: "sum", "max", "min" and "mean". |
'Max' 'Mean' 'Min' 'None' 'Sum' |
targetLags | The number of past periods to lag from the target column. | TargetLags |
targetRollingWindowSize | The number of past periods used to create a rolling window average of the target column. | TargetRollingWindowSize |
timeColumnName | The name of the time column. This parameter is required when forecasting to specify the datetime column in the input data used for building the time series and inferring its frequency. | string |
timeSeriesIdColumnNames | The names of columns used to group a timeseries. It can be used to create multiple series. If grain is not defined, the data set is assumed to be one time-series. This parameter is used with task type forecasting. |
string[] |
useStl | Configure STL Decomposition of the time-series target column. | 'None' 'Season' 'SeasonTrend' |
ForecastHorizon
Name | Description | Value |
---|---|---|
mode | Set the object type | Auto Custom (required) |
AutoForecastHorizon
Name | Description | Value |
---|---|---|
mode | [Required] Set forecast horizon value selection mode. | 'Auto' (required) |
CustomForecastHorizon
Name | Description | Value |
---|---|---|
mode | [Required] Set forecast horizon value selection mode. | 'Custom' (required) |
value | [Required] Forecast horizon value. | int (required) |
Seasonality
Name | Description | Value |
---|---|---|
mode | Set the object type | Auto Custom (required) |
AutoSeasonality
Name | Description | Value |
---|---|---|
mode | [Required] Seasonality mode. | 'Auto' (required) |
CustomSeasonality
Name | Description | Value |
---|---|---|
mode | [Required] Seasonality mode. | 'Custom' (required) |
value | [Required] Seasonality value. | int (required) |
TargetLags
Name | Description | Value |
---|---|---|
mode | Set the object type | Auto Custom (required) |
AutoTargetLags
Name | Description | Value |
---|---|---|
mode | [Required] Set target lags mode - Auto/Custom | 'Auto' (required) |
CustomTargetLags
Name | Description | Value |
---|---|---|
mode | [Required] Set target lags mode - Auto/Custom | 'Custom' (required) |
values | [Required] Set target lags values. | int[] (required) |
TargetRollingWindowSize
Name | Description | Value |
---|---|---|
mode | Set the object type | Auto Custom (required) |
AutoTargetRollingWindowSize
Name | Description | Value |
---|---|---|
mode | [Required] TargetRollingWindowSiz detection mode. | 'Auto' (required) |
CustomTargetRollingWindowSize
Name | Description | Value |
---|---|---|
mode | [Required] TargetRollingWindowSiz detection mode. | 'Custom' (required) |
value | [Required] TargetRollingWindowSize value. | int (required) |
ForecastingTrainingSettings
Name | Description | Value |
---|---|---|
allowedTrainingAlgorithms | Allowed models for forecasting task. | String array containing any of: 'Arimax' 'AutoArima' 'Average' 'DecisionTree' 'ElasticNet' 'ExponentialSmoothing' 'ExtremeRandomTrees' 'GradientBoosting' 'KNN' 'LassoLars' 'LightGBM' 'Naive' 'Prophet' 'RandomForest' 'SGD' 'SeasonalAverage' 'SeasonalNaive' 'TCNForecaster' 'XGBoostRegressor' |
blockedTrainingAlgorithms | Blocked models for forecasting task. | String array containing any of: 'Arimax' 'AutoArima' 'Average' 'DecisionTree' 'ElasticNet' 'ExponentialSmoothing' 'ExtremeRandomTrees' 'GradientBoosting' 'KNN' 'LassoLars' 'LightGBM' 'Naive' 'Prophet' 'RandomForest' 'SGD' 'SeasonalAverage' 'SeasonalNaive' 'TCNForecaster' 'XGBoostRegressor' |
enableDnnTraining | Enable recommendation of DNN models. | bool |
enableModelExplainability | Flag to turn on explainability on best model. | bool |
enableOnnxCompatibleModels | Flag for enabling onnx compatible models. | bool |
enableStackEnsemble | Enable stack ensemble run. | bool |
enableVoteEnsemble | Enable voting ensemble run. | bool |
ensembleModelDownloadTimeout | During VotingEnsemble and StackEnsemble model generation, multiple fitted models from the previous child runs are downloaded. Configure this parameter with a higher value than 300 secs, if more time is needed. |
string |
stackEnsembleSettings | Stack ensemble settings for stack ensemble run. | StackEnsembleSettings |
trainingMode | TrainingMode mode - Setting to 'auto' is same as setting it to 'non-distributed' for now, however in the future may result in mixed mode or heuristics based mode selection. Default is 'auto'. If 'Distributed' then only distributed featurization is used and distributed algorithms are chosen. If 'NonDistributed' then only non distributed algorithms are chosen. |
'Auto' 'Distributed' 'NonDistributed' |
ImageClassification
Name | Description | Value |
---|---|---|
taskType | [Required] Task type for AutoMLJob. | 'ImageClassification' (required) |
limitSettings | [Required] Limit settings for the AutoML job. | ImageLimitSettings (required) |
modelSettings | Settings used for training the model. | ImageModelSettingsClassification |
primaryMetric | Primary metric to optimize for this task. | 'AUCWeighted' 'Accuracy' 'AveragePrecisionScoreWeighted' 'NormMacroRecall' 'PrecisionScoreWeighted' |
searchSpace | Search space for sampling different combinations of models and their hyperparameters. | ImageModelDistributionSettingsClassification[] |
sweepSettings | Model sweeping and hyperparameter sweeping related settings. | ImageSweepSettings |
validationData | Validation data inputs. | MLTableJobInput |
validationDataSize | The fraction of training dataset that needs to be set aside for validation purpose. Values between (0.0 , 1.0) Applied when validation dataset is not provided. |
int |
ImageLimitSettings
Name | Description | Value |
---|---|---|
maxConcurrentTrials | Maximum number of concurrent AutoML iterations. | int |
maxTrials | Maximum number of AutoML iterations. | int |
timeout | AutoML job timeout. | string |
ImageModelSettingsClassification
Name | Description | Value |
---|---|---|
advancedSettings | Settings for advanced scenarios. | string |
amsGradient | Enable AMSGrad when optimizer is 'adam' or 'adamw'. | bool |
augmentations | Settings for using Augmentations. | string |
beta1 | Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. | int |
beta2 | Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. | int |
checkpointFrequency | Frequency to store model checkpoints. Must be a positive integer. | int |
checkpointModel | The pretrained checkpoint model for incremental training. | MLFlowModelJobInput |
checkpointRunId | The id of a previous run that has a pretrained checkpoint for incremental training. | string |
distributed | Whether to use distributed training. | bool |
earlyStopping | Enable early stopping logic during training. | bool |
earlyStoppingDelay | Minimum number of epochs or validation evaluations to wait before primary metric improvement is tracked for early stopping. Must be a positive integer. |
int |
earlyStoppingPatience | Minimum number of epochs or validation evaluations with no primary metric improvement before the run is stopped. Must be a positive integer. |
int |
enableOnnxNormalization | Enable normalization when exporting ONNX model. | bool |
evaluationFrequency | Frequency to evaluate validation dataset to get metric scores. Must be a positive integer. | int |
gradientAccumulationStep | Gradient accumulation means running a configured number of "GradAccumulationStep" steps without updating the model weights while accumulating the gradients of those steps, and then using the accumulated gradients to compute the weight updates. Must be a positive integer. |
int |
layersToFreeze | Number of layers to freeze for the model. Must be a positive integer. For instance, passing 2 as value for 'seresnext' means freezing layer0 and layer1. For a full list of models supported and details on layer freeze, please see: /azure/machine-learning/how-to-auto-train-image-models. |
int |
learningRate | Initial learning rate. Must be a float in the range [0, 1]. | int |
learningRateScheduler | Type of learning rate scheduler. Must be 'warmup_cosine' or 'step'. | 'None' 'Step' 'WarmupCosine' |
modelName | Name of the model to use for training. For more information on the available models please visit the official documentation: /azure/machine-learning/how-to-auto-train-image-models. |
string |
momentum | Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1]. | int |
nesterov | Enable nesterov when optimizer is 'sgd'. | bool |
numberOfEpochs | Number of training epochs. Must be a positive integer. | int |
numberOfWorkers | Number of data loader workers. Must be a non-negative integer. | int |
optimizer | Type of optimizer. | 'Adam' 'Adamw' 'None' 'Sgd' |
randomSeed | Random seed to be used when using deterministic training. | int |
stepLRGamma | Value of gamma when learning rate scheduler is 'step'. Must be a float in the range [0, 1]. | int |
stepLRStepSize | Value of step size when learning rate scheduler is 'step'. Must be a positive integer. | int |
trainingBatchSize | Training batch size. Must be a positive integer. | int |
trainingCropSize | Image crop size that is input to the neural network for the training dataset. Must be a positive integer. | int |
validationBatchSize | Validation batch size. Must be a positive integer. | int |
validationCropSize | Image crop size that is input to the neural network for the validation dataset. Must be a positive integer. | int |
validationResizeSize | Image size to which to resize before cropping for validation dataset. Must be a positive integer. | int |
warmupCosineLRCycles | Value of cosine cycle when learning rate scheduler is 'warmup_cosine'. Must be a float in the range [0, 1]. | int |
warmupCosineLRWarmupEpochs | Value of warmup epochs when learning rate scheduler is 'warmup_cosine'. Must be a positive integer. | int |
weightDecay | Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be a float in the range[0, 1]. | int |
weightedLoss | Weighted loss. The accepted values are 0 for no weighted loss. 1 for weighted loss with sqrt.(class_weights). 2 for weighted loss with class_weights. Must be 0 or 1 or 2. |
int |
MLFlowModelJobInput
Name | Description | Value |
---|---|---|
description | Description for the input. | string |
jobInputType | [Required] Specifies the type of job. | 'custom_model' 'literal' 'mlflow_model' 'mltable' 'triton_model' 'uri_file' 'uri_folder' (required) |
mode | Input Asset Delivery Mode. | 'Direct' 'Download' 'EvalDownload' 'EvalMount' 'ReadOnlyMount' 'ReadWriteMount' |
uri | [Required] Input Asset URI. | string (required) Constraints: Pattern = [a-zA-Z0-9_] |
ImageModelDistributionSettingsClassification
Name | Description | Value |
---|---|---|
amsGradient | Enable AMSGrad when optimizer is 'adam' or 'adamw'. | string |
augmentations | Settings for using Augmentations. | string |
beta1 | Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. | string |
beta2 | Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. | string |
distributed | Whether to use distributer training. | string |
earlyStopping | Enable early stopping logic during training. | string |
earlyStoppingDelay | Minimum number of epochs or validation evaluations to wait before primary metric improvement is tracked for early stopping. Must be a positive integer. |
string |
earlyStoppingPatience | Minimum number of epochs or validation evaluations with no primary metric improvement before the run is stopped. Must be a positive integer. |
string |
enableOnnxNormalization | Enable normalization when exporting ONNX model. | string |
evaluationFrequency | Frequency to evaluate validation dataset to get metric scores. Must be a positive integer. | string |
gradientAccumulationStep | Gradient accumulation means running a configured number of "GradAccumulationStep" steps without updating the model weights while accumulating the gradients of those steps, and then using the accumulated gradients to compute the weight updates. Must be a positive integer. |
string |
layersToFreeze | Number of layers to freeze for the model. Must be a positive integer. For instance, passing 2 as value for 'seresnext' means freezing layer0 and layer1. For a full list of models supported and details on layer freeze, please see: /azure/machine-learning/how-to-auto-train-image-models. |
string |
learningRate | Initial learning rate. Must be a float in the range [0, 1]. | string |
learningRateScheduler | Type of learning rate scheduler. Must be 'warmup_cosine' or 'step'. | string |
modelName | Name of the model to use for training. For more information on the available models please visit the official documentation: /azure/machine-learning/how-to-auto-train-image-models. |
string |
momentum | Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1]. | string |
nesterov | Enable nesterov when optimizer is 'sgd'. | string |
numberOfEpochs | Number of training epochs. Must be a positive integer. | string |
numberOfWorkers | Number of data loader workers. Must be a non-negative integer. | string |
optimizer | Type of optimizer. Must be either 'sgd', 'adam', or 'adamw'. | string |
randomSeed | Random seed to be used when using deterministic training. | string |
stepLRGamma | Value of gamma when learning rate scheduler is 'step'. Must be a float in the range [0, 1]. | string |
stepLRStepSize | Value of step size when learning rate scheduler is 'step'. Must be a positive integer. | string |
trainingBatchSize | Training batch size. Must be a positive integer. | string |
trainingCropSize | Image crop size that is input to the neural network for the training dataset. Must be a positive integer. | string |
validationBatchSize | Validation batch size. Must be a positive integer. | string |
validationCropSize | Image crop size that is input to the neural network for the validation dataset. Must be a positive integer. | string |
validationResizeSize | Image size to which to resize before cropping for validation dataset. Must be a positive integer. | string |
warmupCosineLRCycles | Value of cosine cycle when learning rate scheduler is 'warmup_cosine'. Must be a float in the range [0, 1]. | string |
warmupCosineLRWarmupEpochs | Value of warmup epochs when learning rate scheduler is 'warmup_cosine'. Must be a positive integer. | string |
weightDecay | Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be a float in the range[0, 1]. | string |
weightedLoss | Weighted loss. The accepted values are 0 for no weighted loss. 1 for weighted loss with sqrt.(class_weights). 2 for weighted loss with class_weights. Must be 0 or 1 or 2. |
string |
ImageSweepSettings
Name | Description | Value |
---|---|---|
earlyTermination | Type of early termination policy. | EarlyTerminationPolicy |
samplingAlgorithm | [Required] Type of the hyperparameter sampling algorithms. | 'Bayesian' 'Grid' 'Random' (required) |
ImageClassificationMultilabel
Name | Description | Value |
---|---|---|
taskType | [Required] Task type for AutoMLJob. | 'ImageClassificationMultilabel' (required) |
limitSettings | [Required] Limit settings for the AutoML job. | ImageLimitSettings (required) |
modelSettings | Settings used for training the model. | ImageModelSettingsClassification |
primaryMetric | Primary metric to optimize for this task. | 'AUCWeighted' 'Accuracy' 'AveragePrecisionScoreWeighted' 'IOU' 'NormMacroRecall' 'PrecisionScoreWeighted' |
searchSpace | Search space for sampling different combinations of models and their hyperparameters. | ImageModelDistributionSettingsClassification[] |
sweepSettings | Model sweeping and hyperparameter sweeping related settings. | ImageSweepSettings |
validationData | Validation data inputs. | MLTableJobInput |
validationDataSize | The fraction of training dataset that needs to be set aside for validation purpose. Values between (0.0 , 1.0) Applied when validation dataset is not provided. |
int |
ImageInstanceSegmentation
Name | Description | Value |
---|---|---|
taskType | [Required] Task type for AutoMLJob. | 'ImageInstanceSegmentation' (required) |
limitSettings | [Required] Limit settings for the AutoML job. | ImageLimitSettings (required) |
modelSettings | Settings used for training the model. | ImageModelSettingsObjectDetection |
primaryMetric | Primary metric to optimize for this task. | 'MeanAveragePrecision' |
searchSpace | Search space for sampling different combinations of models and their hyperparameters. | ImageModelDistributionSettingsObjectDetection[] |
sweepSettings | Model sweeping and hyperparameter sweeping related settings. | ImageSweepSettings |
validationData | Validation data inputs. | MLTableJobInput |
validationDataSize | The fraction of training dataset that needs to be set aside for validation purpose. Values between (0.0 , 1.0) Applied when validation dataset is not provided. |
int |
ImageModelSettingsObjectDetection
Name | Description | Value |
---|---|---|
advancedSettings | Settings for advanced scenarios. | string |
amsGradient | Enable AMSGrad when optimizer is 'adam' or 'adamw'. | bool |
augmentations | Settings for using Augmentations. | string |
beta1 | Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. | int |
beta2 | Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. | int |
boxDetectionsPerImage | Maximum number of detections per image, for all classes. Must be a positive integer. Note: This settings is not supported for the 'yolov5' algorithm. |
int |
boxScoreThreshold | During inference, only return proposals with a classification score greater than BoxScoreThreshold. Must be a float in the range[0, 1]. |
int |
checkpointFrequency | Frequency to store model checkpoints. Must be a positive integer. | int |
checkpointModel | The pretrained checkpoint model for incremental training. | MLFlowModelJobInput |
checkpointRunId | The id of a previous run that has a pretrained checkpoint for incremental training. | string |
distributed | Whether to use distributed training. | bool |
earlyStopping | Enable early stopping logic during training. | bool |
earlyStoppingDelay | Minimum number of epochs or validation evaluations to wait before primary metric improvement is tracked for early stopping. Must be a positive integer. |
int |
earlyStoppingPatience | Minimum number of epochs or validation evaluations with no primary metric improvement before the run is stopped. Must be a positive integer. |
int |
enableOnnxNormalization | Enable normalization when exporting ONNX model. | bool |
evaluationFrequency | Frequency to evaluate validation dataset to get metric scores. Must be a positive integer. | int |
gradientAccumulationStep | Gradient accumulation means running a configured number of "GradAccumulationStep" steps without updating the model weights while accumulating the gradients of those steps, and then using the accumulated gradients to compute the weight updates. Must be a positive integer. |
int |
imageSize | Image size for train and validation. Must be a positive integer. Note: The training run may get into CUDA OOM if the size is too big. Note: This settings is only supported for the 'yolov5' algorithm. |
int |
layersToFreeze | Number of layers to freeze for the model. Must be a positive integer. For instance, passing 2 as value for 'seresnext' means freezing layer0 and layer1. For a full list of models supported and details on layer freeze, please see: /azure/machine-learning/how-to-auto-train-image-models. |
int |
learningRate | Initial learning rate. Must be a float in the range [0, 1]. | int |
learningRateScheduler | Type of learning rate scheduler. Must be 'warmup_cosine' or 'step'. | 'None' 'Step' 'WarmupCosine' |
maxSize | Maximum size of the image to be rescaled before feeding it to the backbone. Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big. Note: This settings is not supported for the 'yolov5' algorithm. |
int |
minSize | Minimum size of the image to be rescaled before feeding it to the backbone. Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big. Note: This settings is not supported for the 'yolov5' algorithm. |
int |
modelName | Name of the model to use for training. For more information on the available models please visit the official documentation: /azure/machine-learning/how-to-auto-train-image-models. |
string |
modelSize | Model size. Must be 'small', 'medium', 'large', or 'xlarge'. Note: training run may get into CUDA OOM if the model size is too big. Note: This settings is only supported for the 'yolov5' algorithm. |
'ExtraLarge' 'Large' 'Medium' 'None' 'Small' |
momentum | Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1]. | int |
multiScale | Enable multi-scale image by varying image size by +/- 50%. Note: training run may get into CUDA OOM if no sufficient GPU memory. Note: This settings is only supported for the 'yolov5' algorithm. |
bool |
nesterov | Enable nesterov when optimizer is 'sgd'. | bool |
nmsIouThreshold | IOU threshold used during inference in NMS post processing. Must be a float in the range [0, 1]. | int |
numberOfEpochs | Number of training epochs. Must be a positive integer. | int |
numberOfWorkers | Number of data loader workers. Must be a non-negative integer. | int |
optimizer | Type of optimizer. | 'Adam' 'Adamw' 'None' 'Sgd' |
randomSeed | Random seed to be used when using deterministic training. | int |
stepLRGamma | Value of gamma when learning rate scheduler is 'step'. Must be a float in the range [0, 1]. | int |
stepLRStepSize | Value of step size when learning rate scheduler is 'step'. Must be a positive integer. | int |
tileGridSize | The grid size to use for tiling each image. Note: TileGridSize must not be None to enable small object detection logic. A string containing two integers in mxn format. Note: This settings is not supported for the 'yolov5' algorithm. |
string |
tileOverlapRatio | Overlap ratio between adjacent tiles in each dimension. Must be float in the range [0, 1). Note: This settings is not supported for the 'yolov5' algorithm. |
int |
tilePredictionsNmsThreshold | The IOU threshold to use to perform NMS while merging predictions from tiles and image. Used in validation/ inference. Must be float in the range [0, 1]. Note: This settings is not supported for the 'yolov5' algorithm. |
int |
trainingBatchSize | Training batch size. Must be a positive integer. | int |
validationBatchSize | Validation batch size. Must be a positive integer. | int |
validationIouThreshold | IOU threshold to use when computing validation metric. Must be float in the range [0, 1]. | int |
validationMetricType | Metric computation method to use for validation metrics. | 'Coco' 'CocoVoc' 'None' 'Voc' |
warmupCosineLRCycles | Value of cosine cycle when learning rate scheduler is 'warmup_cosine'. Must be a float in the range [0, 1]. | int |
warmupCosineLRWarmupEpochs | Value of warmup epochs when learning rate scheduler is 'warmup_cosine'. Must be a positive integer. | int |
weightDecay | Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be a float in the range[0, 1]. | int |
ImageModelDistributionSettingsObjectDetection
Name | Description | Value |
---|---|---|
amsGradient | Enable AMSGrad when optimizer is 'adam' or 'adamw'. | string |
augmentations | Settings for using Augmentations. | string |
beta1 | Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. | string |
beta2 | Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. | string |
boxDetectionsPerImage | Maximum number of detections per image, for all classes. Must be a positive integer. Note: This settings is not supported for the 'yolov5' algorithm. |
string |
boxScoreThreshold | During inference, only return proposals with a classification score greater than BoxScoreThreshold. Must be a float in the range[0, 1]. |
string |
distributed | Whether to use distributer training. | string |
earlyStopping | Enable early stopping logic during training. | string |
earlyStoppingDelay | Minimum number of epochs or validation evaluations to wait before primary metric improvement is tracked for early stopping. Must be a positive integer. |
string |
earlyStoppingPatience | Minimum number of epochs or validation evaluations with no primary metric improvement before the run is stopped. Must be a positive integer. |
string |
enableOnnxNormalization | Enable normalization when exporting ONNX model. | string |
evaluationFrequency | Frequency to evaluate validation dataset to get metric scores. Must be a positive integer. | string |
gradientAccumulationStep | Gradient accumulation means running a configured number of "GradAccumulationStep" steps without updating the model weights while accumulating the gradients of those steps, and then using the accumulated gradients to compute the weight updates. Must be a positive integer. |
string |
imageSize | Image size for train and validation. Must be a positive integer. Note: The training run may get into CUDA OOM if the size is too big. Note: This settings is only supported for the 'yolov5' algorithm. |
string |
layersToFreeze | Number of layers to freeze for the model. Must be a positive integer. For instance, passing 2 as value for 'seresnext' means freezing layer0 and layer1. For a full list of models supported and details on layer freeze, please see: /azure/machine-learning/how-to-auto-train-image-models. |
string |
learningRate | Initial learning rate. Must be a float in the range [0, 1]. | string |
learningRateScheduler | Type of learning rate scheduler. Must be 'warmup_cosine' or 'step'. | string |
maxSize | Maximum size of the image to be rescaled before feeding it to the backbone. Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big. Note: This settings is not supported for the 'yolov5' algorithm. |
string |
minSize | Minimum size of the image to be rescaled before feeding it to the backbone. Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big. Note: This settings is not supported for the 'yolov5' algorithm. |
string |
modelName | Name of the model to use for training. For more information on the available models please visit the official documentation: /azure/machine-learning/how-to-auto-train-image-models. |
string |
modelSize | Model size. Must be 'small', 'medium', 'large', or 'xlarge'. Note: training run may get into CUDA OOM if the model size is too big. Note: This settings is only supported for the 'yolov5' algorithm. |
string |
momentum | Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1]. | string |
multiScale | Enable multi-scale image by varying image size by +/- 50%. Note: training run may get into CUDA OOM if no sufficient GPU memory. Note: This settings is only supported for the 'yolov5' algorithm. |
string |
nesterov | Enable nesterov when optimizer is 'sgd'. | string |
nmsIouThreshold | IOU threshold used during inference in NMS post processing. Must be float in the range [0, 1]. | string |
numberOfEpochs | Number of training epochs. Must be a positive integer. | string |
numberOfWorkers | Number of data loader workers. Must be a non-negative integer. | string |
optimizer | Type of optimizer. Must be either 'sgd', 'adam', or 'adamw'. | string |
randomSeed | Random seed to be used when using deterministic training. | string |
stepLRGamma | Value of gamma when learning rate scheduler is 'step'. Must be a float in the range [0, 1]. | string |
stepLRStepSize | Value of step size when learning rate scheduler is 'step'. Must be a positive integer. | string |
tileGridSize | The grid size to use for tiling each image. Note: TileGridSize must not be None to enable small object detection logic. A string containing two integers in mxn format. Note: This settings is not supported for the 'yolov5' algorithm. |
string |
tileOverlapRatio | Overlap ratio between adjacent tiles in each dimension. Must be float in the range [0, 1). Note: This settings is not supported for the 'yolov5' algorithm. |
string |
tilePredictionsNmsThreshold | The IOU threshold to use to perform NMS while merging predictions from tiles and image. Used in validation/ inference. Must be float in the range [0, 1]. Note: This settings is not supported for the 'yolov5' algorithm. NMS: Non-maximum suppression |
string |
trainingBatchSize | Training batch size. Must be a positive integer. | string |
validationBatchSize | Validation batch size. Must be a positive integer. | string |
validationIouThreshold | IOU threshold to use when computing validation metric. Must be float in the range [0, 1]. | string |
validationMetricType | Metric computation method to use for validation metrics. Must be 'none', 'coco', 'voc', or 'coco_voc'. | string |
warmupCosineLRCycles | Value of cosine cycle when learning rate scheduler is 'warmup_cosine'. Must be a float in the range [0, 1]. | string |
warmupCosineLRWarmupEpochs | Value of warmup epochs when learning rate scheduler is 'warmup_cosine'. Must be a positive integer. | string |
weightDecay | Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be a float in the range[0, 1]. | string |
ImageObjectDetection
Name | Description | Value |
---|---|---|
taskType | [Required] Task type for AutoMLJob. | 'ImageObjectDetection' (required) |
limitSettings | [Required] Limit settings for the AutoML job. | ImageLimitSettings (required) |
modelSettings | Settings used for training the model. | ImageModelSettingsObjectDetection |
primaryMetric | Primary metric to optimize for this task. | 'MeanAveragePrecision' |
searchSpace | Search space for sampling different combinations of models and their hyperparameters. | ImageModelDistributionSettingsObjectDetection[] |
sweepSettings | Model sweeping and hyperparameter sweeping related settings. | ImageSweepSettings |
validationData | Validation data inputs. | MLTableJobInput |
validationDataSize | The fraction of training dataset that needs to be set aside for validation purpose. Values between (0.0 , 1.0) Applied when validation dataset is not provided. |
int |
Regression
Name | Description | Value |
---|---|---|
taskType | [Required] Task type for AutoMLJob. | 'Regression' (required) |
cvSplitColumnNames | Columns to use for CVSplit data. | string[] |
featurizationSettings | Featurization inputs needed for AutoML job. | TableVerticalFeaturizationSettings |
fixedParameters | Model/training parameters that will remain constant throughout training. | TableFixedParameters |
limitSettings | Execution constraints for AutoMLJob. | TableVerticalLimitSettings |
nCrossValidations | Number of cross validation folds to be applied on training dataset when validation dataset is not provided. |
NCrossValidations |
primaryMetric | Primary metric for regression task. | 'NormalizedMeanAbsoluteError' 'NormalizedRootMeanSquaredError' 'R2Score' 'SpearmanCorrelation' |
searchSpace | Search space for sampling different combinations of models and their hyperparameters. | TableParameterSubspace[] |
sweepSettings | Settings for model sweeping and hyperparameter tuning. | TableSweepSettings |
testData | Test data input. | MLTableJobInput |
testDataSize | The fraction of test dataset that needs to be set aside for validation purpose. Values between (0.0 , 1.0) Applied when validation dataset is not provided. |
int |
trainingSettings | Inputs for training phase for an AutoML Job. | RegressionTrainingSettings |
validationData | Validation data inputs. | MLTableJobInput |
validationDataSize | The fraction of training dataset that needs to be set aside for validation purpose. Values between (0.0 , 1.0) Applied when validation dataset is not provided. |
int |
weightColumnName | The name of the sample weight column. Automated ML supports a weighted column as an input, causing rows in the data to be weighted up or down. | string |
RegressionTrainingSettings
Name | Description | Value |
---|---|---|
allowedTrainingAlgorithms | Allowed models for regression task. | String array containing any of: 'DecisionTree' 'ElasticNet' 'ExtremeRandomTrees' 'GradientBoosting' 'KNN' 'LassoLars' 'LightGBM' 'RandomForest' 'SGD' 'XGBoostRegressor' |
blockedTrainingAlgorithms | Blocked models for regression task. | String array containing any of: 'DecisionTree' 'ElasticNet' 'ExtremeRandomTrees' 'GradientBoosting' 'KNN' 'LassoLars' 'LightGBM' 'RandomForest' 'SGD' 'XGBoostRegressor' |
enableDnnTraining | Enable recommendation of DNN models. | bool |
enableModelExplainability | Flag to turn on explainability on best model. | bool |
enableOnnxCompatibleModels | Flag for enabling onnx compatible models. | bool |
enableStackEnsemble | Enable stack ensemble run. | bool |
enableVoteEnsemble | Enable voting ensemble run. | bool |
ensembleModelDownloadTimeout | During VotingEnsemble and StackEnsemble model generation, multiple fitted models from the previous child runs are downloaded. Configure this parameter with a higher value than 300 secs, if more time is needed. |
string |
stackEnsembleSettings | Stack ensemble settings for stack ensemble run. | StackEnsembleSettings |
trainingMode | TrainingMode mode - Setting to 'auto' is same as setting it to 'non-distributed' for now, however in the future may result in mixed mode or heuristics based mode selection. Default is 'auto'. If 'Distributed' then only distributed featurization is used and distributed algorithms are chosen. If 'NonDistributed' then only non distributed algorithms are chosen. |
'Auto' 'Distributed' 'NonDistributed' |
TextClassification
Name | Description | Value |
---|---|---|
taskType | [Required] Task type for AutoMLJob. | 'TextClassification' (required) |
featurizationSettings | Featurization inputs needed for AutoML job. | NlpVerticalFeaturizationSettings |
fixedParameters | Model/training parameters that will remain constant throughout training. | NlpFixedParameters |
limitSettings | Execution constraints for AutoMLJob. | NlpVerticalLimitSettings |
primaryMetric | Primary metric for Text-Classification task. | 'AUCWeighted' 'Accuracy' 'AveragePrecisionScoreWeighted' 'NormMacroRecall' 'PrecisionScoreWeighted' |
searchSpace | Search space for sampling different combinations of models and their hyperparameters. | NlpParameterSubspace[] |
sweepSettings | Settings for model sweeping and hyperparameter tuning. | NlpSweepSettings |
validationData | Validation data inputs. | MLTableJobInput |
NlpVerticalFeaturizationSettings
Name | Description | Value |
---|---|---|
datasetLanguage | Dataset language, useful for the text data. | string |
NlpFixedParameters
Name | Description | Value |
---|---|---|
gradientAccumulationSteps | Number of steps to accumulate gradients over before running a backward pass. | int |
learningRate | The learning rate for the training procedure. | int |
learningRateScheduler | The type of learning rate schedule to use during the training procedure. | 'Constant' 'ConstantWithWarmup' 'Cosine' 'CosineWithRestarts' 'Linear' 'None' 'Polynomial' |
modelName | The name of the model to train. | string |
numberOfEpochs | Number of training epochs. | int |
trainingBatchSize | The batch size for the training procedure. | int |
validationBatchSize | The batch size to be used during evaluation. | int |
warmupRatio | The warmup ratio, used alongside LrSchedulerType. | int |
weightDecay | The weight decay for the training procedure. | int |
NlpVerticalLimitSettings
Name | Description | Value |
---|---|---|
maxConcurrentTrials | Maximum Concurrent AutoML iterations. | int |
maxNodes | Maximum nodes to use for the experiment. | int |
maxTrials | Number of AutoML iterations. | int |
timeout | AutoML job timeout. | string |
trialTimeout | Timeout for individual HD trials. | string |
NlpParameterSubspace
Name | Description | Value |
---|---|---|
gradientAccumulationSteps | Number of steps to accumulate gradients over before running a backward pass. | string |
learningRate | The learning rate for the training procedure. | string |
learningRateScheduler | The type of learning rate schedule to use during the training procedure. | string |
modelName | The name of the model to train. | string |
numberOfEpochs | Number of training epochs. | string |
trainingBatchSize | The batch size for the training procedure. | string |
validationBatchSize | The batch size to be used during evaluation. | string |
warmupRatio | The warmup ratio, used alongside LrSchedulerType. | string |
weightDecay | The weight decay for the training procedure. | string |
NlpSweepSettings
Name | Description | Value |
---|---|---|
earlyTermination | Type of early termination policy for the sweeping job. | EarlyTerminationPolicy |
samplingAlgorithm | [Required] Type of sampling algorithm. | 'Bayesian' 'Grid' 'Random' (required) |
TextClassificationMultilabel
Name | Description | Value |
---|---|---|
taskType | [Required] Task type for AutoMLJob. | 'TextClassificationMultilabel' (required) |
featurizationSettings | Featurization inputs needed for AutoML job. | NlpVerticalFeaturizationSettings |
fixedParameters | Model/training parameters that will remain constant throughout training. | NlpFixedParameters |
limitSettings | Execution constraints for AutoMLJob. | NlpVerticalLimitSettings |
searchSpace | Search space for sampling different combinations of models and their hyperparameters. | NlpParameterSubspace[] |
sweepSettings | Settings for model sweeping and hyperparameter tuning. | NlpSweepSettings |
validationData | Validation data inputs. | MLTableJobInput |
TextNer
Name | Description | Value |
---|---|---|
taskType | [Required] Task type for AutoMLJob. | 'TextNER' (required) |
featurizationSettings | Featurization inputs needed for AutoML job. | NlpVerticalFeaturizationSettings |
fixedParameters | Model/training parameters that will remain constant throughout training. | NlpFixedParameters |
limitSettings | Execution constraints for AutoMLJob. | NlpVerticalLimitSettings |
searchSpace | Search space for sampling different combinations of models and their hyperparameters. | NlpParameterSubspace[] |
sweepSettings | Settings for model sweeping and hyperparameter tuning. | NlpSweepSettings |
validationData | Validation data inputs. | MLTableJobInput |
CommandJob
Name | Description | Value |
---|---|---|
jobType | [Required] Specifies the type of job. | 'Command' (required) |
autologgerSettings | Distribution configuration of the job. If set, this should be one of Mpi, Tensorflow, PyTorch, or null. | AutologgerSettings |
codeId | ARM resource ID of the code asset. | string |
command | [Required] The command to execute on startup of the job. eg. "python train.py" | string (required) Constraints: Min length = 1 Pattern = [a-zA-Z0-9_] |
distribution | Distribution configuration of the job. If set, this should be one of Mpi, Tensorflow, PyTorch, or null. | DistributionConfiguration |
environmentId | [Required] The ARM resource ID of the Environment specification for the job. | string (required) Constraints: Pattern = [a-zA-Z0-9_] |
environmentVariables | Environment variables included in the job. | CommandJobEnvironmentVariables |
inputs | Mapping of input data bindings used in the job. | CommandJobInputs |
limits | Command Job limit. | CommandJobLimits |
outputs | Mapping of output data bindings used in the job. | CommandJobOutputs |
resources | Compute Resource configuration for the job. | JobResourceConfiguration |
AutologgerSettings
Name | Description | Value |
---|---|---|
mlflowAutologger | [Required] Indicates whether mlflow autologger is enabled. | 'Disabled' 'Enabled' (required) |
DistributionConfiguration
Name | Description | Value |
---|---|---|
distributionType | Set the object type | Mpi PyTorch TensorFlow (required) |
Mpi
Name | Description | Value |
---|---|---|
distributionType | [Required] Specifies the type of distribution framework. | 'Mpi' (required) |
processCountPerInstance | Number of processes per MPI node. | int |
PyTorch
Name | Description | Value |
---|---|---|
distributionType | [Required] Specifies the type of distribution framework. | 'PyTorch' (required) |
processCountPerInstance | Number of processes per node. | int |
TensorFlow
Name | Description | Value |
---|---|---|
distributionType | [Required] Specifies the type of distribution framework. | 'TensorFlow' (required) |
parameterServerCount | Number of parameter server tasks. | int |
workerCount | Number of workers. If not specified, will default to the instance count. | int |
CommandJobEnvironmentVariables
Name | Description | Value |
---|---|---|
{customized property} | string |
CommandJobInputs
Name | Description | Value |
---|---|---|
{customized property} | JobInput |
JobInput
Name | Description | Value |
---|---|---|
description | Description for the input. | string |
jobInputType | Set the object type | custom_model literal mlflow_model mltable triton_model uri_file uri_folder (required) |
CustomModelJobInput
Name | Description | Value |
---|---|---|
jobInputType | [Required] Specifies the type of job. | 'custom_model' (required) |
mode | Input Asset Delivery Mode. | 'Direct' 'Download' 'EvalDownload' 'EvalMount' 'ReadOnlyMount' 'ReadWriteMount' |
uri | [Required] Input Asset URI. | string (required) Constraints: Pattern = [a-zA-Z0-9_] |
LiteralJobInput
Name | Description | Value |
---|---|---|
jobInputType | [Required] Specifies the type of job. | 'literal' (required) |
value | [Required] Literal value for the input. | string (required) Constraints: Pattern = [a-zA-Z0-9_] |
TritonModelJobInput
Name | Description | Value |
---|---|---|
jobInputType | [Required] Specifies the type of job. | 'triton_model' (required) |
mode | Input Asset Delivery Mode. | 'Direct' 'Download' 'EvalDownload' 'EvalMount' 'ReadOnlyMount' 'ReadWriteMount' |
uri | [Required] Input Asset URI. | string (required) Constraints: Pattern = [a-zA-Z0-9_] |
UriFileJobInput
Name | Description | Value |
---|---|---|
jobInputType | [Required] Specifies the type of job. | 'uri_file' (required) |
mode | Input Asset Delivery Mode. | 'Direct' 'Download' 'EvalDownload' 'EvalMount' 'ReadOnlyMount' 'ReadWriteMount' |
uri | [Required] Input Asset URI. | string (required) Constraints: Pattern = [a-zA-Z0-9_] |
UriFolderJobInput
Name | Description | Value |
---|---|---|
jobInputType | [Required] Specifies the type of job. | 'uri_folder' (required) |
mode | Input Asset Delivery Mode. | 'Direct' 'Download' 'EvalDownload' 'EvalMount' 'ReadOnlyMount' 'ReadWriteMount' |
uri | [Required] Input Asset URI. | string (required) Constraints: Pattern = [a-zA-Z0-9_] |
CommandJobLimits
Name | Description | Value |
---|---|---|
jobLimitsType | [Required] JobLimit type. | 'Command' 'Sweep' (required) |
timeout | The max run duration in ISO 8601 format, after which the job will be cancelled. Only supports duration with precision as low as Seconds. | string |
CommandJobOutputs
Name | Description | Value |
---|---|---|
{customized property} | JobOutput |
LabelingJobProperties
Name | Description | Value |
---|---|---|
componentId | ARM resource ID of the component resource. | string |
computeId | ARM resource ID of the compute resource. | string |
dataConfiguration | Configuration of data used in the job. | LabelingDataConfiguration |
description | The asset description text. | string |
displayName | Display name of job. | string |
experimentName | The name of the experiment the job belongs to. If not set, the job is placed in the "Default" experiment. | string |
identity | Identity configuration. If set, this should be one of AmlToken, ManagedIdentity, UserIdentity or null. Defaults to AmlToken if null. |
IdentityConfiguration |
isArchived | Is the asset archived? | bool |
jobInstructions | Labeling instructions of the job. | LabelingJobInstructions |
jobType | [Required] Specifies the type of job. | 'AutoML' 'Command' 'Labeling' 'Pipeline' 'Spark' 'Sweep' (required) |
labelCategories | Label categories of the job. | LabelingJobLabelCategories |
labelingJobMediaProperties | Media type specific properties in the job. | LabelingJobMediaProperties |
mlAssistConfiguration | Configuration of MLAssist feature in the job. | MLAssistConfiguration |
properties | The asset property dictionary. | ResourceBaseProperties |
services | List of JobEndpoints. For local jobs, a job endpoint will have an endpoint value of FileStreamObject. |
JobBaseServices |
tags | Tag dictionary. Tags can be added, removed, and updated. | object |
LabelingDataConfiguration
Name | Description | Value |
---|---|---|
dataId | Resource Id of the data asset to perform labeling. | string |
incrementalDataRefresh | Indicates whether to enable incremental data refresh. | 'Disabled' 'Enabled' |
LabelingJobInstructions
Name | Description | Value |
---|---|---|
uri | The link to a page with detailed labeling instructions for labelers. | string |
LabelingJobLabelCategories
Name | Description | Value |
---|---|---|
{customized property} | LabelCategory |
LabelCategory
Name | Description | Value |
---|---|---|
classes | Dictionary of label classes in this category. | LabelCategoryClasses |
displayName | Display name of the label category. | string |
multiSelect | Indicates whether it is allowed to select multiple classes in this category. | 'Disabled' 'Enabled' |
LabelCategoryClasses
Name | Description | Value |
---|---|---|
{customized property} | LabelClass |
LabelClass
Name | Description | Value |
---|---|---|
displayName | Display name of the label class. | string |
subclasses | Dictionary of subclasses of the label class. | LabelClassSubclasses |
LabelClassSubclasses
Name | Description | Value |
---|---|---|
{customized property} | LabelClass |
LabelingJobMediaProperties
Name | Description | Value |
---|---|---|
mediaType | Set the object type | Image Text (required) |
LabelingJobImageProperties
Name | Description | Value |
---|---|---|
mediaType | [Required] Media type of the job. | 'Image' (required) |
annotationType | Annotation type of image labeling job. | 'BoundingBox' 'Classification' 'InstanceSegmentation' |
LabelingJobTextProperties
Name | Description | Value |
---|---|---|
mediaType | [Required] Media type of the job. | 'Text' (required) |
annotationType | Annotation type of text labeling job. | 'Classification' 'NamedEntityRecognition' |
MLAssistConfiguration
Name | Description | Value |
---|---|---|
mlAssist | Set the object type | Disabled Enabled (required) |
MLAssistConfigurationDisabled
Name | Description | Value |
---|---|---|
mlAssist | [Required] Indicates whether MLAssist feature is enabled. | 'Disabled' (required) |
MLAssistConfigurationEnabled
Name | Description | Value |
---|---|---|
mlAssist | [Required] Indicates whether MLAssist feature is enabled. | 'Enabled' (required) |
inferencingComputeBinding | [Required] AML compute binding used in inferencing. | string (required) Constraints: Pattern = [a-zA-Z0-9_] |
trainingComputeBinding | [Required] AML compute binding used in training. | string (required) Constraints: Pattern = [a-zA-Z0-9_] |
PipelineJob
Name | Description | Value |
---|---|---|
jobType | [Required] Specifies the type of job. | 'Pipeline' (required) |
inputs | Inputs for the pipeline job. | PipelineJobInputs |
jobs | Jobs construct the Pipeline Job. | PipelineJobJobs |
outputs | Outputs for the pipeline job | PipelineJobOutputs |
settings | Pipeline settings, for things like ContinueRunOnStepFailure etc. | For Bicep, you can use the any() function. |
sourceJobId | ARM resource ID of source job. | string |
PipelineJobInputs
Name | Description | Value |
---|---|---|
{customized property} | JobInput |
PipelineJobJobs
Name | Description | Value |
---|---|---|
{customized property} | For Bicep, you can use the any() function. |
PipelineJobOutputs
Name | Description | Value |
---|---|---|
{customized property} | JobOutput |
SparkJob
Name | Description | Value |
---|---|---|
jobType | [Required] Specifies the type of job. | 'Spark' (required) |
archives | Archive files used in the job. | string[] |
args | Arguments for the job. | string |
codeId | [Required] ARM resource ID of the code asset. | string (required) Constraints: Pattern = [a-zA-Z0-9_] |
conf | Spark configured properties. | SparkJobConf |
entry | [Required] The entry to execute on startup of the job. | SparkJobEntry (required) |
environmentId | The ARM resource ID of the Environment specification for the job. | string |
files | Files used in the job. | string[] |
inputs | Mapping of input data bindings used in the job. | SparkJobInputs |
jars | Jar files used in the job. | string[] |
outputs | Mapping of output data bindings used in the job. | SparkJobOutputs |
pyFiles | Python files used in the job. | string[] |
resources | Compute Resource configuration for the job. | SparkResourceConfiguration |
SparkJobConf
Name | Description | Value |
---|---|---|
{customized property} | string |
SparkJobEntry
Name | Description | Value |
---|---|---|
sparkJobEntryType | Set the object type | SparkJobPythonEntry SparkJobScalaEntry (required) |
SparkJobPythonEntry
Name | Description | Value |
---|---|---|
sparkJobEntryType | [Required] Type of the job's entry point. | 'SparkJobPythonEntry' (required) |
file | [Required] Relative python file path for job entry point. | string (required) Constraints: Min length = 1 Pattern = [a-zA-Z0-9_] |
SparkJobScalaEntry
Name | Description | Value |
---|---|---|
sparkJobEntryType | [Required] Type of the job's entry point. | 'SparkJobScalaEntry' (required) |
className | [Required] Scala class name used as entry point. | string (required) Constraints: Min length = 1 Pattern = [a-zA-Z0-9_] |
SparkJobInputs
Name | Description | Value |
---|---|---|
{customized property} | JobInput |
SparkJobOutputs
Name | Description | Value |
---|---|---|
{customized property} | JobOutput |
SparkResourceConfiguration
Name | Description | Value |
---|---|---|
instanceType | Optional type of VM used as supported by the compute target. | string |
runtimeVersion | Version of spark runtime used for the job. | string |
SweepJob
Name | Description | Value |
---|---|---|
jobType | [Required] Specifies the type of job. | 'Sweep' (required) |
earlyTermination | Early termination policies enable canceling poor-performing runs before they complete | EarlyTerminationPolicy |
inputs | Mapping of input data bindings used in the job. | SweepJobInputs |
limits | Sweep Job limit. | SweepJobLimits |
objective | [Required] Optimization objective. | Objective (required) |
outputs | Mapping of output data bindings used in the job. | SweepJobOutputs |
samplingAlgorithm | [Required] The hyperparameter sampling algorithm | SamplingAlgorithm (required) |
searchSpace | [Required] A dictionary containing each parameter and its distribution. The dictionary key is the name of the parameter | For Bicep, you can use the any() function.(required) |
trial | [Required] Trial component definition. | TrialComponent (required) |
SweepJobInputs
Name | Description | Value |
---|---|---|
{customized property} | JobInput |
SweepJobLimits
Name | Description | Value |
---|---|---|
jobLimitsType | [Required] JobLimit type. | 'Command' 'Sweep' (required) |
maxConcurrentTrials | Sweep Job max concurrent trials. | int |
maxTotalTrials | Sweep Job max total trials. | int |
timeout | The max run duration in ISO 8601 format, after which the job will be cancelled. Only supports duration with precision as low as Seconds. | string |
trialTimeout | Sweep Job Trial timeout value. | string |
Objective
Name | Description | Value |
---|---|---|
goal | [Required] Defines supported metric goals for hyperparameter tuning | 'Maximize' 'Minimize' (required) |
primaryMetric | [Required] Name of the metric to optimize. | string (required) Constraints: Pattern = [a-zA-Z0-9_] |
SweepJobOutputs
Name | Description | Value |
---|---|---|
{customized property} | JobOutput |
SamplingAlgorithm
Name | Description | Value |
---|---|---|
samplingAlgorithmType | Set the object type | Bayesian Grid Random (required) |
BayesianSamplingAlgorithm
Name | Description | Value |
---|---|---|
samplingAlgorithmType | [Required] The algorithm used for generating hyperparameter values, along with configuration properties | 'Bayesian' (required) |
GridSamplingAlgorithm
Name | Description | Value |
---|---|---|
samplingAlgorithmType | [Required] The algorithm used for generating hyperparameter values, along with configuration properties | 'Grid' (required) |
RandomSamplingAlgorithm
Name | Description | Value |
---|---|---|
samplingAlgorithmType | [Required] The algorithm used for generating hyperparameter values, along with configuration properties | 'Random' (required) |
logbase | An optional positive number or e in string format to be used as base for log based random sampling | string |
rule | The specific type of random algorithm | 'Random' 'Sobol' |
seed | An optional integer to use as the seed for random number generation | int |
TrialComponent
Name | Description | Value |
---|---|---|
codeId | ARM resource ID of the code asset. | string |
command | [Required] The command to execute on startup of the job. eg. "python train.py" | string (required) Constraints: Min length = 1 Pattern = [a-zA-Z0-9_] |
distribution | Distribution configuration of the job. If set, this should be one of Mpi, Tensorflow, PyTorch, or null. | DistributionConfiguration |
environmentId | [Required] The ARM resource ID of the Environment specification for the job. | string (required) Constraints: Pattern = [a-zA-Z0-9_] |
environmentVariables | Environment variables included in the job. | TrialComponentEnvironmentVariables |
resources | Compute Resource configuration for the job. | JobResourceConfiguration |
TrialComponentEnvironmentVariables
Name | Description | Value |
---|---|---|
{customized property} | string |
Quickstart templates
The following quickstart templates deploy this resource type.
Template | Description |
---|---|
Create an Azure Machine Learning AutoML classification job |
This template creates an Azure Machine Learning AutoML classification job to find out the best model for predicting if a client will subscribe to a fixed term deposit with a financial institution. |
Create an Azure Machine Learning Command job |
This template creates an Azure Machine Learning Command job with a basic hello_world script |
Create an Azure Machine Learning Sweep job |
This template creates an Azure Machine Learning Sweep job for hyperparameter tuning. |
ARM template resource definition
The workspaces/jobs resource type can be deployed with operations that target:
- Resource groups - See resource group deployment commands
For a list of changed properties in each API version, see change log.
Resource format
To create a Microsoft.MachineLearningServices/workspaces/jobs resource, add the following JSON to your template.
{
"type": "Microsoft.MachineLearningServices/workspaces/jobs",
"apiVersion": "2022-12-01-preview",
"name": "string",
"properties": {
"componentId": "string",
"computeId": "string",
"description": "string",
"displayName": "string",
"experimentName": "string",
"identity": {
"identityType": "string"
// For remaining properties, see IdentityConfiguration objects
},
"isArchived": "bool",
"properties": {
"{customized property}": "string"
},
"services": {
"{customized property}": {
"endpoint": "string",
"jobServiceType": "string",
"nodes": {
"nodesValueType": "string"
// For remaining properties, see Nodes objects
},
"port": "int",
"properties": {
"{customized property}": "string"
}
}
},
"tags": {},
"jobType": "string"
// For remaining properties, see JobBaseProperties objects
}
}
JobBaseProperties objects
Set the jobType property to specify the type of object.
For AutoML, use:
"jobType": "AutoML",
"environmentId": "string",
"environmentVariables": {
"{customized property}": "string"
},
"outputs": {
"{customized property}": {
"description": "string",
"jobOutputType": "string"
// For remaining properties, see JobOutput objects
}
},
"resources": {
"dockerArgs": "string",
"instanceCount": "int",
"instanceType": "string",
"properties": {
"{customized property}": {}
},
"shmSize": "string"
},
"taskDetails": {
"logVerbosity": "string",
"targetColumnName": "string",
"trainingData": {
"description": "string",
"jobInputType": "string",
"mode": "string",
"uri": "string"
},
"taskType": "string"
// For remaining properties, see AutoMLVertical objects
}
For Command, use:
"jobType": "Command",
"autologgerSettings": {
"mlflowAutologger": "string"
},
"codeId": "string",
"command": "string",
"distribution": {
"distributionType": "string"
// For remaining properties, see DistributionConfiguration objects
},
"environmentId": "string",
"environmentVariables": {
"{customized property}": "string"
},
"inputs": {
"{customized property}": {
"description": "string",
"jobInputType": "string"
// For remaining properties, see JobInput objects
}
},
"limits": {
"jobLimitsType": "string",
"timeout": "string"
},
"outputs": {
"{customized property}": {
"description": "string",
"jobOutputType": "string"
// For remaining properties, see JobOutput objects
}
},
"resources": {
"dockerArgs": "string",
"instanceCount": "int",
"instanceType": "string",
"properties": {
"{customized property}": {}
},
"shmSize": "string"
}
For Labeling, use:
"jobType": "Labeling",
"dataConfiguration": {
"dataId": "string",
"incrementalDataRefresh": "string"
},
"jobInstructions": {
"uri": "string"
},
"labelCategories": {
"{customized property}": {
"classes": {
"{customized property}": {
"displayName": "string",
"subclasses": {
"{customized property}": {}
}
},
"displayName": "string",
"multiSelect": "string"
}
},
"labelingJobMediaProperties": {
"mediaType": "string"
// For remaining properties, see LabelingJobMediaProperties objects
},
"mlAssistConfiguration": {
"mlAssist": "string"
// For remaining properties, see MLAssistConfiguration objects
}
For Pipeline, use:
"jobType": "Pipeline",
"inputs": {
"{customized property}": {
"description": "string",
"jobInputType": "string"
// For remaining properties, see JobInput objects
}
},
"jobs": {
"{customized property}": {}
},
"outputs": {
"{customized property}": {
"description": "string",
"jobOutputType": "string"
// For remaining properties, see JobOutput objects
}
},
"settings": {},
"sourceJobId": "string"
For Spark, use:
"jobType": "Spark",
"archives": [ "string" ],
"args": "string",
"codeId": "string",
"conf": {
"{customized property}": "string"
},
"entry": {
"sparkJobEntryType": "string"
// For remaining properties, see SparkJobEntry objects
},
"environmentId": "string",
"files": [ "string" ],
"inputs": {
"{customized property}": {
"description": "string",
"jobInputType": "string"
// For remaining properties, see JobInput objects
}
},
"jars": [ "string" ],
"outputs": {
"{customized property}": {
"description": "string",
"jobOutputType": "string"
// For remaining properties, see JobOutput objects
}
},
"pyFiles": [ "string" ],
"resources": {
"instanceType": "string",
"runtimeVersion": "string"
}
For Sweep, use:
"jobType": "Sweep",
"earlyTermination": {
"delayEvaluation": "int",
"evaluationInterval": "int",
"policyType": "string"
// For remaining properties, see EarlyTerminationPolicy objects
},
"inputs": {
"{customized property}": {
"description": "string",
"jobInputType": "string"
// For remaining properties, see JobInput objects
}
},
"limits": {
"jobLimitsType": "string",
"maxConcurrentTrials": "int",
"maxTotalTrials": "int",
"timeout": "string",
"trialTimeout": "string"
},
"objective": {
"goal": "string",
"primaryMetric": "string"
},
"outputs": {
"{customized property}": {
"description": "string",
"jobOutputType": "string"
// For remaining properties, see JobOutput objects
}
},
"samplingAlgorithm": {
"samplingAlgorithmType": "string"
// For remaining properties, see SamplingAlgorithm objects
},
"searchSpace": {},
"trial": {
"codeId": "string",
"command": "string",
"distribution": {
"distributionType": "string"
// For remaining properties, see DistributionConfiguration objects
},
"environmentId": "string",
"environmentVariables": {
"{customized property}": "string"
},
"resources": {
"dockerArgs": "string",
"instanceCount": "int",
"instanceType": "string",
"properties": {
"{customized property}": {}
},
"shmSize": "string"
}
}
IdentityConfiguration objects
Set the identityType property to specify the type of object.
For AMLToken, use:
"identityType": "AMLToken"
For Managed, use:
"identityType": "Managed",
"clientId": "string",
"objectId": "string",
"resourceId": "string"
For UserIdentity, use:
"identityType": "UserIdentity"
Nodes objects
Set the nodesValueType property to specify the type of object.
For All, use:
"nodesValueType": "All"
JobOutput objects
Set the jobOutputType property to specify the type of object.
For custom_model, use:
"jobOutputType": "custom_model",
"assetName": "string",
"assetVersion": "string",
"mode": "string",
"uri": "string"
For mlflow_model, use:
"jobOutputType": "mlflow_model",
"assetName": "string",
"assetVersion": "string",
"mode": "string",
"uri": "string"
For mltable, use:
"jobOutputType": "mltable",
"assetName": "string",
"assetVersion": "string",
"mode": "string",
"uri": "string"
For triton_model, use:
"jobOutputType": "triton_model",
"assetName": "string",
"assetVersion": "string",
"mode": "string",
"uri": "string"
For uri_file, use:
"jobOutputType": "uri_file",
"assetName": "string",
"assetVersion": "string",
"mode": "string",
"uri": "string"
For uri_folder, use:
"jobOutputType": "uri_folder",
"assetName": "string",
"assetVersion": "string",
"mode": "string",
"uri": "string"
AutoMLVertical objects
Set the taskType property to specify the type of object.
For Classification, use:
"taskType": "Classification",
"cvSplitColumnNames": [ "string" ],
"featurizationSettings": {
"blockedTransformers": [ "string" ],
"columnNameAndTypes": {
"{customized property}": "string"
},
"datasetLanguage": "string",
"enableDnnFeaturization": "bool",
"mode": "string",
"transformerParams": {
"{customized property}": [
{
"fields": [ "string" ],
"parameters": {}
}
]
}
},
"fixedParameters": {
"booster": "string",
"boostingType": "string",
"growPolicy": "string",
"learningRate": "int",
"maxBin": "int",
"maxDepth": "int",
"maxLeaves": "int",
"minDataInLeaf": "int",
"minSplitGain": "int",
"modelName": "string",
"nEstimators": "int",
"numLeaves": "int",
"preprocessorName": "string",
"regAlpha": "int",
"regLambda": "int",
"subsample": "int",
"subsampleFreq": "int",
"treeMethod": "string",
"withMean": "bool",
"withStd": "bool"
},
"limitSettings": {
"enableEarlyTermination": "bool",
"exitScore": "int",
"maxConcurrentTrials": "int",
"maxCoresPerTrial": "int",
"maxNodes": "int",
"maxTrials": "int",
"sweepConcurrentTrials": "int",
"sweepTrials": "int",
"timeout": "string",
"trialTimeout": "string"
},
"nCrossValidations": {
"mode": "string"
// For remaining properties, see NCrossValidations objects
},
"positiveLabel": "string",
"primaryMetric": "string",
"searchSpace": [
{
"booster": "string",
"boostingType": "string",
"growPolicy": "string",
"learningRate": "string",
"maxBin": "string",
"maxDepth": "string",
"maxLeaves": "string",
"minDataInLeaf": "string",
"minSplitGain": "string",
"modelName": "string",
"nEstimators": "string",
"numLeaves": "string",
"preprocessorName": "string",
"regAlpha": "string",
"regLambda": "string",
"subsample": "string",
"subsampleFreq": "string",
"treeMethod": "string",
"withMean": "string",
"withStd": "string"
}
],
"sweepSettings": {
"earlyTermination": {
"delayEvaluation": "int",
"evaluationInterval": "int",
"policyType": "string"
// For remaining properties, see EarlyTerminationPolicy objects
},
"samplingAlgorithm": "string"
},
"testData": {
"description": "string",
"jobInputType": "string",
"mode": "string",
"uri": "string"
},
"testDataSize": "int",
"trainingSettings": {
"allowedTrainingAlgorithms": [ "string" ],
"blockedTrainingAlgorithms": [ "string" ],
"enableDnnTraining": "bool",
"enableModelExplainability": "bool",
"enableOnnxCompatibleModels": "bool",
"enableStackEnsemble": "bool",
"enableVoteEnsemble": "bool",
"ensembleModelDownloadTimeout": "string",
"stackEnsembleSettings": {
"stackMetaLearnerKWargs": {},
"stackMetaLearnerTrainPercentage": "int",
"stackMetaLearnerType": "string"
},
"trainingMode": "string"
},
"validationData": {
"description": "string",
"jobInputType": "string",
"mode": "string",
"uri": "string"
},
"validationDataSize": "int",
"weightColumnName": "string"
For Forecasting, use:
"taskType": "Forecasting",
"cvSplitColumnNames": [ "string" ],
"featurizationSettings": {
"blockedTransformers": [ "string" ],
"columnNameAndTypes": {
"{customized property}": "string"
},
"datasetLanguage": "string",
"enableDnnFeaturization": "bool",
"mode": "string",
"transformerParams": {
"{customized property}": [
{
"fields": [ "string" ],
"parameters": {}
}
]
}
},
"fixedParameters": {
"booster": "string",
"boostingType": "string",
"growPolicy": "string",
"learningRate": "int",
"maxBin": "int",
"maxDepth": "int",
"maxLeaves": "int",
"minDataInLeaf": "int",
"minSplitGain": "int",
"modelName": "string",
"nEstimators": "int",
"numLeaves": "int",
"preprocessorName": "string",
"regAlpha": "int",
"regLambda": "int",
"subsample": "int",
"subsampleFreq": "int",
"treeMethod": "string",
"withMean": "bool",
"withStd": "bool"
},
"forecastingSettings": {
"countryOrRegionForHolidays": "string",
"cvStepSize": "int",
"featureLags": "string",
"forecastHorizon": {
"mode": "string"
// For remaining properties, see ForecastHorizon objects
},
"frequency": "string",
"seasonality": {
"mode": "string"
// For remaining properties, see Seasonality objects
},
"shortSeriesHandlingConfig": "string",
"targetAggregateFunction": "string",
"targetLags": {
"mode": "string"
// For remaining properties, see TargetLags objects
},
"targetRollingWindowSize": {
"mode": "string"
// For remaining properties, see TargetRollingWindowSize objects
},
"timeColumnName": "string",
"timeSeriesIdColumnNames": [ "string" ],
"useStl": "string"
},
"limitSettings": {
"enableEarlyTermination": "bool",
"exitScore": "int",
"maxConcurrentTrials": "int",
"maxCoresPerTrial": "int",
"maxNodes": "int",
"maxTrials": "int",
"sweepConcurrentTrials": "int",
"sweepTrials": "int",
"timeout": "string",
"trialTimeout": "string"
},
"nCrossValidations": {
"mode": "string"
// For remaining properties, see NCrossValidations objects
},
"primaryMetric": "string",
"searchSpace": [
{
"booster": "string",
"boostingType": "string",
"growPolicy": "string",
"learningRate": "string",
"maxBin": "string",
"maxDepth": "string",
"maxLeaves": "string",
"minDataInLeaf": "string",
"minSplitGain": "string",
"modelName": "string",
"nEstimators": "string",
"numLeaves": "string",
"preprocessorName": "string",
"regAlpha": "string",
"regLambda": "string",
"subsample": "string",
"subsampleFreq": "string",
"treeMethod": "string",
"withMean": "string",
"withStd": "string"
}
],
"sweepSettings": {
"earlyTermination": {
"delayEvaluation": "int",
"evaluationInterval": "int",
"policyType": "string"
// For remaining properties, see EarlyTerminationPolicy objects
},
"samplingAlgorithm": "string"
},
"testData": {
"description": "string",
"jobInputType": "string",
"mode": "string",
"uri": "string"
},
"testDataSize": "int",
"trainingSettings": {
"allowedTrainingAlgorithms": [ "string" ],
"blockedTrainingAlgorithms": [ "string" ],
"enableDnnTraining": "bool",
"enableModelExplainability": "bool",
"enableOnnxCompatibleModels": "bool",
"enableStackEnsemble": "bool",
"enableVoteEnsemble": "bool",
"ensembleModelDownloadTimeout": "string",
"stackEnsembleSettings": {
"stackMetaLearnerKWargs": {},
"stackMetaLearnerTrainPercentage": "int",
"stackMetaLearnerType": "string"
},
"trainingMode": "string"
},
"validationData": {
"description": "string",
"jobInputType": "string",
"mode": "string",
"uri": "string"
},
"validationDataSize": "int",
"weightColumnName": "string"
For ImageClassification, use:
"taskType": "ImageClassification",
"limitSettings": {
"maxConcurrentTrials": "int",
"maxTrials": "int",
"timeout": "string"
},
"modelSettings": {
"advancedSettings": "string",
"amsGradient": "bool",
"augmentations": "string",
"beta1": "int",
"beta2": "int",
"checkpointFrequency": "int",
"checkpointModel": {
"description": "string",
"jobInputType": "string",
"mode": "string",
"uri": "string"
},
"checkpointRunId": "string",
"distributed": "bool",
"earlyStopping": "bool",
"earlyStoppingDelay": "int",
"earlyStoppingPatience": "int",
"enableOnnxNormalization": "bool",
"evaluationFrequency": "int",
"gradientAccumulationStep": "int",
"layersToFreeze": "int",
"learningRate": "int",
"learningRateScheduler": "string",
"modelName": "string",
"momentum": "int",
"nesterov": "bool",
"numberOfEpochs": "int",
"numberOfWorkers": "int",
"optimizer": "string",
"randomSeed": "int",
"stepLRGamma": "int",
"stepLRStepSize": "int",
"trainingBatchSize": "int",
"trainingCropSize": "int",
"validationBatchSize": "int",
"validationCropSize": "int",
"validationResizeSize": "int",
"warmupCosineLRCycles": "int",
"warmupCosineLRWarmupEpochs": "int",
"weightDecay": "int",
"weightedLoss": "int"
},
"primaryMetric": "string",
"searchSpace": [
{
"amsGradient": "string",
"augmentations": "string",
"beta1": "string",
"beta2": "string",
"distributed": "string",
"earlyStopping": "string",
"earlyStoppingDelay": "string",
"earlyStoppingPatience": "string",
"enableOnnxNormalization": "string",
"evaluationFrequency": "string",
"gradientAccumulationStep": "string",
"layersToFreeze": "string",
"learningRate": "string",
"learningRateScheduler": "string",
"modelName": "string",
"momentum": "string",
"nesterov": "string",
"numberOfEpochs": "string",
"numberOfWorkers": "string",
"optimizer": "string",
"randomSeed": "string",
"stepLRGamma": "string",
"stepLRStepSize": "string",
"trainingBatchSize": "string",
"trainingCropSize": "string",
"validationBatchSize": "string",
"validationCropSize": "string",
"validationResizeSize": "string",
"warmupCosineLRCycles": "string",
"warmupCosineLRWarmupEpochs": "string",
"weightDecay": "string",
"weightedLoss": "string"
}
],
"sweepSettings": {
"earlyTermination": {
"delayEvaluation": "int",
"evaluationInterval": "int",
"policyType": "string"
// For remaining properties, see EarlyTerminationPolicy objects
},
"samplingAlgorithm": "string"
},
"validationData": {
"description": "string",
"jobInputType": "string",
"mode": "string",
"uri": "string"
},
"validationDataSize": "int"
For ImageClassificationMultilabel, use:
"taskType": "ImageClassificationMultilabel",
"limitSettings": {
"maxConcurrentTrials": "int",
"maxTrials": "int",
"timeout": "string"
},
"modelSettings": {
"advancedSettings": "string",
"amsGradient": "bool",
"augmentations": "string",
"beta1": "int",
"beta2": "int",
"checkpointFrequency": "int",
"checkpointModel": {
"description": "string",
"jobInputType": "string",
"mode": "string",
"uri": "string"
},
"checkpointRunId": "string",
"distributed": "bool",
"earlyStopping": "bool",
"earlyStoppingDelay": "int",
"earlyStoppingPatience": "int",
"enableOnnxNormalization": "bool",
"evaluationFrequency": "int",
"gradientAccumulationStep": "int",
"layersToFreeze": "int",
"learningRate": "int",
"learningRateScheduler": "string",
"modelName": "string",
"momentum": "int",
"nesterov": "bool",
"numberOfEpochs": "int",
"numberOfWorkers": "int",
"optimizer": "string",
"randomSeed": "int",
"stepLRGamma": "int",
"stepLRStepSize": "int",
"trainingBatchSize": "int",
"trainingCropSize": "int",
"validationBatchSize": "int",
"validationCropSize": "int",
"validationResizeSize": "int",
"warmupCosineLRCycles": "int",
"warmupCosineLRWarmupEpochs": "int",
"weightDecay": "int",
"weightedLoss": "int"
},
"primaryMetric": "string",
"searchSpace": [
{
"amsGradient": "string",
"augmentations": "string",
"beta1": "string",
"beta2": "string",
"distributed": "string",
"earlyStopping": "string",
"earlyStoppingDelay": "string",
"earlyStoppingPatience": "string",
"enableOnnxNormalization": "string",
"evaluationFrequency": "string",
"gradientAccumulationStep": "string",
"layersToFreeze": "string",
"learningRate": "string",
"learningRateScheduler": "string",
"modelName": "string",
"momentum": "string",
"nesterov": "string",
"numberOfEpochs": "string",
"numberOfWorkers": "string",
"optimizer": "string",
"randomSeed": "string",
"stepLRGamma": "string",
"stepLRStepSize": "string",
"trainingBatchSize": "string",
"trainingCropSize": "string",
"validationBatchSize": "string",
"validationCropSize": "string",
"validationResizeSize": "string",
"warmupCosineLRCycles": "string",
"warmupCosineLRWarmupEpochs": "string",
"weightDecay": "string",
"weightedLoss": "string"
}
],
"sweepSettings": {
"earlyTermination": {
"delayEvaluation": "int",
"evaluationInterval": "int",
"policyType": "string"
// For remaining properties, see EarlyTerminationPolicy objects
},
"samplingAlgorithm": "string"
},
"validationData": {
"description": "string",
"jobInputType": "string",
"mode": "string",
"uri": "string"
},
"validationDataSize": "int"
For ImageInstanceSegmentation, use:
"taskType": "ImageInstanceSegmentation",
"limitSettings": {
"maxConcurrentTrials": "int",
"maxTrials": "int",
"timeout": "string"
},
"modelSettings": {
"advancedSettings": "string",
"amsGradient": "bool",
"augmentations": "string",
"beta1": "int",
"beta2": "int",
"boxDetectionsPerImage": "int",
"boxScoreThreshold": "int",
"checkpointFrequency": "int",
"checkpointModel": {
"description": "string",
"jobInputType": "string",
"mode": "string",
"uri": "string"
},
"checkpointRunId": "string",
"distributed": "bool",
"earlyStopping": "bool",
"earlyStoppingDelay": "int",
"earlyStoppingPatience": "int",
"enableOnnxNormalization": "bool",
"evaluationFrequency": "int",
"gradientAccumulationStep": "int",
"imageSize": "int",
"layersToFreeze": "int",
"learningRate": "int",
"learningRateScheduler": "string",
"maxSize": "int",
"minSize": "int",
"modelName": "string",
"modelSize": "string",
"momentum": "int",
"multiScale": "bool",
"nesterov": "bool",
"nmsIouThreshold": "int",
"numberOfEpochs": "int",
"numberOfWorkers": "int",
"optimizer": "string",
"randomSeed": "int",
"stepLRGamma": "int",
"stepLRStepSize": "int",
"tileGridSize": "string",
"tileOverlapRatio": "int",
"tilePredictionsNmsThreshold": "int",
"trainingBatchSize": "int",
"validationBatchSize": "int",
"validationIouThreshold": "int",
"validationMetricType": "string",
"warmupCosineLRCycles": "int",
"warmupCosineLRWarmupEpochs": "int",
"weightDecay": "int"
},
"primaryMetric": "MeanAveragePrecision",
"searchSpace": [
{
"amsGradient": "string",
"augmentations": "string",
"beta1": "string",
"beta2": "string",
"boxDetectionsPerImage": "string",
"boxScoreThreshold": "string",
"distributed": "string",
"earlyStopping": "string",
"earlyStoppingDelay": "string",
"earlyStoppingPatience": "string",
"enableOnnxNormalization": "string",
"evaluationFrequency": "string",
"gradientAccumulationStep": "string",
"imageSize": "string",
"layersToFreeze": "string",
"learningRate": "string",
"learningRateScheduler": "string",
"maxSize": "string",
"minSize": "string",
"modelName": "string",
"modelSize": "string",
"momentum": "string",
"multiScale": "string",
"nesterov": "string",
"nmsIouThreshold": "string",
"numberOfEpochs": "string",
"numberOfWorkers": "string",
"optimizer": "string",
"randomSeed": "string",
"stepLRGamma": "string",
"stepLRStepSize": "string",
"tileGridSize": "string",
"tileOverlapRatio": "string",
"tilePredictionsNmsThreshold": "string",
"trainingBatchSize": "string",
"validationBatchSize": "string",
"validationIouThreshold": "string",
"validationMetricType": "string",
"warmupCosineLRCycles": "string",
"warmupCosineLRWarmupEpochs": "string",
"weightDecay": "string"
}
],
"sweepSettings": {
"earlyTermination": {
"delayEvaluation": "int",
"evaluationInterval": "int",
"policyType": "string"
// For remaining properties, see EarlyTerminationPolicy objects
},
"samplingAlgorithm": "string"
},
"validationData": {
"description": "string",
"jobInputType": "string",
"mode": "string",
"uri": "string"
},
"validationDataSize": "int"
For ImageObjectDetection, use:
"taskType": "ImageObjectDetection",
"limitSettings": {
"maxConcurrentTrials": "int",
"maxTrials": "int",
"timeout": "string"
},
"modelSettings": {
"advancedSettings": "string",
"amsGradient": "bool",
"augmentations": "string",
"beta1": "int",
"beta2": "int",
"boxDetectionsPerImage": "int",
"boxScoreThreshold": "int",
"checkpointFrequency": "int",
"checkpointModel": {
"description": "string",
"jobInputType": "string",
"mode": "string",
"uri": "string"
},
"checkpointRunId": "string",
"distributed": "bool",
"earlyStopping": "bool",
"earlyStoppingDelay": "int",
"earlyStoppingPatience": "int",
"enableOnnxNormalization": "bool",
"evaluationFrequency": "int",
"gradientAccumulationStep": "int",
"imageSize": "int",
"layersToFreeze": "int",
"learningRate": "int",
"learningRateScheduler": "string",
"maxSize": "int",
"minSize": "int",
"modelName": "string",
"modelSize": "string",
"momentum": "int",
"multiScale": "bool",
"nesterov": "bool",
"nmsIouThreshold": "int",
"numberOfEpochs": "int",
"numberOfWorkers": "int",
"optimizer": "string",
"randomSeed": "int",
"stepLRGamma": "int",
"stepLRStepSize": "int",
"tileGridSize": "string",
"tileOverlapRatio": "int",
"tilePredictionsNmsThreshold": "int",
"trainingBatchSize": "int",
"validationBatchSize": "int",
"validationIouThreshold": "int",
"validationMetricType": "string",
"warmupCosineLRCycles": "int",
"warmupCosineLRWarmupEpochs": "int",
"weightDecay": "int"
},
"primaryMetric": "MeanAveragePrecision",
"searchSpace": [
{
"amsGradient": "string",
"augmentations": "string",
"beta1": "string",
"beta2": "string",
"boxDetectionsPerImage": "string",
"boxScoreThreshold": "string",
"distributed": "string",
"earlyStopping": "string",
"earlyStoppingDelay": "string",
"earlyStoppingPatience": "string",
"enableOnnxNormalization": "string",
"evaluationFrequency": "string",
"gradientAccumulationStep": "string",
"imageSize": "string",
"layersToFreeze": "string",
"learningRate": "string",
"learningRateScheduler": "string",
"maxSize": "string",
"minSize": "string",
"modelName": "string",
"modelSize": "string",
"momentum": "string",
"multiScale": "string",
"nesterov": "string",
"nmsIouThreshold": "string",
"numberOfEpochs": "string",
"numberOfWorkers": "string",
"optimizer": "string",
"randomSeed": "string",
"stepLRGamma": "string",
"stepLRStepSize": "string",
"tileGridSize": "string",
"tileOverlapRatio": "string",
"tilePredictionsNmsThreshold": "string",
"trainingBatchSize": "string",
"validationBatchSize": "string",
"validationIouThreshold": "string",
"validationMetricType": "string",
"warmupCosineLRCycles": "string",
"warmupCosineLRWarmupEpochs": "string",
"weightDecay": "string"
}
],
"sweepSettings": {
"earlyTermination": {
"delayEvaluation": "int",
"evaluationInterval": "int",
"policyType": "string"
// For remaining properties, see EarlyTerminationPolicy objects
},
"samplingAlgorithm": "string"
},
"validationData": {
"description": "string",
"jobInputType": "string",
"mode": "string",
"uri": "string"
},
"validationDataSize": "int"
For Regression, use:
"taskType": "Regression",
"cvSplitColumnNames": [ "string" ],
"featurizationSettings": {
"blockedTransformers": [ "string" ],
"columnNameAndTypes": {
"{customized property}": "string"
},
"datasetLanguage": "string",
"enableDnnFeaturization": "bool",
"mode": "string",
"transformerParams": {
"{customized property}": [
{
"fields": [ "string" ],
"parameters": {}
}
]
}
},
"fixedParameters": {
"booster": "string",
"boostingType": "string",
"growPolicy": "string",
"learningRate": "int",
"maxBin": "int",
"maxDepth": "int",
"maxLeaves": "int",
"minDataInLeaf": "int",
"minSplitGain": "int",
"modelName": "string",
"nEstimators": "int",
"numLeaves": "int",
"preprocessorName": "string",
"regAlpha": "int",
"regLambda": "int",
"subsample": "int",
"subsampleFreq": "int",
"treeMethod": "string",
"withMean": "bool",
"withStd": "bool"
},
"limitSettings": {
"enableEarlyTermination": "bool",
"exitScore": "int",
"maxConcurrentTrials": "int",
"maxCoresPerTrial": "int",
"maxNodes": "int",
"maxTrials": "int",
"sweepConcurrentTrials": "int",
"sweepTrials": "int",
"timeout": "string",
"trialTimeout": "string"
},
"nCrossValidations": {
"mode": "string"
// For remaining properties, see NCrossValidations objects
},
"primaryMetric": "string",
"searchSpace": [
{
"booster": "string",
"boostingType": "string",
"growPolicy": "string",
"learningRate": "string",
"maxBin": "string",
"maxDepth": "string",
"maxLeaves": "string",
"minDataInLeaf": "string",
"minSplitGain": "string",
"modelName": "string",
"nEstimators": "string",
"numLeaves": "string",
"preprocessorName": "string",
"regAlpha": "string",
"regLambda": "string",
"subsample": "string",
"subsampleFreq": "string",
"treeMethod": "string",
"withMean": "string",
"withStd": "string"
}
],
"sweepSettings": {
"earlyTermination": {
"delayEvaluation": "int",
"evaluationInterval": "int",
"policyType": "string"
// For remaining properties, see EarlyTerminationPolicy objects
},
"samplingAlgorithm": "string"
},
"testData": {
"description": "string",
"jobInputType": "string",
"mode": "string",
"uri": "string"
},
"testDataSize": "int",
"trainingSettings": {
"allowedTrainingAlgorithms": [ "string" ],
"blockedTrainingAlgorithms": [ "string" ],
"enableDnnTraining": "bool",
"enableModelExplainability": "bool",
"enableOnnxCompatibleModels": "bool",
"enableStackEnsemble": "bool",
"enableVoteEnsemble": "bool",
"ensembleModelDownloadTimeout": "string",
"stackEnsembleSettings": {
"stackMetaLearnerKWargs": {},
"stackMetaLearnerTrainPercentage": "int",
"stackMetaLearnerType": "string"
},
"trainingMode": "string"
},
"validationData": {
"description": "string",
"jobInputType": "string",
"mode": "string",
"uri": "string"
},
"validationDataSize": "int",
"weightColumnName": "string"
For TextClassification, use:
"taskType": "TextClassification",
"featurizationSettings": {
"datasetLanguage": "string"
},
"fixedParameters": {
"gradientAccumulationSteps": "int",
"learningRate": "int",
"learningRateScheduler": "string",
"modelName": "string",
"numberOfEpochs": "int",
"trainingBatchSize": "int",
"validationBatchSize": "int",
"warmupRatio": "int",
"weightDecay": "int"
},
"limitSettings": {
"maxConcurrentTrials": "int",
"maxNodes": "int",
"maxTrials": "int",
"timeout": "string",
"trialTimeout": "string"
},
"primaryMetric": "string",
"searchSpace": [
{
"gradientAccumulationSteps": "string",
"learningRate": "string",
"learningRateScheduler": "string",
"modelName": "string",
"numberOfEpochs": "string",
"trainingBatchSize": "string",
"validationBatchSize": "string",
"warmupRatio": "string",
"weightDecay": "string"
}
],
"sweepSettings": {
"earlyTermination": {
"delayEvaluation": "int",
"evaluationInterval": "int",
"policyType": "string"
// For remaining properties, see EarlyTerminationPolicy objects
},
"samplingAlgorithm": "string"
},
"validationData": {
"description": "string",
"jobInputType": "string",
"mode": "string",
"uri": "string"
}
For TextClassificationMultilabel, use:
"taskType": "TextClassificationMultilabel",
"featurizationSettings": {
"datasetLanguage": "string"
},
"fixedParameters": {
"gradientAccumulationSteps": "int",
"learningRate": "int",
"learningRateScheduler": "string",
"modelName": "string",
"numberOfEpochs": "int",
"trainingBatchSize": "int",
"validationBatchSize": "int",
"warmupRatio": "int",
"weightDecay": "int"
},
"limitSettings": {
"maxConcurrentTrials": "int",
"maxNodes": "int",
"maxTrials": "int",
"timeout": "string",
"trialTimeout": "string"
},
"searchSpace": [
{
"gradientAccumulationSteps": "string",
"learningRate": "string",
"learningRateScheduler": "string",
"modelName": "string",
"numberOfEpochs": "string",
"trainingBatchSize": "string",
"validationBatchSize": "string",
"warmupRatio": "string",
"weightDecay": "string"
}
],
"sweepSettings": {
"earlyTermination": {
"delayEvaluation": "int",
"evaluationInterval": "int",
"policyType": "string"
// For remaining properties, see EarlyTerminationPolicy objects
},
"samplingAlgorithm": "string"
},
"validationData": {
"description": "string",
"jobInputType": "string",
"mode": "string",
"uri": "string"
}
For TextNER, use:
"taskType": "TextNER",
"featurizationSettings": {
"datasetLanguage": "string"
},
"fixedParameters": {
"gradientAccumulationSteps": "int",
"learningRate": "int",
"learningRateScheduler": "string",
"modelName": "string",
"numberOfEpochs": "int",
"trainingBatchSize": "int",
"validationBatchSize": "int",
"warmupRatio": "int",
"weightDecay": "int"
},
"limitSettings": {
"maxConcurrentTrials": "int",
"maxNodes": "int",
"maxTrials": "int",
"timeout": "string",
"trialTimeout": "string"
},
"searchSpace": [
{
"gradientAccumulationSteps": "string",
"learningRate": "string",
"learningRateScheduler": "string",
"modelName": "string",
"numberOfEpochs": "string",
"trainingBatchSize": "string",
"validationBatchSize": "string",
"warmupRatio": "string",
"weightDecay": "string"
}
],
"sweepSettings": {
"earlyTermination": {
"delayEvaluation": "int",
"evaluationInterval": "int",
"policyType": "string"
// For remaining properties, see EarlyTerminationPolicy objects
},
"samplingAlgorithm": "string"
},
"validationData": {
"description": "string",
"jobInputType": "string",
"mode": "string",
"uri": "string"
}
NCrossValidations objects
Set the mode property to specify the type of object.
For Auto, use:
"mode": "Auto"
For Custom, use:
"mode": "Custom",
"value": "int"
EarlyTerminationPolicy objects
Set the policyType property to specify the type of object.
For Bandit, use:
"policyType": "Bandit",
"slackAmount": "int",
"slackFactor": "int"
For MedianStopping, use:
"policyType": "MedianStopping"
For TruncationSelection, use:
"policyType": "TruncationSelection",
"truncationPercentage": "int"
ForecastHorizon objects
Set the mode property to specify the type of object.
For Auto, use:
"mode": "Auto"
For Custom, use:
"mode": "Custom",
"value": "int"
Seasonality objects
Set the mode property to specify the type of object.
For Auto, use:
"mode": "Auto"
For Custom, use:
"mode": "Custom",
"value": "int"
TargetLags objects
Set the mode property to specify the type of object.
For Auto, use:
"mode": "Auto"
For Custom, use:
"mode": "Custom",
"values": [ "int" ]
TargetRollingWindowSize objects
Set the mode property to specify the type of object.
For Auto, use:
"mode": "Auto"
For Custom, use:
"mode": "Custom",
"value": "int"
DistributionConfiguration objects
Set the distributionType property to specify the type of object.
For Mpi, use:
"distributionType": "Mpi",
"processCountPerInstance": "int"
For PyTorch, use:
"distributionType": "PyTorch",
"processCountPerInstance": "int"
For TensorFlow, use:
"distributionType": "TensorFlow",
"parameterServerCount": "int",
"workerCount": "int"
JobInput objects
Set the jobInputType property to specify the type of object.
For custom_model, use:
"jobInputType": "custom_model",
"mode": "string",
"uri": "string"
For literal, use:
"jobInputType": "literal",
"value": "string"
For mlflow_model, use:
"jobInputType": "mlflow_model",
"mode": "string",
"uri": "string"
For mltable, use:
"jobInputType": "mltable",
"mode": "string",
"uri": "string"
For triton_model, use:
"jobInputType": "triton_model",
"mode": "string",
"uri": "string"
For uri_file, use:
"jobInputType": "uri_file",
"mode": "string",
"uri": "string"
For uri_folder, use:
"jobInputType": "uri_folder",
"mode": "string",
"uri": "string"
LabelingJobMediaProperties objects
Set the mediaType property to specify the type of object.
For Image, use:
"mediaType": "Image",
"annotationType": "string"
For Text, use:
"mediaType": "Text",
"annotationType": "string"
MLAssistConfiguration objects
Set the mlAssist property to specify the type of object.
For Disabled, use:
"mlAssist": "Disabled"
For Enabled, use:
"mlAssist": "Enabled",
"inferencingComputeBinding": "string",
"trainingComputeBinding": "string"
SparkJobEntry objects
Set the sparkJobEntryType property to specify the type of object.
For SparkJobPythonEntry, use:
"sparkJobEntryType": "SparkJobPythonEntry",
"file": "string"
For SparkJobScalaEntry, use:
"sparkJobEntryType": "SparkJobScalaEntry",
"className": "string"
SamplingAlgorithm objects
Set the samplingAlgorithmType property to specify the type of object.
For Bayesian, use:
"samplingAlgorithmType": "Bayesian"
For Grid, use:
"samplingAlgorithmType": "Grid"
For Random, use:
"samplingAlgorithmType": "Random",
"logbase": "string",
"rule": "string",
"seed": "int"
Property values
workspaces/jobs
Name | Description | Value |
---|---|---|
type | The resource type | 'Microsoft.MachineLearningServices/workspaces/jobs' |
apiVersion | The resource api version | '2022-12-01-preview' |
name | The resource name See how to set names and types for child resources in JSON ARM templates. |
string (required) |
properties | [Required] Additional attributes of the entity. | JobBaseProperties (required) |
JobBaseProperties
Name | Description | Value |
---|---|---|
componentId | ARM resource ID of the component resource. | string |
computeId | ARM resource ID of the compute resource. | string |
description | The asset description text. | string |
displayName | Display name of job. | string |
experimentName | The name of the experiment the job belongs to. If not set, the job is placed in the "Default" experiment. | string |
identity | Identity configuration. If set, this should be one of AmlToken, ManagedIdentity, UserIdentity or null. Defaults to AmlToken if null. |
IdentityConfiguration |
isArchived | Is the asset archived? | bool |
properties | The asset property dictionary. | ResourceBaseProperties |
services | List of JobEndpoints. For local jobs, a job endpoint will have an endpoint value of FileStreamObject. |
JobBaseServices |
tags | Tag dictionary. Tags can be added, removed, and updated. | object |
jobType | Set the object type | AutoML Command Labeling Pipeline Spark Sweep (required) |
IdentityConfiguration
Name | Description | Value |
---|---|---|
identityType | Set the object type | AMLToken Managed UserIdentity (required) |
AmlToken
Name | Description | Value |
---|---|---|
identityType | [Required] Specifies the type of identity framework. | 'AMLToken' (required) |
ManagedIdentity
Name | Description | Value |
---|---|---|
identityType | [Required] Specifies the type of identity framework. | 'Managed' (required) |
clientId | Specifies a user-assigned identity by client ID. For system-assigned, do not set this field. | string Constraints: Min length = 36 Max length = 36 Pattern = ^[0-9a-fA-F]{8}-([0-9a-fA-F]{4}-){3}[0-9a-fA-F]{12}$ |
objectId | Specifies a user-assigned identity by object ID. For system-assigned, do not set this field. | string Constraints: Min length = 36 Max length = 36 Pattern = ^[0-9a-fA-F]{8}-([0-9a-fA-F]{4}-){3}[0-9a-fA-F]{12}$ |
resourceId | Specifies a user-assigned identity by ARM resource ID. For system-assigned, do not set this field. | string |
UserIdentity
Name | Description | Value |
---|---|---|
identityType | [Required] Specifies the type of identity framework. | 'UserIdentity' (required) |
ResourceBaseProperties
Name | Description | Value |
---|---|---|
{customized property} | string |
JobBaseServices
Name | Description | Value |
---|---|---|
{customized property} | JobService |
JobService
Name | Description | Value |
---|---|---|
endpoint | Url for endpoint. | string |
jobServiceType | Endpoint type. | string |
nodes | Nodes that user would like to start the service on. If Nodes is not set or set to null, the service will only be started on leader node. |
Nodes |
port | Port for endpoint set by user. | int |
properties | Additional properties to set on the endpoint. | JobServiceProperties |
Nodes
Name | Description | Value |
---|---|---|
nodesValueType | Set the object type | All (required) |
AllNodes
Name | Description | Value |
---|---|---|
nodesValueType | [Required] Type of the Nodes value | 'All' (required) |
JobServiceProperties
Name | Description | Value |
---|---|---|
{customized property} | string |
AutoMLJob
Name | Description | Value |
---|---|---|
jobType | [Required] Specifies the type of job. | 'AutoML' (required) |
environmentId | The ARM resource ID of the Environment specification for the job. This is optional value to provide, if not provided, AutoML will default this to Production AutoML curated environment version when running the job. |
string |
environmentVariables | Environment variables included in the job. | AutoMLJobEnvironmentVariables |
outputs | Mapping of output data bindings used in the job. | AutoMLJobOutputs |
resources | Compute Resource configuration for the job. | JobResourceConfiguration |
taskDetails | [Required] This represents scenario which can be one of Tables/NLP/Image | AutoMLVertical (required) |
AutoMLJobEnvironmentVariables
Name | Description | Value |
---|---|---|
{customized property} | string |
AutoMLJobOutputs
Name | Description | Value |
---|---|---|
{customized property} | JobOutput |
JobOutput
Name | Description | Value |
---|---|---|
description | Description for the output. | string |
jobOutputType | Set the object type | custom_model mlflow_model mltable triton_model uri_file uri_folder (required) |
CustomModelJobOutput
Name | Description | Value |
---|---|---|
jobOutputType | [Required] Specifies the type of job. | 'custom_model' (required) |
assetName | Output Asset Name. | string |
assetVersion | Output Asset Version. | string |
mode | Output Asset Delivery Mode. | 'Direct' 'ReadWriteMount' 'Upload' |
uri | Output Asset URI. | string |
MLFlowModelJobOutput
Name | Description | Value |
---|---|---|
jobOutputType | [Required] Specifies the type of job. | 'mlflow_model' (required) |
assetName | Output Asset Name. | string |
assetVersion | Output Asset Version. | string |
mode | Output Asset Delivery Mode. | 'Direct' 'ReadWriteMount' 'Upload' |
uri | Output Asset URI. | string |
MLTableJobOutput
Name | Description | Value |
---|---|---|
jobOutputType | [Required] Specifies the type of job. | 'mltable' (required) |
assetName | Output Asset Name. | string |
assetVersion | Output Asset Version. | string |
mode | Output Asset Delivery Mode. | 'Direct' 'ReadWriteMount' 'Upload' |
uri | Output Asset URI. | string |
TritonModelJobOutput
Name | Description | Value |
---|---|---|
jobOutputType | [Required] Specifies the type of job. | 'triton_model' (required) |
assetName | Output Asset Name. | string |
assetVersion | Output Asset Version. | string |
mode | Output Asset Delivery Mode. | 'Direct' 'ReadWriteMount' 'Upload' |
uri | Output Asset URI. | string |
UriFileJobOutput
Name | Description | Value |
---|---|---|
jobOutputType | [Required] Specifies the type of job. | 'uri_file' (required) |
assetName | Output Asset Name. | string |
assetVersion | Output Asset Version. | string |
mode | Output Asset Delivery Mode. | 'Direct' 'ReadWriteMount' 'Upload' |
uri | Output Asset URI. | string |
UriFolderJobOutput
Name | Description | Value |
---|---|---|
jobOutputType | [Required] Specifies the type of job. | 'uri_folder' (required) |
assetName | Output Asset Name. | string |
assetVersion | Output Asset Version. | string |
mode | Output Asset Delivery Mode. | 'Direct' 'ReadWriteMount' 'Upload' |
uri | Output Asset URI. | string |
JobResourceConfiguration
Name | Description | Value |
---|---|---|
dockerArgs | Extra arguments to pass to the Docker run command. This would override any parameters that have already been set by the system, or in this section. This parameter is only supported for Azure ML compute types. | string |
instanceCount | Optional number of instances or nodes used by the compute target. | int |
instanceType | Optional type of VM used as supported by the compute target. | string |
properties | Additional properties bag. | ResourceConfigurationProperties |
shmSize | Size of the docker container's shared memory block. This should be in the format of (number)(unit) where number as to be greater than 0 and the unit can be one of b(bytes), k(kilobytes), m(megabytes), or g(gigabytes). | string Constraints: Pattern = \d+[bBkKmMgG] |
ResourceConfigurationProperties
Name | Description | Value |
---|---|---|
{customized property} |
AutoMLVertical
Name | Description | Value |
---|---|---|
logVerbosity | Log verbosity for the job. | 'Critical' 'Debug' 'Error' 'Info' 'NotSet' 'Warning' |
targetColumnName | Target column name: This is prediction values column. Also known as label column name in context of classification tasks. |
string |
trainingData | [Required] Training data input. | MLTableJobInput (required) |
taskType | Set the object type | Classification Forecasting ImageClassification ImageClassificationMultilabel ImageInstanceSegmentation ImageObjectDetection Regression TextClassification TextClassificationMultilabel TextNER (required) |
MLTableJobInput
Name | Description | Value |
---|---|---|
description | Description for the input. | string |
jobInputType | [Required] Specifies the type of job. | 'custom_model' 'literal' 'mlflow_model' 'mltable' 'triton_model' 'uri_file' 'uri_folder' (required) |
mode | Input Asset Delivery Mode. | 'Direct' 'Download' 'EvalDownload' 'EvalMount' 'ReadOnlyMount' 'ReadWriteMount' |
uri | [Required] Input Asset URI. | string (required) Constraints: Pattern = [a-zA-Z0-9_] |
Classification
Name | Description | Value |
---|---|---|
taskType | [Required] Task type for AutoMLJob. | 'Classification' (required) |
cvSplitColumnNames | Columns to use for CVSplit data. | string[] |
featurizationSettings | Featurization inputs needed for AutoML job. | TableVerticalFeaturizationSettings |
fixedParameters | Model/training parameters that will remain constant throughout training. | TableFixedParameters |
limitSettings | Execution constraints for AutoMLJob. | TableVerticalLimitSettings |
nCrossValidations | Number of cross validation folds to be applied on training dataset when validation dataset is not provided. |
NCrossValidations |
positiveLabel | Positive label for binary metrics calculation. | string |
primaryMetric | Primary metric for the task. | 'AUCWeighted' 'Accuracy' 'AveragePrecisionScoreWeighted' 'NormMacroRecall' 'PrecisionScoreWeighted' |
searchSpace | Search space for sampling different combinations of models and their hyperparameters. | TableParameterSubspace[] |
sweepSettings | Settings for model sweeping and hyperparameter tuning. | TableSweepSettings |
testData | Test data input. | MLTableJobInput |
testDataSize | The fraction of test dataset that needs to be set aside for validation purpose. Values between (0.0 , 1.0) Applied when validation dataset is not provided. |
int |
trainingSettings | Inputs for training phase for an AutoML Job. | ClassificationTrainingSettings |
validationData | Validation data inputs. | MLTableJobInput |
validationDataSize | The fraction of training dataset that needs to be set aside for validation purpose. Values between (0.0 , 1.0) Applied when validation dataset is not provided. |
int |
weightColumnName | The name of the sample weight column. Automated ML supports a weighted column as an input, causing rows in the data to be weighted up or down. | string |
TableVerticalFeaturizationSettings
Name | Description | Value |
---|---|---|
blockedTransformers | These transformers shall not be used in featurization. | String array containing any of: 'CatTargetEncoder' 'CountVectorizer' 'HashOneHotEncoder' 'LabelEncoder' 'NaiveBayes' 'OneHotEncoder' 'TextTargetEncoder' 'TfIdf' 'WoETargetEncoder' 'WordEmbedding' |
columnNameAndTypes | Dictionary of column name and its type (int, float, string, datetime etc). | TableVerticalFeaturizationSettingsColumnNameAndTypes |
datasetLanguage | Dataset language, useful for the text data. | string |
enableDnnFeaturization | Determines whether to use Dnn based featurizers for data featurization. | bool |
mode | Featurization mode - User can keep the default 'Auto' mode and AutoML will take care of necessary transformation of the data in featurization phase. If 'Off' is selected then no featurization is done. If 'Custom' is selected then user can specify additional inputs to customize how featurization is done. |
'Auto' 'Custom' 'Off' |
transformerParams | User can specify additional transformers to be used along with the columns to which it would be applied and parameters for the transformer constructor. | TableVerticalFeaturizationSettingsTransformerParams |
TableVerticalFeaturizationSettingsColumnNameAndTypes
Name | Description | Value |
---|---|---|
{customized property} | string |
TableVerticalFeaturizationSettingsTransformerParams
Name | Description | Value |
---|---|---|
{customized property} | ColumnTransformer[] |
ColumnTransformer
Name | Description | Value |
---|---|---|
fields | Fields to apply transformer logic on. | string[] |
parameters | Different properties to be passed to transformer. Input expected is dictionary of key,value pairs in JSON format. |
TableFixedParameters
Name | Description | Value |
---|---|---|
booster | Specify the boosting type, e.g gbdt for XGBoost. | string |
boostingType | Specify the boosting type, e.g gbdt for LightGBM. | string |
growPolicy | Specify the grow policy, which controls the way new nodes are added to the tree. | string |
learningRate | The learning rate for the training procedure. | int |
maxBin | Specify the Maximum number of discrete bins to bucket continuous features . | int |
maxDepth | Specify the max depth to limit the tree depth explicitly. | int |
maxLeaves | Specify the max leaves to limit the tree leaves explicitly. | int |
minDataInLeaf | The minimum number of data per leaf. | int |
minSplitGain | Minimum loss reduction required to make a further partition on a leaf node of the tree. | int |
modelName | The name of the model to train. | string |
nEstimators | Specify the number of trees (or rounds) in an model. | int |
numLeaves | Specify the number of leaves. | int |
preprocessorName | The name of the preprocessor to use. | string |
regAlpha | L1 regularization term on weights. | int |
regLambda | L2 regularization term on weights. | int |
subsample | Subsample ratio of the training instance. | int |
subsampleFreq | Frequency of subsample. | int |
treeMethod | Specify the tree method. | string |
withMean | If true, center before scaling the data with StandardScalar. | bool |
withStd | If true, scaling the data with Unit Variance with StandardScalar. | bool |
TableVerticalLimitSettings
Name | Description | Value |
---|---|---|
enableEarlyTermination | Enable early termination, determines whether or not if AutoMLJob will terminate early if there is no score improvement in last 20 iterations. | bool |
exitScore | Exit score for the AutoML job. | int |
maxConcurrentTrials | Maximum Concurrent iterations. | int |
maxCoresPerTrial | Max cores per iteration. | int |
maxNodes | Maximum nodes to use for the experiment. | int |
maxTrials | Number of iterations. | int |
sweepConcurrentTrials | Number of concurrent sweeping runs that user wants to trigger. | int |
sweepTrials | Number of sweeping runs that user wants to trigger. | int |
timeout | AutoML job timeout. | string |
trialTimeout | Iteration timeout. | string |
NCrossValidations
Name | Description | Value |
---|---|---|
mode | Set the object type | Auto Custom (required) |
AutoNCrossValidations
Name | Description | Value |
---|---|---|
mode | [Required] Mode for determining N-Cross validations. | 'Auto' (required) |
CustomNCrossValidations
Name | Description | Value |
---|---|---|
mode | [Required] Mode for determining N-Cross validations. | 'Custom' (required) |
value | [Required] N-Cross validations value. | int (required) |
TableParameterSubspace
Name | Description | Value |
---|---|---|
booster | Specify the boosting type, e.g gbdt for XGBoost. | string |
boostingType | Specify the boosting type, e.g gbdt for LightGBM. | string |
growPolicy | Specify the grow policy, which controls the way new nodes are added to the tree. | string |
learningRate | The learning rate for the training procedure. | string |
maxBin | Specify the Maximum number of discrete bins to bucket continuous features . | string |
maxDepth | Specify the max depth to limit the tree depth explicitly. | string |
maxLeaves | Specify the max leaves to limit the tree leaves explicitly. | string |
minDataInLeaf | The minimum number of data per leaf. | string |
minSplitGain | Minimum loss reduction required to make a further partition on a leaf node of the tree. | string |
modelName | The name of the model to train. | string |
nEstimators | Specify the number of trees (or rounds) in an model. | string |
numLeaves | Specify the number of leaves. | string |
preprocessorName | The name of the preprocessor to use. | string |
regAlpha | L1 regularization term on weights. | string |
regLambda | L2 regularization term on weights. | string |
subsample | Subsample ratio of the training instance. | string |
subsampleFreq | Frequency of subsample | string |
treeMethod | Specify the tree method. | string |
withMean | If true, center before scaling the data with StandardScalar. | string |
withStd | If true, scaling the data with Unit Variance with StandardScalar. | string |
TableSweepSettings
Name | Description | Value |
---|---|---|
earlyTermination | Type of early termination policy for the sweeping job. | EarlyTerminationPolicy |
samplingAlgorithm | [Required] Type of sampling algorithm. | 'Bayesian' 'Grid' 'Random' (required) |
EarlyTerminationPolicy
Name | Description | Value |
---|---|---|
delayEvaluation | Number of intervals by which to delay the first evaluation. | int |
evaluationInterval | Interval (number of runs) between policy evaluations. | int |
policyType | Set the object type | Bandit MedianStopping TruncationSelection (required) |
BanditPolicy
Name | Description | Value |
---|---|---|
policyType | [Required] Name of policy configuration | 'Bandit' (required) |
slackAmount | Absolute distance allowed from the best performing run. | int |
slackFactor | Ratio of the allowed distance from the best performing run. | int |
MedianStoppingPolicy
Name | Description | Value |
---|---|---|
policyType | [Required] Name of policy configuration | 'MedianStopping' (required) |
TruncationSelectionPolicy
Name | Description | Value |
---|---|---|
policyType | [Required] Name of policy configuration | 'TruncationSelection' (required) |
truncationPercentage | The percentage of runs to cancel at each evaluation interval. | int |
ClassificationTrainingSettings
Name | Description | Value |
---|---|---|
allowedTrainingAlgorithms | Allowed models for classification task. | String array containing any of: 'BernoulliNaiveBayes' 'DecisionTree' 'ExtremeRandomTrees' 'GradientBoosting' 'KNN' 'LightGBM' 'LinearSVM' 'LogisticRegression' 'MultinomialNaiveBayes' 'RandomForest' 'SGD' 'SVM' 'XGBoostClassifier' |
blockedTrainingAlgorithms | Blocked models for classification task. | String array containing any of: 'BernoulliNaiveBayes' 'DecisionTree' 'ExtremeRandomTrees' 'GradientBoosting' 'KNN' 'LightGBM' 'LinearSVM' 'LogisticRegression' 'MultinomialNaiveBayes' 'RandomForest' 'SGD' 'SVM' 'XGBoostClassifier' |
enableDnnTraining | Enable recommendation of DNN models. | bool |
enableModelExplainability | Flag to turn on explainability on best model. | bool |
enableOnnxCompatibleModels | Flag for enabling onnx compatible models. | bool |
enableStackEnsemble | Enable stack ensemble run. | bool |
enableVoteEnsemble | Enable voting ensemble run. | bool |
ensembleModelDownloadTimeout | During VotingEnsemble and StackEnsemble model generation, multiple fitted models from the previous child runs are downloaded. Configure this parameter with a higher value than 300 secs, if more time is needed. |
string |
stackEnsembleSettings | Stack ensemble settings for stack ensemble run. | StackEnsembleSettings |
trainingMode | TrainingMode mode - Setting to 'auto' is same as setting it to 'non-distributed' for now, however in the future may result in mixed mode or heuristics based mode selection. Default is 'auto'. If 'Distributed' then only distributed featurization is used and distributed algorithms are chosen. If 'NonDistributed' then only non distributed algorithms are chosen. |
'Auto' 'Distributed' 'NonDistributed' |
StackEnsembleSettings
Name | Description | Value |
---|---|---|
stackMetaLearnerKWargs | Optional parameters to pass to the initializer of the meta-learner. | |
stackMetaLearnerTrainPercentage | Specifies the proportion of the training set (when choosing train and validation type of training) to be reserved for training the meta-learner. Default value is 0.2. | int |
stackMetaLearnerType | The meta-learner is a model trained on the output of the individual heterogeneous models. | 'ElasticNet' 'ElasticNetCV' 'LightGBMClassifier' 'LightGBMRegressor' 'LinearRegression' 'LogisticRegression' 'LogisticRegressionCV' 'None' |
Forecasting
Name | Description | Value |
---|---|---|
taskType | [Required] Task type for AutoMLJob. | 'Forecasting' (required) |
cvSplitColumnNames | Columns to use for CVSplit data. | string[] |
featurizationSettings | Featurization inputs needed for AutoML job. | TableVerticalFeaturizationSettings |
fixedParameters | Model/training parameters that will remain constant throughout training. | TableFixedParameters |
forecastingSettings | Forecasting task specific inputs. | ForecastingSettings |
limitSettings | Execution constraints for AutoMLJob. | TableVerticalLimitSettings |
nCrossValidations | Number of cross validation folds to be applied on training dataset when validation dataset is not provided. |
NCrossValidations |
primaryMetric | Primary metric for forecasting task. | 'NormalizedMeanAbsoluteError' 'NormalizedRootMeanSquaredError' 'R2Score' 'SpearmanCorrelation' |
searchSpace | Search space for sampling different combinations of models and their hyperparameters. | TableParameterSubspace[] |
sweepSettings | Settings for model sweeping and hyperparameter tuning. | TableSweepSettings |
testData | Test data input. | MLTableJobInput |
testDataSize | The fraction of test dataset that needs to be set aside for validation purpose. Values between (0.0 , 1.0) Applied when validation dataset is not provided. |
int |
trainingSettings | Inputs for training phase for an AutoML Job. | ForecastingTrainingSettings |
validationData | Validation data inputs. | MLTableJobInput |
validationDataSize | The fraction of training dataset that needs to be set aside for validation purpose. Values between (0.0 , 1.0) Applied when validation dataset is not provided. |
int |
weightColumnName | The name of the sample weight column. Automated ML supports a weighted column as an input, causing rows in the data to be weighted up or down. | string |
ForecastingSettings
Name | Description | Value |
---|---|---|
countryOrRegionForHolidays | Country or region for holidays for forecasting tasks. These should be ISO 3166 two-letter country/region codes, for example 'US' or 'GB'. |
string |
cvStepSize | Number of periods between the origin time of one CV fold and the next fold. For example, if CVStepSize = 3 for daily data, the origin time for each fold will bethree days apart. |
int |
featureLags | Flag for generating lags for the numeric features with 'auto' or null. | 'Auto' 'None' |
forecastHorizon | The desired maximum forecast horizon in units of time-series frequency. | ForecastHorizon |
frequency | When forecasting, this parameter represents the period with which the forecast is desired, for example daily, weekly, yearly, etc. The forecast frequency is dataset frequency by default. | string |
seasonality | Set time series seasonality as an integer multiple of the series frequency. If seasonality is set to 'auto', it will be inferred. |
Seasonality |
shortSeriesHandlingConfig | The parameter defining how if AutoML should handle short time series. | 'Auto' 'Drop' 'None' 'Pad' |
targetAggregateFunction | The function to be used to aggregate the time series target column to conform to a user specified frequency. If the TargetAggregateFunction is set i.e. not 'None', but the freq parameter is not set, the error is raised. The possible target aggregation functions are: "sum", "max", "min" and "mean". |
'Max' 'Mean' 'Min' 'None' 'Sum' |
targetLags | The number of past periods to lag from the target column. | TargetLags |
targetRollingWindowSize | The number of past periods used to create a rolling window average of the target column. | TargetRollingWindowSize |
timeColumnName | The name of the time column. This parameter is required when forecasting to specify the datetime column in the input data used for building the time series and inferring its frequency. | string |
timeSeriesIdColumnNames | The names of columns used to group a timeseries. It can be used to create multiple series. If grain is not defined, the data set is assumed to be one time-series. This parameter is used with task type forecasting. |
string[] |
useStl | Configure STL Decomposition of the time-series target column. | 'None' 'Season' 'SeasonTrend' |
ForecastHorizon
Name | Description | Value |
---|---|---|
mode | Set the object type | Auto Custom (required) |
AutoForecastHorizon
Name | Description | Value |
---|---|---|
mode | [Required] Set forecast horizon value selection mode. | 'Auto' (required) |
CustomForecastHorizon
Name | Description | Value |
---|---|---|
mode | [Required] Set forecast horizon value selection mode. | 'Custom' (required) |
value | [Required] Forecast horizon value. | int (required) |
Seasonality
Name | Description | Value |
---|---|---|
mode | Set the object type | Auto Custom (required) |
AutoSeasonality
Name | Description | Value |
---|---|---|
mode | [Required] Seasonality mode. | 'Auto' (required) |
CustomSeasonality
Name | Description | Value |
---|---|---|
mode | [Required] Seasonality mode. | 'Custom' (required) |
value | [Required] Seasonality value. | int (required) |
TargetLags
Name | Description | Value |
---|---|---|
mode | Set the object type | Auto Custom (required) |
AutoTargetLags
Name | Description | Value |
---|---|---|
mode | [Required] Set target lags mode - Auto/Custom | 'Auto' (required) |
CustomTargetLags
Name | Description | Value |
---|---|---|
mode | [Required] Set target lags mode - Auto/Custom | 'Custom' (required) |
values | [Required] Set target lags values. | int[] (required) |
TargetRollingWindowSize
Name | Description | Value |
---|---|---|
mode | Set the object type | Auto Custom (required) |
AutoTargetRollingWindowSize
Name | Description | Value |
---|---|---|
mode | [Required] TargetRollingWindowSiz detection mode. | 'Auto' (required) |
CustomTargetRollingWindowSize
Name | Description | Value |
---|---|---|
mode | [Required] TargetRollingWindowSiz detection mode. | 'Custom' (required) |
value | [Required] TargetRollingWindowSize value. | int (required) |
ForecastingTrainingSettings
Name | Description | Value |
---|---|---|
allowedTrainingAlgorithms | Allowed models for forecasting task. | String array containing any of: 'Arimax' 'AutoArima' 'Average' 'DecisionTree' 'ElasticNet' 'ExponentialSmoothing' 'ExtremeRandomTrees' 'GradientBoosting' 'KNN' 'LassoLars' 'LightGBM' 'Naive' 'Prophet' 'RandomForest' 'SGD' 'SeasonalAverage' 'SeasonalNaive' 'TCNForecaster' 'XGBoostRegressor' |
blockedTrainingAlgorithms | Blocked models for forecasting task. | String array containing any of: 'Arimax' 'AutoArima' 'Average' 'DecisionTree' 'ElasticNet' 'ExponentialSmoothing' 'ExtremeRandomTrees' 'GradientBoosting' 'KNN' 'LassoLars' 'LightGBM' 'Naive' 'Prophet' 'RandomForest' 'SGD' 'SeasonalAverage' 'SeasonalNaive' 'TCNForecaster' 'XGBoostRegressor' |
enableDnnTraining | Enable recommendation of DNN models. | bool |
enableModelExplainability | Flag to turn on explainability on best model. | bool |
enableOnnxCompatibleModels | Flag for enabling onnx compatible models. | bool |
enableStackEnsemble | Enable stack ensemble run. | bool |
enableVoteEnsemble | Enable voting ensemble run. | bool |
ensembleModelDownloadTimeout | During VotingEnsemble and StackEnsemble model generation, multiple fitted models from the previous child runs are downloaded. Configure this parameter with a higher value than 300 secs, if more time is needed. |
string |
stackEnsembleSettings | Stack ensemble settings for stack ensemble run. | StackEnsembleSettings |
trainingMode | TrainingMode mode - Setting to 'auto' is same as setting it to 'non-distributed' for now, however in the future may result in mixed mode or heuristics based mode selection. Default is 'auto'. If 'Distributed' then only distributed featurization is used and distributed algorithms are chosen. If 'NonDistributed' then only non distributed algorithms are chosen. |
'Auto' 'Distributed' 'NonDistributed' |
ImageClassification
Name | Description | Value |
---|---|---|
taskType | [Required] Task type for AutoMLJob. | 'ImageClassification' (required) |
limitSettings | [Required] Limit settings for the AutoML job. | ImageLimitSettings (required) |
modelSettings | Settings used for training the model. | ImageModelSettingsClassification |
primaryMetric | Primary metric to optimize for this task. | 'AUCWeighted' 'Accuracy' 'AveragePrecisionScoreWeighted' 'NormMacroRecall' 'PrecisionScoreWeighted' |
searchSpace | Search space for sampling different combinations of models and their hyperparameters. | ImageModelDistributionSettingsClassification[] |
sweepSettings | Model sweeping and hyperparameter sweeping related settings. | ImageSweepSettings |
validationData | Validation data inputs. | MLTableJobInput |
validationDataSize | The fraction of training dataset that needs to be set aside for validation purpose. Values between (0.0 , 1.0) Applied when validation dataset is not provided. |
int |
ImageLimitSettings
Name | Description | Value |
---|---|---|
maxConcurrentTrials | Maximum number of concurrent AutoML iterations. | int |
maxTrials | Maximum number of AutoML iterations. | int |
timeout | AutoML job timeout. | string |
ImageModelSettingsClassification
Name | Description | Value |
---|---|---|
advancedSettings | Settings for advanced scenarios. | string |
amsGradient | Enable AMSGrad when optimizer is 'adam' or 'adamw'. | bool |
augmentations | Settings for using Augmentations. | string |
beta1 | Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. | int |
beta2 | Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. | int |
checkpointFrequency | Frequency to store model checkpoints. Must be a positive integer. | int |
checkpointModel | The pretrained checkpoint model for incremental training. | MLFlowModelJobInput |
checkpointRunId | The id of a previous run that has a pretrained checkpoint for incremental training. | string |
distributed | Whether to use distributed training. | bool |
earlyStopping | Enable early stopping logic during training. | bool |
earlyStoppingDelay | Minimum number of epochs or validation evaluations to wait before primary metric improvement is tracked for early stopping. Must be a positive integer. |
int |
earlyStoppingPatience | Minimum number of epochs or validation evaluations with no primary metric improvement before the run is stopped. Must be a positive integer. |
int |
enableOnnxNormalization | Enable normalization when exporting ONNX model. | bool |
evaluationFrequency | Frequency to evaluate validation dataset to get metric scores. Must be a positive integer. | int |
gradientAccumulationStep | Gradient accumulation means running a configured number of "GradAccumulationStep" steps without updating the model weights while accumulating the gradients of those steps, and then using the accumulated gradients to compute the weight updates. Must be a positive integer. |
int |
layersToFreeze | Number of layers to freeze for the model. Must be a positive integer. For instance, passing 2 as value for 'seresnext' means freezing layer0 and layer1. For a full list of models supported and details on layer freeze, please see: /azure/machine-learning/how-to-auto-train-image-models. |
int |
learningRate | Initial learning rate. Must be a float in the range [0, 1]. | int |
learningRateScheduler | Type of learning rate scheduler. Must be 'warmup_cosine' or 'step'. | 'None' 'Step' 'WarmupCosine' |
modelName | Name of the model to use for training. For more information on the available models please visit the official documentation: /azure/machine-learning/how-to-auto-train-image-models. |
string |
momentum | Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1]. | int |
nesterov | Enable nesterov when optimizer is 'sgd'. | bool |
numberOfEpochs | Number of training epochs. Must be a positive integer. | int |
numberOfWorkers | Number of data loader workers. Must be a non-negative integer. | int |
optimizer | Type of optimizer. | 'Adam' 'Adamw' 'None' 'Sgd' |
randomSeed | Random seed to be used when using deterministic training. | int |
stepLRGamma | Value of gamma when learning rate scheduler is 'step'. Must be a float in the range [0, 1]. | int |
stepLRStepSize | Value of step size when learning rate scheduler is 'step'. Must be a positive integer. | int |
trainingBatchSize | Training batch size. Must be a positive integer. | int |
trainingCropSize | Image crop size that is input to the neural network for the training dataset. Must be a positive integer. | int |
validationBatchSize | Validation batch size. Must be a positive integer. | int |
validationCropSize | Image crop size that is input to the neural network for the validation dataset. Must be a positive integer. | int |
validationResizeSize | Image size to which to resize before cropping for validation dataset. Must be a positive integer. | int |
warmupCosineLRCycles | Value of cosine cycle when learning rate scheduler is 'warmup_cosine'. Must be a float in the range [0, 1]. | int |
warmupCosineLRWarmupEpochs | Value of warmup epochs when learning rate scheduler is 'warmup_cosine'. Must be a positive integer. | int |
weightDecay | Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be a float in the range[0, 1]. | int |
weightedLoss | Weighted loss. The accepted values are 0 for no weighted loss. 1 for weighted loss with sqrt.(class_weights). 2 for weighted loss with class_weights. Must be 0 or 1 or 2. |
int |
MLFlowModelJobInput
Name | Description | Value |
---|---|---|
description | Description for the input. | string |
jobInputType | [Required] Specifies the type of job. | 'custom_model' 'literal' 'mlflow_model' 'mltable' 'triton_model' 'uri_file' 'uri_folder' (required) |
mode | Input Asset Delivery Mode. | 'Direct' 'Download' 'EvalDownload' 'EvalMount' 'ReadOnlyMount' 'ReadWriteMount' |
uri | [Required] Input Asset URI. | string (required) Constraints: Pattern = [a-zA-Z0-9_] |
ImageModelDistributionSettingsClassification
Name | Description | Value |
---|---|---|
amsGradient | Enable AMSGrad when optimizer is 'adam' or 'adamw'. | string |
augmentations | Settings for using Augmentations. | string |
beta1 | Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. | string |
beta2 | Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. | string |
distributed | Whether to use distributer training. | string |
earlyStopping | Enable early stopping logic during training. | string |
earlyStoppingDelay | Minimum number of epochs or validation evaluations to wait before primary metric improvement is tracked for early stopping. Must be a positive integer. |
string |
earlyStoppingPatience | Minimum number of epochs or validation evaluations with no primary metric improvement before the run is stopped. Must be a positive integer. |
string |
enableOnnxNormalization | Enable normalization when exporting ONNX model. | string |
evaluationFrequency | Frequency to evaluate validation dataset to get metric scores. Must be a positive integer. | string |
gradientAccumulationStep | Gradient accumulation means running a configured number of "GradAccumulationStep" steps without updating the model weights while accumulating the gradients of those steps, and then using the accumulated gradients to compute the weight updates. Must be a positive integer. |
string |
layersToFreeze | Number of layers to freeze for the model. Must be a positive integer. For instance, passing 2 as value for 'seresnext' means freezing layer0 and layer1. For a full list of models supported and details on layer freeze, please see: /azure/machine-learning/how-to-auto-train-image-models. |
string |
learningRate | Initial learning rate. Must be a float in the range [0, 1]. | string |
learningRateScheduler | Type of learning rate scheduler. Must be 'warmup_cosine' or 'step'. | string |
modelName | Name of the model to use for training. For more information on the available models please visit the official documentation: /azure/machine-learning/how-to-auto-train-image-models. |
string |
momentum | Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1]. | string |
nesterov | Enable nesterov when optimizer is 'sgd'. | string |
numberOfEpochs | Number of training epochs. Must be a positive integer. | string |
numberOfWorkers | Number of data loader workers. Must be a non-negative integer. | string |
optimizer | Type of optimizer. Must be either 'sgd', 'adam', or 'adamw'. | string |
randomSeed | Random seed to be used when using deterministic training. | string |
stepLRGamma | Value of gamma when learning rate scheduler is 'step'. Must be a float in the range [0, 1]. | string |
stepLRStepSize | Value of step size when learning rate scheduler is 'step'. Must be a positive integer. | string |
trainingBatchSize | Training batch size. Must be a positive integer. | string |
trainingCropSize | Image crop size that is input to the neural network for the training dataset. Must be a positive integer. | string |
validationBatchSize | Validation batch size. Must be a positive integer. | string |
validationCropSize | Image crop size that is input to the neural network for the validation dataset. Must be a positive integer. | string |
validationResizeSize | Image size to which to resize before cropping for validation dataset. Must be a positive integer. | string |
warmupCosineLRCycles | Value of cosine cycle when learning rate scheduler is 'warmup_cosine'. Must be a float in the range [0, 1]. | string |
warmupCosineLRWarmupEpochs | Value of warmup epochs when learning rate scheduler is 'warmup_cosine'. Must be a positive integer. | string |
weightDecay | Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be a float in the range[0, 1]. | string |
weightedLoss | Weighted loss. The accepted values are 0 for no weighted loss. 1 for weighted loss with sqrt.(class_weights). 2 for weighted loss with class_weights. Must be 0 or 1 or 2. |
string |
ImageSweepSettings
Name | Description | Value |
---|---|---|
earlyTermination | Type of early termination policy. | EarlyTerminationPolicy |
samplingAlgorithm | [Required] Type of the hyperparameter sampling algorithms. | 'Bayesian' 'Grid' 'Random' (required) |
ImageClassificationMultilabel
Name | Description | Value |
---|---|---|
taskType | [Required] Task type for AutoMLJob. | 'ImageClassificationMultilabel' (required) |
limitSettings | [Required] Limit settings for the AutoML job. | ImageLimitSettings (required) |
modelSettings | Settings used for training the model. | ImageModelSettingsClassification |
primaryMetric | Primary metric to optimize for this task. | 'AUCWeighted' 'Accuracy' 'AveragePrecisionScoreWeighted' 'IOU' 'NormMacroRecall' 'PrecisionScoreWeighted' |
searchSpace | Search space for sampling different combinations of models and their hyperparameters. | ImageModelDistributionSettingsClassification[] |
sweepSettings | Model sweeping and hyperparameter sweeping related settings. | ImageSweepSettings |
validationData | Validation data inputs. | MLTableJobInput |
validationDataSize | The fraction of training dataset that needs to be set aside for validation purpose. Values between (0.0 , 1.0) Applied when validation dataset is not provided. |
int |
ImageInstanceSegmentation
Name | Description | Value |
---|---|---|
taskType | [Required] Task type for AutoMLJob. | 'ImageInstanceSegmentation' (required) |
limitSettings | [Required] Limit settings for the AutoML job. | ImageLimitSettings (required) |
modelSettings | Settings used for training the model. | ImageModelSettingsObjectDetection |
primaryMetric | Primary metric to optimize for this task. | 'MeanAveragePrecision' |
searchSpace | Search space for sampling different combinations of models and their hyperparameters. | ImageModelDistributionSettingsObjectDetection[] |
sweepSettings | Model sweeping and hyperparameter sweeping related settings. | ImageSweepSettings |
validationData | Validation data inputs. | MLTableJobInput |
validationDataSize | The fraction of training dataset that needs to be set aside for validation purpose. Values between (0.0 , 1.0) Applied when validation dataset is not provided. |
int |
ImageModelSettingsObjectDetection
Name | Description | Value |
---|---|---|
advancedSettings | Settings for advanced scenarios. | string |
amsGradient | Enable AMSGrad when optimizer is 'adam' or 'adamw'. | bool |
augmentations | Settings for using Augmentations. | string |
beta1 | Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. | int |
beta2 | Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. | int |
boxDetectionsPerImage | Maximum number of detections per image, for all classes. Must be a positive integer. Note: This settings is not supported for the 'yolov5' algorithm. |
int |
boxScoreThreshold | During inference, only return proposals with a classification score greater than BoxScoreThreshold. Must be a float in the range[0, 1]. |
int |
checkpointFrequency | Frequency to store model checkpoints. Must be a positive integer. | int |
checkpointModel | The pretrained checkpoint model for incremental training. | MLFlowModelJobInput |
checkpointRunId | The id of a previous run that has a pretrained checkpoint for incremental training. | string |
distributed | Whether to use distributed training. | bool |
earlyStopping | Enable early stopping logic during training. | bool |
earlyStoppingDelay | Minimum number of epochs or validation evaluations to wait before primary metric improvement is tracked for early stopping. Must be a positive integer. |
int |
earlyStoppingPatience | Minimum number of epochs or validation evaluations with no primary metric improvement before the run is stopped. Must be a positive integer. |
int |
enableOnnxNormalization | Enable normalization when exporting ONNX model. | bool |
evaluationFrequency | Frequency to evaluate validation dataset to get metric scores. Must be a positive integer. | int |
gradientAccumulationStep | Gradient accumulation means running a configured number of "GradAccumulationStep" steps without updating the model weights while accumulating the gradients of those steps, and then using the accumulated gradients to compute the weight updates. Must be a positive integer. |
int |
imageSize | Image size for train and validation. Must be a positive integer. Note: The training run may get into CUDA OOM if the size is too big. Note: This settings is only supported for the 'yolov5' algorithm. |
int |
layersToFreeze | Number of layers to freeze for the model. Must be a positive integer. For instance, passing 2 as value for 'seresnext' means freezing layer0 and layer1. For a full list of models supported and details on layer freeze, please see: /azure/machine-learning/how-to-auto-train-image-models. |
int |
learningRate | Initial learning rate. Must be a float in the range [0, 1]. | int |
learningRateScheduler | Type of learning rate scheduler. Must be 'warmup_cosine' or 'step'. | 'None' 'Step' 'WarmupCosine' |
maxSize | Maximum size of the image to be rescaled before feeding it to the backbone. Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big. Note: This settings is not supported for the 'yolov5' algorithm. |
int |
minSize | Minimum size of the image to be rescaled before feeding it to the backbone. Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big. Note: This settings is not supported for the 'yolov5' algorithm. |
int |
modelName | Name of the model to use for training. For more information on the available models please visit the official documentation: /azure/machine-learning/how-to-auto-train-image-models. |
string |
modelSize | Model size. Must be 'small', 'medium', 'large', or 'xlarge'. Note: training run may get into CUDA OOM if the model size is too big. Note: This settings is only supported for the 'yolov5' algorithm. |
'ExtraLarge' 'Large' 'Medium' 'None' 'Small' |
momentum | Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1]. | int |
multiScale | Enable multi-scale image by varying image size by +/- 50%. Note: training run may get into CUDA OOM if no sufficient GPU memory. Note: This settings is only supported for the 'yolov5' algorithm. |
bool |
nesterov | Enable nesterov when optimizer is 'sgd'. | bool |
nmsIouThreshold | IOU threshold used during inference in NMS post processing. Must be a float in the range [0, 1]. | int |
numberOfEpochs | Number of training epochs. Must be a positive integer. | int |
numberOfWorkers | Number of data loader workers. Must be a non-negative integer. | int |
optimizer | Type of optimizer. | 'Adam' 'Adamw' 'None' 'Sgd' |
randomSeed | Random seed to be used when using deterministic training. | int |
stepLRGamma | Value of gamma when learning rate scheduler is 'step'. Must be a float in the range [0, 1]. | int |
stepLRStepSize | Value of step size when learning rate scheduler is 'step'. Must be a positive integer. | int |
tileGridSize | The grid size to use for tiling each image. Note: TileGridSize must not be None to enable small object detection logic. A string containing two integers in mxn format. Note: This settings is not supported for the 'yolov5' algorithm. |
string |
tileOverlapRatio | Overlap ratio between adjacent tiles in each dimension. Must be float in the range [0, 1). Note: This settings is not supported for the 'yolov5' algorithm. |
int |
tilePredictionsNmsThreshold | The IOU threshold to use to perform NMS while merging predictions from tiles and image. Used in validation/ inference. Must be float in the range [0, 1]. Note: This settings is not supported for the 'yolov5' algorithm. |
int |
trainingBatchSize | Training batch size. Must be a positive integer. | int |
validationBatchSize | Validation batch size. Must be a positive integer. | int |
validationIouThreshold | IOU threshold to use when computing validation metric. Must be float in the range [0, 1]. | int |
validationMetricType | Metric computation method to use for validation metrics. | 'Coco' 'CocoVoc' 'None' 'Voc' |
warmupCosineLRCycles | Value of cosine cycle when learning rate scheduler is 'warmup_cosine'. Must be a float in the range [0, 1]. | int |
warmupCosineLRWarmupEpochs | Value of warmup epochs when learning rate scheduler is 'warmup_cosine'. Must be a positive integer. | int |
weightDecay | Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be a float in the range[0, 1]. | int |
ImageModelDistributionSettingsObjectDetection
Name | Description | Value |
---|---|---|
amsGradient | Enable AMSGrad when optimizer is 'adam' or 'adamw'. | string |
augmentations | Settings for using Augmentations. | string |
beta1 | Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. | string |
beta2 | Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. | string |
boxDetectionsPerImage | Maximum number of detections per image, for all classes. Must be a positive integer. Note: This settings is not supported for the 'yolov5' algorithm. |
string |
boxScoreThreshold | During inference, only return proposals with a classification score greater than BoxScoreThreshold. Must be a float in the range[0, 1]. |
string |
distributed | Whether to use distributer training. | string |
earlyStopping | Enable early stopping logic during training. | string |
earlyStoppingDelay | Minimum number of epochs or validation evaluations to wait before primary metric improvement is tracked for early stopping. Must be a positive integer. |
string |
earlyStoppingPatience | Minimum number of epochs or validation evaluations with no primary metric improvement before the run is stopped. Must be a positive integer. |
string |
enableOnnxNormalization | Enable normalization when exporting ONNX model. | string |
evaluationFrequency | Frequency to evaluate validation dataset to get metric scores. Must be a positive integer. | string |
gradientAccumulationStep | Gradient accumulation means running a configured number of "GradAccumulationStep" steps without updating the model weights while accumulating the gradients of those steps, and then using the accumulated gradients to compute the weight updates. Must be a positive integer. |
string |
imageSize | Image size for train and validation. Must be a positive integer. Note: The training run may get into CUDA OOM if the size is too big. Note: This settings is only supported for the 'yolov5' algorithm. |
string |
layersToFreeze | Number of layers to freeze for the model. Must be a positive integer. For instance, passing 2 as value for 'seresnext' means freezing layer0 and layer1. For a full list of models supported and details on layer freeze, please see: /azure/machine-learning/how-to-auto-train-image-models. |
string |
learningRate | Initial learning rate. Must be a float in the range [0, 1]. | string |
learningRateScheduler | Type of learning rate scheduler. Must be 'warmup_cosine' or 'step'. | string |
maxSize | Maximum size of the image to be rescaled before feeding it to the backbone. Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big. Note: This settings is not supported for the 'yolov5' algorithm. |
string |
minSize | Minimum size of the image to be rescaled before feeding it to the backbone. Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big. Note: This settings is not supported for the 'yolov5' algorithm. |
string |
modelName | Name of the model to use for training. For more information on the available models please visit the official documentation: /azure/machine-learning/how-to-auto-train-image-models. |
string |
modelSize | Model size. Must be 'small', 'medium', 'large', or 'xlarge'. Note: training run may get into CUDA OOM if the model size is too big. Note: This settings is only supported for the 'yolov5' algorithm. |
string |
momentum | Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1]. | string |
multiScale | Enable multi-scale image by varying image size by +/- 50%. Note: training run may get into CUDA OOM if no sufficient GPU memory. Note: This settings is only supported for the 'yolov5' algorithm. |
string |
nesterov | Enable nesterov when optimizer is 'sgd'. | string |
nmsIouThreshold | IOU threshold used during inference in NMS post processing. Must be float in the range [0, 1]. | string |
numberOfEpochs | Number of training epochs. Must be a positive integer. | string |
numberOfWorkers | Number of data loader workers. Must be a non-negative integer. | string |
optimizer | Type of optimizer. Must be either 'sgd', 'adam', or 'adamw'. | string |
randomSeed | Random seed to be used when using deterministic training. | string |
stepLRGamma | Value of gamma when learning rate scheduler is 'step'. Must be a float in the range [0, 1]. | string |
stepLRStepSize | Value of step size when learning rate scheduler is 'step'. Must be a positive integer. | string |
tileGridSize | The grid size to use for tiling each image. Note: TileGridSize must not be None to enable small object detection logic. A string containing two integers in mxn format. Note: This settings is not supported for the 'yolov5' algorithm. |
string |
tileOverlapRatio | Overlap ratio between adjacent tiles in each dimension. Must be float in the range [0, 1). Note: This settings is not supported for the 'yolov5' algorithm. |
string |
tilePredictionsNmsThreshold | The IOU threshold to use to perform NMS while merging predictions from tiles and image. Used in validation/ inference. Must be float in the range [0, 1]. Note: This settings is not supported for the 'yolov5' algorithm. NMS: Non-maximum suppression |
string |
trainingBatchSize | Training batch size. Must be a positive integer. | string |
validationBatchSize | Validation batch size. Must be a positive integer. | string |
validationIouThreshold | IOU threshold to use when computing validation metric. Must be float in the range [0, 1]. | string |
validationMetricType | Metric computation method to use for validation metrics. Must be 'none', 'coco', 'voc', or 'coco_voc'. | string |
warmupCosineLRCycles | Value of cosine cycle when learning rate scheduler is 'warmup_cosine'. Must be a float in the range [0, 1]. | string |
warmupCosineLRWarmupEpochs | Value of warmup epochs when learning rate scheduler is 'warmup_cosine'. Must be a positive integer. | string |
weightDecay | Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be a float in the range[0, 1]. | string |
ImageObjectDetection
Name | Description | Value |
---|---|---|
taskType | [Required] Task type for AutoMLJob. | 'ImageObjectDetection' (required) |
limitSettings | [Required] Limit settings for the AutoML job. | ImageLimitSettings (required) |
modelSettings | Settings used for training the model. | ImageModelSettingsObjectDetection |
primaryMetric | Primary metric to optimize for this task. | 'MeanAveragePrecision' |
searchSpace | Search space for sampling different combinations of models and their hyperparameters. | ImageModelDistributionSettingsObjectDetection[] |
sweepSettings | Model sweeping and hyperparameter sweeping related settings. | ImageSweepSettings |
validationData | Validation data inputs. | MLTableJobInput |
validationDataSize | The fraction of training dataset that needs to be set aside for validation purpose. Values between (0.0 , 1.0) Applied when validation dataset is not provided. |
int |
Regression
Name | Description | Value |
---|---|---|
taskType | [Required] Task type for AutoMLJob. | 'Regression' (required) |
cvSplitColumnNames | Columns to use for CVSplit data. | string[] |
featurizationSettings | Featurization inputs needed for AutoML job. | TableVerticalFeaturizationSettings |
fixedParameters | Model/training parameters that will remain constant throughout training. | TableFixedParameters |
limitSettings | Execution constraints for AutoMLJob. | TableVerticalLimitSettings |
nCrossValidations | Number of cross validation folds to be applied on training dataset when validation dataset is not provided. |
NCrossValidations |
primaryMetric | Primary metric for regression task. | 'NormalizedMeanAbsoluteError' 'NormalizedRootMeanSquaredError' 'R2Score' 'SpearmanCorrelation' |
searchSpace | Search space for sampling different combinations of models and their hyperparameters. | TableParameterSubspace[] |
sweepSettings | Settings for model sweeping and hyperparameter tuning. | TableSweepSettings |
testData | Test data input. | MLTableJobInput |
testDataSize | The fraction of test dataset that needs to be set aside for validation purpose. Values between (0.0 , 1.0) Applied when validation dataset is not provided. |
int |
trainingSettings | Inputs for training phase for an AutoML Job. | RegressionTrainingSettings |
validationData | Validation data inputs. | MLTableJobInput |
validationDataSize | The fraction of training dataset that needs to be set aside for validation purpose. Values between (0.0 , 1.0) Applied when validation dataset is not provided. |
int |
weightColumnName | The name of the sample weight column. Automated ML supports a weighted column as an input, causing rows in the data to be weighted up or down. | string |
RegressionTrainingSettings
Name | Description | Value |
---|---|---|
allowedTrainingAlgorithms | Allowed models for regression task. | String array containing any of: 'DecisionTree' 'ElasticNet' 'ExtremeRandomTrees' 'GradientBoosting' 'KNN' 'LassoLars' 'LightGBM' 'RandomForest' 'SGD' 'XGBoostRegressor' |
blockedTrainingAlgorithms | Blocked models for regression task. | String array containing any of: 'DecisionTree' 'ElasticNet' 'ExtremeRandomTrees' 'GradientBoosting' 'KNN' 'LassoLars' 'LightGBM' 'RandomForest' 'SGD' 'XGBoostRegressor' |
enableDnnTraining | Enable recommendation of DNN models. | bool |
enableModelExplainability | Flag to turn on explainability on best model. | bool |
enableOnnxCompatibleModels | Flag for enabling onnx compatible models. | bool |
enableStackEnsemble | Enable stack ensemble run. | bool |
enableVoteEnsemble | Enable voting ensemble run. | bool |
ensembleModelDownloadTimeout | During VotingEnsemble and StackEnsemble model generation, multiple fitted models from the previous child runs are downloaded. Configure this parameter with a higher value than 300 secs, if more time is needed. |
string |
stackEnsembleSettings | Stack ensemble settings for stack ensemble run. | StackEnsembleSettings |
trainingMode | TrainingMode mode - Setting to 'auto' is same as setting it to 'non-distributed' for now, however in the future may result in mixed mode or heuristics based mode selection. Default is 'auto'. If 'Distributed' then only distributed featurization is used and distributed algorithms are chosen. If 'NonDistributed' then only non distributed algorithms are chosen. |
'Auto' 'Distributed' 'NonDistributed' |
TextClassification
Name | Description | Value |
---|---|---|
taskType | [Required] Task type for AutoMLJob. | 'TextClassification' (required) |
featurizationSettings | Featurization inputs needed for AutoML job. | NlpVerticalFeaturizationSettings |
fixedParameters | Model/training parameters that will remain constant throughout training. | NlpFixedParameters |
limitSettings | Execution constraints for AutoMLJob. | NlpVerticalLimitSettings |
primaryMetric | Primary metric for Text-Classification task. | 'AUCWeighted' 'Accuracy' 'AveragePrecisionScoreWeighted' 'NormMacroRecall' 'PrecisionScoreWeighted' |
searchSpace | Search space for sampling different combinations of models and their hyperparameters. | NlpParameterSubspace[] |
sweepSettings | Settings for model sweeping and hyperparameter tuning. | NlpSweepSettings |
validationData | Validation data inputs. | MLTableJobInput |
NlpVerticalFeaturizationSettings
Name | Description | Value |
---|---|---|
datasetLanguage | Dataset language, useful for the text data. | string |
NlpFixedParameters
Name | Description | Value |
---|---|---|
gradientAccumulationSteps | Number of steps to accumulate gradients over before running a backward pass. | int |
learningRate | The learning rate for the training procedure. | int |
learningRateScheduler | The type of learning rate schedule to use during the training procedure. | 'Constant' 'ConstantWithWarmup' 'Cosine' 'CosineWithRestarts' 'Linear' 'None' 'Polynomial' |
modelName | The name of the model to train. | string |
numberOfEpochs | Number of training epochs. | int |
trainingBatchSize | The batch size for the training procedure. | int |
validationBatchSize | The batch size to be used during evaluation. | int |
warmupRatio | The warmup ratio, used alongside LrSchedulerType. | int |
weightDecay | The weight decay for the training procedure. | int |
NlpVerticalLimitSettings
Name | Description | Value |
---|---|---|
maxConcurrentTrials | Maximum Concurrent AutoML iterations. | int |
maxNodes | Maximum nodes to use for the experiment. | int |
maxTrials | Number of AutoML iterations. | int |
timeout | AutoML job timeout. | string |
trialTimeout | Timeout for individual HD trials. | string |
NlpParameterSubspace
Name | Description | Value |
---|---|---|
gradientAccumulationSteps | Number of steps to accumulate gradients over before running a backward pass. | string |
learningRate | The learning rate for the training procedure. | string |
learningRateScheduler | The type of learning rate schedule to use during the training procedure. | string |
modelName | The name of the model to train. | string |
numberOfEpochs | Number of training epochs. | string |
trainingBatchSize | The batch size for the training procedure. | string |
validationBatchSize | The batch size to be used during evaluation. | string |
warmupRatio | The warmup ratio, used alongside LrSchedulerType. | string |
weightDecay | The weight decay for the training procedure. | string |
NlpSweepSettings
Name | Description | Value |
---|---|---|
earlyTermination | Type of early termination policy for the sweeping job. | EarlyTerminationPolicy |
samplingAlgorithm | [Required] Type of sampling algorithm. | 'Bayesian' 'Grid' 'Random' (required) |
TextClassificationMultilabel
Name | Description | Value |
---|---|---|
taskType | [Required] Task type for AutoMLJob. | 'TextClassificationMultilabel' (required) |
featurizationSettings | Featurization inputs needed for AutoML job. | NlpVerticalFeaturizationSettings |
fixedParameters | Model/training parameters that will remain constant throughout training. | NlpFixedParameters |
limitSettings | Execution constraints for AutoMLJob. | NlpVerticalLimitSettings |
searchSpace | Search space for sampling different combinations of models and their hyperparameters. | NlpParameterSubspace[] |
sweepSettings | Settings for model sweeping and hyperparameter tuning. | NlpSweepSettings |
validationData | Validation data inputs. | MLTableJobInput |
TextNer
Name | Description | Value |
---|---|---|
taskType | [Required] Task type for AutoMLJob. | 'TextNER' (required) |
featurizationSettings | Featurization inputs needed for AutoML job. | NlpVerticalFeaturizationSettings |
fixedParameters | Model/training parameters that will remain constant throughout training. | NlpFixedParameters |
limitSettings | Execution constraints for AutoMLJob. | NlpVerticalLimitSettings |
searchSpace | Search space for sampling different combinations of models and their hyperparameters. | NlpParameterSubspace[] |
sweepSettings | Settings for model sweeping and hyperparameter tuning. | NlpSweepSettings |
validationData | Validation data inputs. | MLTableJobInput |
CommandJob
Name | Description | Value |
---|---|---|
jobType | [Required] Specifies the type of job. | 'Command' (required) |
autologgerSettings | Distribution configuration of the job. If set, this should be one of Mpi, Tensorflow, PyTorch, or null. | AutologgerSettings |
codeId | ARM resource ID of the code asset. | string |
command | [Required] The command to execute on startup of the job. eg. "python train.py" | string (required) Constraints: Min length = 1 Pattern = [a-zA-Z0-9_] |
distribution | Distribution configuration of the job. If set, this should be one of Mpi, Tensorflow, PyTorch, or null. | DistributionConfiguration |
environmentId | [Required] The ARM resource ID of the Environment specification for the job. | string (required) Constraints: Pattern = [a-zA-Z0-9_] |
environmentVariables | Environment variables included in the job. | CommandJobEnvironmentVariables |
inputs | Mapping of input data bindings used in the job. | CommandJobInputs |
limits | Command Job limit. | CommandJobLimits |
outputs | Mapping of output data bindings used in the job. | CommandJobOutputs |
resources | Compute Resource configuration for the job. | JobResourceConfiguration |
AutologgerSettings
Name | Description | Value |
---|---|---|
mlflowAutologger | [Required] Indicates whether mlflow autologger is enabled. | 'Disabled' 'Enabled' (required) |
DistributionConfiguration
Name | Description | Value |
---|---|---|
distributionType | Set the object type | Mpi PyTorch TensorFlow (required) |
Mpi
Name | Description | Value |
---|---|---|
distributionType | [Required] Specifies the type of distribution framework. | 'Mpi' (required) |
processCountPerInstance | Number of processes per MPI node. | int |
PyTorch
Name | Description | Value |
---|---|---|
distributionType | [Required] Specifies the type of distribution framework. | 'PyTorch' (required) |
processCountPerInstance | Number of processes per node. | int |
TensorFlow
Name | Description | Value |
---|---|---|
distributionType | [Required] Specifies the type of distribution framework. | 'TensorFlow' (required) |
parameterServerCount | Number of parameter server tasks. | int |
workerCount | Number of workers. If not specified, will default to the instance count. | int |
CommandJobEnvironmentVariables
Name | Description | Value |
---|---|---|
{customized property} | string |
CommandJobInputs
Name | Description | Value |
---|---|---|
{customized property} | JobInput |
JobInput
Name | Description | Value |
---|---|---|
description | Description for the input. | string |
jobInputType | Set the object type | custom_model literal mlflow_model mltable triton_model uri_file uri_folder (required) |
CustomModelJobInput
Name | Description | Value |
---|---|---|
jobInputType | [Required] Specifies the type of job. | 'custom_model' (required) |
mode | Input Asset Delivery Mode. | 'Direct' 'Download' 'EvalDownload' 'EvalMount' 'ReadOnlyMount' 'ReadWriteMount' |
uri | [Required] Input Asset URI. | string (required) Constraints: Pattern = [a-zA-Z0-9_] |
LiteralJobInput
Name | Description | Value |
---|---|---|
jobInputType | [Required] Specifies the type of job. | 'literal' (required) |
value | [Required] Literal value for the input. | string (required) Constraints: Pattern = [a-zA-Z0-9_] |
TritonModelJobInput
Name | Description | Value |
---|---|---|
jobInputType | [Required] Specifies the type of job. | 'triton_model' (required) |
mode | Input Asset Delivery Mode. | 'Direct' 'Download' 'EvalDownload' 'EvalMount' 'ReadOnlyMount' 'ReadWriteMount' |
uri | [Required] Input Asset URI. | string (required) Constraints: Pattern = [a-zA-Z0-9_] |
UriFileJobInput
Name | Description | Value |
---|---|---|
jobInputType | [Required] Specifies the type of job. | 'uri_file' (required) |
mode | Input Asset Delivery Mode. | 'Direct' 'Download' 'EvalDownload' 'EvalMount' 'ReadOnlyMount' 'ReadWriteMount' |
uri | [Required] Input Asset URI. | string (required) Constraints: Pattern = [a-zA-Z0-9_] |
UriFolderJobInput
Name | Description | Value |
---|---|---|
jobInputType | [Required] Specifies the type of job. | 'uri_folder' (required) |
mode | Input Asset Delivery Mode. | 'Direct' 'Download' 'EvalDownload' 'EvalMount' 'ReadOnlyMount' 'ReadWriteMount' |
uri | [Required] Input Asset URI. | string (required) Constraints: Pattern = [a-zA-Z0-9_] |
CommandJobLimits
Name | Description | Value |
---|---|---|
jobLimitsType | [Required] JobLimit type. | 'Command' 'Sweep' (required) |
timeout | The max run duration in ISO 8601 format, after which the job will be cancelled. Only supports duration with precision as low as Seconds. | string |
CommandJobOutputs
Name | Description | Value |
---|---|---|
{customized property} | JobOutput |
LabelingJobProperties
Name | Description | Value |
---|---|---|
componentId | ARM resource ID of the component resource. | string |
computeId | ARM resource ID of the compute resource. | string |
dataConfiguration | Configuration of data used in the job. | LabelingDataConfiguration |
description | The asset description text. | string |
displayName | Display name of job. | string |
experimentName | The name of the experiment the job belongs to. If not set, the job is placed in the "Default" experiment. | string |
identity | Identity configuration. If set, this should be one of AmlToken, ManagedIdentity, UserIdentity or null. Defaults to AmlToken if null. |
IdentityConfiguration |
isArchived | Is the asset archived? | bool |
jobInstructions | Labeling instructions of the job. | LabelingJobInstructions |
jobType | [Required] Specifies the type of job. | 'AutoML' 'Command' 'Labeling' 'Pipeline' 'Spark' 'Sweep' (required) |
labelCategories | Label categories of the job. | LabelingJobLabelCategories |
labelingJobMediaProperties | Media type specific properties in the job. | LabelingJobMediaProperties |
mlAssistConfiguration | Configuration of MLAssist feature in the job. | MLAssistConfiguration |
properties | The asset property dictionary. | ResourceBaseProperties |
services | List of JobEndpoints. For local jobs, a job endpoint will have an endpoint value of FileStreamObject. |
JobBaseServices |
tags | Tag dictionary. Tags can be added, removed, and updated. | object |
LabelingDataConfiguration
Name | Description | Value |
---|---|---|
dataId | Resource Id of the data asset to perform labeling. | string |
incrementalDataRefresh | Indicates whether to enable incremental data refresh. | 'Disabled' 'Enabled' |
LabelingJobInstructions
Name | Description | Value |
---|---|---|
uri | The link to a page with detailed labeling instructions for labelers. | string |
LabelingJobLabelCategories
Name | Description | Value |
---|---|---|
{customized property} | LabelCategory |
LabelCategory
Name | Description | Value |
---|---|---|
classes | Dictionary of label classes in this category. | LabelCategoryClasses |
displayName | Display name of the label category. | string |
multiSelect | Indicates whether it is allowed to select multiple classes in this category. | 'Disabled' 'Enabled' |
LabelCategoryClasses
Name | Description | Value |
---|---|---|
{customized property} | LabelClass |
LabelClass
Name | Description | Value |
---|---|---|
displayName | Display name of the label class. | string |
subclasses | Dictionary of subclasses of the label class. | LabelClassSubclasses |
LabelClassSubclasses
Name | Description | Value |
---|---|---|
{customized property} | LabelClass |
LabelingJobMediaProperties
Name | Description | Value |
---|---|---|
mediaType | Set the object type | Image Text (required) |
LabelingJobImageProperties
Name | Description | Value |
---|---|---|
mediaType | [Required] Media type of the job. | 'Image' (required) |
annotationType | Annotation type of image labeling job. | 'BoundingBox' 'Classification' 'InstanceSegmentation' |
LabelingJobTextProperties
Name | Description | Value |
---|---|---|
mediaType | [Required] Media type of the job. | 'Text' (required) |
annotationType | Annotation type of text labeling job. | 'Classification' 'NamedEntityRecognition' |
MLAssistConfiguration
Name | Description | Value |
---|---|---|
mlAssist | Set the object type | Disabled Enabled (required) |
MLAssistConfigurationDisabled
Name | Description | Value |
---|---|---|
mlAssist | [Required] Indicates whether MLAssist feature is enabled. | 'Disabled' (required) |
MLAssistConfigurationEnabled
Name | Description | Value |
---|---|---|
mlAssist | [Required] Indicates whether MLAssist feature is enabled. | 'Enabled' (required) |
inferencingComputeBinding | [Required] AML compute binding used in inferencing. | string (required) Constraints: Pattern = [a-zA-Z0-9_] |
trainingComputeBinding | [Required] AML compute binding used in training. | string (required) Constraints: Pattern = [a-zA-Z0-9_] |
PipelineJob
Name | Description | Value |
---|---|---|
jobType | [Required] Specifies the type of job. | 'Pipeline' (required) |
inputs | Inputs for the pipeline job. | PipelineJobInputs |
jobs | Jobs construct the Pipeline Job. | PipelineJobJobs |
outputs | Outputs for the pipeline job | PipelineJobOutputs |
settings | Pipeline settings, for things like ContinueRunOnStepFailure etc. | |
sourceJobId | ARM resource ID of source job. | string |
PipelineJobInputs
Name | Description | Value |
---|---|---|
{customized property} | JobInput |
PipelineJobJobs
Name | Description | Value |
---|---|---|
{customized property} |
PipelineJobOutputs
Name | Description | Value |
---|---|---|
{customized property} | JobOutput |
SparkJob
Name | Description | Value |
---|---|---|
jobType | [Required] Specifies the type of job. | 'Spark' (required) |
archives | Archive files used in the job. | string[] |
args | Arguments for the job. | string |
codeId | [Required] ARM resource ID of the code asset. | string (required) Constraints: Pattern = [a-zA-Z0-9_] |
conf | Spark configured properties. | SparkJobConf |
entry | [Required] The entry to execute on startup of the job. | SparkJobEntry (required) |
environmentId | The ARM resource ID of the Environment specification for the job. | string |
files | Files used in the job. | string[] |
inputs | Mapping of input data bindings used in the job. | SparkJobInputs |
jars | Jar files used in the job. | string[] |
outputs | Mapping of output data bindings used in the job. | SparkJobOutputs |
pyFiles | Python files used in the job. | string[] |
resources | Compute Resource configuration for the job. | SparkResourceConfiguration |
SparkJobConf
Name | Description | Value |
---|---|---|
{customized property} | string |
SparkJobEntry
Name | Description | Value |
---|---|---|
sparkJobEntryType | Set the object type | SparkJobPythonEntry SparkJobScalaEntry (required) |
SparkJobPythonEntry
Name | Description | Value |
---|---|---|
sparkJobEntryType | [Required] Type of the job's entry point. | 'SparkJobPythonEntry' (required) |
file | [Required] Relative python file path for job entry point. | string (required) Constraints: Min length = 1 Pattern = [a-zA-Z0-9_] |
SparkJobScalaEntry
Name | Description | Value |
---|---|---|
sparkJobEntryType | [Required] Type of the job's entry point. | 'SparkJobScalaEntry' (required) |
className | [Required] Scala class name used as entry point. | string (required) Constraints: Min length = 1 Pattern = [a-zA-Z0-9_] |
SparkJobInputs
Name | Description | Value |
---|---|---|
{customized property} | JobInput |
SparkJobOutputs
Name | Description | Value |
---|---|---|
{customized property} | JobOutput |
SparkResourceConfiguration
Name | Description | Value |
---|---|---|
instanceType | Optional type of VM used as supported by the compute target. | string |
runtimeVersion | Version of spark runtime used for the job. | string |
SweepJob
Name | Description | Value |
---|---|---|
jobType | [Required] Specifies the type of job. | 'Sweep' (required) |
earlyTermination | Early termination policies enable canceling poor-performing runs before they complete | EarlyTerminationPolicy |
inputs | Mapping of input data bindings used in the job. | SweepJobInputs |
limits | Sweep Job limit. | SweepJobLimits |
objective | [Required] Optimization objective. | Objective (required) |
outputs | Mapping of output data bindings used in the job. | SweepJobOutputs |
samplingAlgorithm | [Required] The hyperparameter sampling algorithm | SamplingAlgorithm (required) |
searchSpace | [Required] A dictionary containing each parameter and its distribution. The dictionary key is the name of the parameter | |
trial | [Required] Trial component definition. | TrialComponent (required) |
SweepJobInputs
Name | Description | Value |
---|---|---|
{customized property} | JobInput |
SweepJobLimits
Name | Description | Value |
---|---|---|
jobLimitsType | [Required] JobLimit type. | 'Command' 'Sweep' (required) |
maxConcurrentTrials | Sweep Job max concurrent trials. | int |
maxTotalTrials | Sweep Job max total trials. | int |
timeout | The max run duration in ISO 8601 format, after which the job will be cancelled. Only supports duration with precision as low as Seconds. | string |
trialTimeout | Sweep Job Trial timeout value. | string |
Objective
Name | Description | Value |
---|---|---|
goal | [Required] Defines supported metric goals for hyperparameter tuning | 'Maximize' 'Minimize' (required) |
primaryMetric | [Required] Name of the metric to optimize. | string (required) Constraints: Pattern = [a-zA-Z0-9_] |
SweepJobOutputs
Name | Description | Value |
---|---|---|
{customized property} | JobOutput |
SamplingAlgorithm
Name | Description | Value |
---|---|---|
samplingAlgorithmType | Set the object type | Bayesian Grid Random (required) |
BayesianSamplingAlgorithm
Name | Description | Value |
---|---|---|
samplingAlgorithmType | [Required] The algorithm used for generating hyperparameter values, along with configuration properties | 'Bayesian' (required) |
GridSamplingAlgorithm
Name | Description | Value |
---|---|---|
samplingAlgorithmType | [Required] The algorithm used for generating hyperparameter values, along with configuration properties | 'Grid' (required) |
RandomSamplingAlgorithm
Name | Description | Value |
---|---|---|
samplingAlgorithmType | [Required] The algorithm used for generating hyperparameter values, along with configuration properties | 'Random' (required) |
logbase | An optional positive number or e in string format to be used as base for log based random sampling | string |
rule | The specific type of random algorithm | 'Random' 'Sobol' |
seed | An optional integer to use as the seed for random number generation | int |
TrialComponent
Name | Description | Value |
---|---|---|
codeId | ARM resource ID of the code asset. | string |
command | [Required] The command to execute on startup of the job. eg. "python train.py" | string (required) Constraints: Min length = 1 Pattern = [a-zA-Z0-9_] |
distribution | Distribution configuration of the job. If set, this should be one of Mpi, Tensorflow, PyTorch, or null. | DistributionConfiguration |
environmentId | [Required] The ARM resource ID of the Environment specification for the job. | string (required) Constraints: Pattern = [a-zA-Z0-9_] |
environmentVariables | Environment variables included in the job. | TrialComponentEnvironmentVariables |
resources | Compute Resource configuration for the job. | JobResourceConfiguration |
TrialComponentEnvironmentVariables
Name | Description | Value |
---|---|---|
{customized property} | string |
Quickstart templates
The following quickstart templates deploy this resource type.
Template | Description |
---|---|
Create an Azure Machine Learning AutoML classification job |
This template creates an Azure Machine Learning AutoML classification job to find out the best model for predicting if a client will subscribe to a fixed term deposit with a financial institution. |
Create an Azure Machine Learning Command job |
This template creates an Azure Machine Learning Command job with a basic hello_world script |
Create an Azure Machine Learning Sweep job |
This template creates an Azure Machine Learning Sweep job for hyperparameter tuning. |
Terraform (AzAPI provider) resource definition
The workspaces/jobs resource type can be deployed with operations that target:
- Resource groups
For a list of changed properties in each API version, see change log.
Resource format
To create a Microsoft.MachineLearningServices/workspaces/jobs resource, add the following Terraform to your template.
resource "azapi_resource" "symbolicname" {
type = "Microsoft.MachineLearningServices/workspaces/jobs@2022-12-01-preview"
name = "string"
parent_id = "string"
body = jsonencode({
properties = {
componentId = "string"
computeId = "string"
description = "string"
displayName = "string"
experimentName = "string"
identity = {
identityType = "string"
// For remaining properties, see IdentityConfiguration objects
}
isArchived = bool
properties = {
{customized property} = "string"
}
services = {
{customized property} = {
endpoint = "string"
jobServiceType = "string"
nodes = {
nodesValueType = "string"
// For remaining properties, see Nodes objects
}
port = int
properties = {
{customized property} = "string"
}
}
}
tags = {}
jobType = "string"
// For remaining properties, see JobBaseProperties objects
}
})
}
JobBaseProperties objects
Set the jobType property to specify the type of object.
For AutoML, use:
jobType = "AutoML"
environmentId = "string"
environmentVariables = {
{customized property} = "string"
}
outputs = {
{customized property} = {
description = "string"
jobOutputType = "string"
// For remaining properties, see JobOutput objects
}
}
resources = {
dockerArgs = "string"
instanceCount = int
instanceType = "string"
properties = {}
shmSize = "string"
}
taskDetails = {
logVerbosity = "string"
targetColumnName = "string"
trainingData = {
description = "string"
jobInputType = "string"
mode = "string"
uri = "string"
}
taskType = "string"
// For remaining properties, see AutoMLVertical objects
}
For Command, use:
jobType = "Command"
autologgerSettings = {
mlflowAutologger = "string"
}
codeId = "string"
command = "string"
distribution = {
distributionType = "string"
// For remaining properties, see DistributionConfiguration objects
}
environmentId = "string"
environmentVariables = {
{customized property} = "string"
}
inputs = {
{customized property} = {
description = "string"
jobInputType = "string"
// For remaining properties, see JobInput objects
}
}
limits = {
jobLimitsType = "string"
timeout = "string"
}
outputs = {
{customized property} = {
description = "string"
jobOutputType = "string"
// For remaining properties, see JobOutput objects
}
}
resources = {
dockerArgs = "string"
instanceCount = int
instanceType = "string"
properties = {}
shmSize = "string"
}
For Labeling, use:
jobType = "Labeling"
dataConfiguration = {
dataId = "string"
incrementalDataRefresh = "string"
}
jobInstructions = {
uri = "string"
}
labelCategories = {
{customized property} = {
classes = {
{customized property} = {
displayName = "string"
subclasses = {
{customized property} = {}
}
}
displayName = "string"
multiSelect = "string"
}
}
labelingJobMediaProperties = {
mediaType = "string"
// For remaining properties, see LabelingJobMediaProperties objects
}
mlAssistConfiguration = {
mlAssist = "string"
// For remaining properties, see MLAssistConfiguration objects
}
For Pipeline, use:
jobType = "Pipeline"
inputs = {
{customized property} = {
description = "string"
jobInputType = "string"
// For remaining properties, see JobInput objects
}
}
jobs = {}
outputs = {
{customized property} = {
description = "string"
jobOutputType = "string"
// For remaining properties, see JobOutput objects
}
}
sourceJobId = "string"
For Spark, use:
jobType = "Spark"
archives = [
"string"
]
args = "string"
codeId = "string"
conf = {
{customized property} = "string"
}
entry = {
sparkJobEntryType = "string"
// For remaining properties, see SparkJobEntry objects
}
environmentId = "string"
files = [
"string"
]
inputs = {
{customized property} = {
description = "string"
jobInputType = "string"
// For remaining properties, see JobInput objects
}
}
jars = [
"string"
]
outputs = {
{customized property} = {
description = "string"
jobOutputType = "string"
// For remaining properties, see JobOutput objects
}
}
pyFiles = [
"string"
]
resources = {
instanceType = "string"
runtimeVersion = "string"
}
For Sweep, use:
jobType = "Sweep"
earlyTermination = {
delayEvaluation = int
evaluationInterval = int
policyType = "string"
// For remaining properties, see EarlyTerminationPolicy objects
}
inputs = {
{customized property} = {
description = "string"
jobInputType = "string"
// For remaining properties, see JobInput objects
}
}
limits = {
jobLimitsType = "string"
maxConcurrentTrials = int
maxTotalTrials = int
timeout = "string"
trialTimeout = "string"
}
objective = {
goal = "string"
primaryMetric = "string"
}
outputs = {
{customized property} = {
description = "string"
jobOutputType = "string"
// For remaining properties, see JobOutput objects
}
}
samplingAlgorithm = {
samplingAlgorithmType = "string"
// For remaining properties, see SamplingAlgorithm objects
}
trial = {
codeId = "string"
command = "string"
distribution = {
distributionType = "string"
// For remaining properties, see DistributionConfiguration objects
}
environmentId = "string"
environmentVariables = {
{customized property} = "string"
}
resources = {
dockerArgs = "string"
instanceCount = int
instanceType = "string"
properties = {}
shmSize = "string"
}
}
IdentityConfiguration objects
Set the identityType property to specify the type of object.
For AMLToken, use:
identityType = "AMLToken"
For Managed, use:
identityType = "Managed"
clientId = "string"
objectId = "string"
resourceId = "string"
For UserIdentity, use:
identityType = "UserIdentity"
Nodes objects
Set the nodesValueType property to specify the type of object.
For All, use:
nodesValueType = "All"
JobOutput objects
Set the jobOutputType property to specify the type of object.
For custom_model, use:
jobOutputType = "custom_model"
assetName = "string"
assetVersion = "string"
mode = "string"
uri = "string"
For mlflow_model, use:
jobOutputType = "mlflow_model"
assetName = "string"
assetVersion = "string"
mode = "string"
uri = "string"
For mltable, use:
jobOutputType = "mltable"
assetName = "string"
assetVersion = "string"
mode = "string"
uri = "string"
For triton_model, use:
jobOutputType = "triton_model"
assetName = "string"
assetVersion = "string"
mode = "string"
uri = "string"
For uri_file, use:
jobOutputType = "uri_file"
assetName = "string"
assetVersion = "string"
mode = "string"
uri = "string"
For uri_folder, use:
jobOutputType = "uri_folder"
assetName = "string"
assetVersion = "string"
mode = "string"
uri = "string"
AutoMLVertical objects
Set the taskType property to specify the type of object.
For Classification, use:
taskType = "Classification"
cvSplitColumnNames = [
"string"
]
featurizationSettings = {
blockedTransformers = [
"string"
]
columnNameAndTypes = {
{customized property} = "string"
}
datasetLanguage = "string"
enableDnnFeaturization = bool
mode = "string"
transformerParams = {
{customized property} = [
{
fields = [
"string"
]
}
]
}
}
fixedParameters = {
booster = "string"
boostingType = "string"
growPolicy = "string"
learningRate = int
maxBin = int
maxDepth = int
maxLeaves = int
minDataInLeaf = int
minSplitGain = int
modelName = "string"
nEstimators = int
numLeaves = int
preprocessorName = "string"
regAlpha = int
regLambda = int
subsample = int
subsampleFreq = int
treeMethod = "string"
withMean = bool
withStd = bool
}
limitSettings = {
enableEarlyTermination = bool
exitScore = int
maxConcurrentTrials = int
maxCoresPerTrial = int
maxNodes = int
maxTrials = int
sweepConcurrentTrials = int
sweepTrials = int
timeout = "string"
trialTimeout = "string"
}
nCrossValidations = {
mode = "string"
// For remaining properties, see NCrossValidations objects
}
positiveLabel = "string"
primaryMetric = "string"
searchSpace = [
{
booster = "string"
boostingType = "string"
growPolicy = "string"
learningRate = "string"
maxBin = "string"
maxDepth = "string"
maxLeaves = "string"
minDataInLeaf = "string"
minSplitGain = "string"
modelName = "string"
nEstimators = "string"
numLeaves = "string"
preprocessorName = "string"
regAlpha = "string"
regLambda = "string"
subsample = "string"
subsampleFreq = "string"
treeMethod = "string"
withMean = "string"
withStd = "string"
}
]
sweepSettings = {
earlyTermination = {
delayEvaluation = int
evaluationInterval = int
policyType = "string"
// For remaining properties, see EarlyTerminationPolicy objects
}
samplingAlgorithm = "string"
}
testData = {
description = "string"
jobInputType = "string"
mode = "string"
uri = "string"
}
testDataSize = int
trainingSettings = {
allowedTrainingAlgorithms = [
"string"
]
blockedTrainingAlgorithms = [
"string"
]
enableDnnTraining = bool
enableModelExplainability = bool
enableOnnxCompatibleModels = bool
enableStackEnsemble = bool
enableVoteEnsemble = bool
ensembleModelDownloadTimeout = "string"
stackEnsembleSettings = {
stackMetaLearnerTrainPercentage = int
stackMetaLearnerType = "string"
}
trainingMode = "string"
}
validationData = {
description = "string"
jobInputType = "string"
mode = "string"
uri = "string"
}
validationDataSize = int
weightColumnName = "string"
For Forecasting, use:
taskType = "Forecasting"
cvSplitColumnNames = [
"string"
]
featurizationSettings = {
blockedTransformers = [
"string"
]
columnNameAndTypes = {
{customized property} = "string"
}
datasetLanguage = "string"
enableDnnFeaturization = bool
mode = "string"
transformerParams = {
{customized property} = [
{
fields = [
"string"
]
}
]
}
}
fixedParameters = {
booster = "string"
boostingType = "string"
growPolicy = "string"
learningRate = int
maxBin = int
maxDepth = int
maxLeaves = int
minDataInLeaf = int
minSplitGain = int
modelName = "string"
nEstimators = int
numLeaves = int
preprocessorName = "string"
regAlpha = int
regLambda = int
subsample = int
subsampleFreq = int
treeMethod = "string"
withMean = bool
withStd = bool
}
forecastingSettings = {
countryOrRegionForHolidays = "string"
cvStepSize = int
featureLags = "string"
forecastHorizon = {
mode = "string"
// For remaining properties, see ForecastHorizon objects
}
frequency = "string"
seasonality = {
mode = "string"
// For remaining properties, see Seasonality objects
}
shortSeriesHandlingConfig = "string"
targetAggregateFunction = "string"
targetLags = {
mode = "string"
// For remaining properties, see TargetLags objects
}
targetRollingWindowSize = {
mode = "string"
// For remaining properties, see TargetRollingWindowSize objects
}
timeColumnName = "string"
timeSeriesIdColumnNames = [
"string"
]
useStl = "string"
}
limitSettings = {
enableEarlyTermination = bool
exitScore = int
maxConcurrentTrials = int
maxCoresPerTrial = int
maxNodes = int
maxTrials = int
sweepConcurrentTrials = int
sweepTrials = int
timeout = "string"
trialTimeout = "string"
}
nCrossValidations = {
mode = "string"
// For remaining properties, see NCrossValidations objects
}
primaryMetric = "string"
searchSpace = [
{
booster = "string"
boostingType = "string"
growPolicy = "string"
learningRate = "string"
maxBin = "string"
maxDepth = "string"
maxLeaves = "string"
minDataInLeaf = "string"
minSplitGain = "string"
modelName = "string"
nEstimators = "string"
numLeaves = "string"
preprocessorName = "string"
regAlpha = "string"
regLambda = "string"
subsample = "string"
subsampleFreq = "string"
treeMethod = "string"
withMean = "string"
withStd = "string"
}
]
sweepSettings = {
earlyTermination = {
delayEvaluation = int
evaluationInterval = int
policyType = "string"
// For remaining properties, see EarlyTerminationPolicy objects
}
samplingAlgorithm = "string"
}
testData = {
description = "string"
jobInputType = "string"
mode = "string"
uri = "string"
}
testDataSize = int
trainingSettings = {
allowedTrainingAlgorithms = [
"string"
]
blockedTrainingAlgorithms = [
"string"
]
enableDnnTraining = bool
enableModelExplainability = bool
enableOnnxCompatibleModels = bool
enableStackEnsemble = bool
enableVoteEnsemble = bool
ensembleModelDownloadTimeout = "string"
stackEnsembleSettings = {
stackMetaLearnerTrainPercentage = int
stackMetaLearnerType = "string"
}
trainingMode = "string"
}
validationData = {
description = "string"
jobInputType = "string"
mode = "string"
uri = "string"
}
validationDataSize = int
weightColumnName = "string"
For ImageClassification, use:
taskType = "ImageClassification"
limitSettings = {
maxConcurrentTrials = int
maxTrials = int
timeout = "string"
}
modelSettings = {
advancedSettings = "string"
amsGradient = bool
augmentations = "string"
beta1 = int
beta2 = int
checkpointFrequency = int
checkpointModel = {
description = "string"
jobInputType = "string"
mode = "string"
uri = "string"
}
checkpointRunId = "string"
distributed = bool
earlyStopping = bool
earlyStoppingDelay = int
earlyStoppingPatience = int
enableOnnxNormalization = bool
evaluationFrequency = int
gradientAccumulationStep = int
layersToFreeze = int
learningRate = int
learningRateScheduler = "string"
modelName = "string"
momentum = int
nesterov = bool
numberOfEpochs = int
numberOfWorkers = int
optimizer = "string"
randomSeed = int
stepLRGamma = int
stepLRStepSize = int
trainingBatchSize = int
trainingCropSize = int
validationBatchSize = int
validationCropSize = int
validationResizeSize = int
warmupCosineLRCycles = int
warmupCosineLRWarmupEpochs = int
weightDecay = int
weightedLoss = int
}
primaryMetric = "string"
searchSpace = [
{
amsGradient = "string"
augmentations = "string"
beta1 = "string"
beta2 = "string"
distributed = "string"
earlyStopping = "string"
earlyStoppingDelay = "string"
earlyStoppingPatience = "string"
enableOnnxNormalization = "string"
evaluationFrequency = "string"
gradientAccumulationStep = "string"
layersToFreeze = "string"
learningRate = "string"
learningRateScheduler = "string"
modelName = "string"
momentum = "string"
nesterov = "string"
numberOfEpochs = "string"
numberOfWorkers = "string"
optimizer = "string"
randomSeed = "string"
stepLRGamma = "string"
stepLRStepSize = "string"
trainingBatchSize = "string"
trainingCropSize = "string"
validationBatchSize = "string"
validationCropSize = "string"
validationResizeSize = "string"
warmupCosineLRCycles = "string"
warmupCosineLRWarmupEpochs = "string"
weightDecay = "string"
weightedLoss = "string"
}
]
sweepSettings = {
earlyTermination = {
delayEvaluation = int
evaluationInterval = int
policyType = "string"
// For remaining properties, see EarlyTerminationPolicy objects
}
samplingAlgorithm = "string"
}
validationData = {
description = "string"
jobInputType = "string"
mode = "string"
uri = "string"
}
validationDataSize = int
For ImageClassificationMultilabel, use:
taskType = "ImageClassificationMultilabel"
limitSettings = {
maxConcurrentTrials = int
maxTrials = int
timeout = "string"
}
modelSettings = {
advancedSettings = "string"
amsGradient = bool
augmentations = "string"
beta1 = int
beta2 = int
checkpointFrequency = int
checkpointModel = {
description = "string"
jobInputType = "string"
mode = "string"
uri = "string"
}
checkpointRunId = "string"
distributed = bool
earlyStopping = bool
earlyStoppingDelay = int
earlyStoppingPatience = int
enableOnnxNormalization = bool
evaluationFrequency = int
gradientAccumulationStep = int
layersToFreeze = int
learningRate = int
learningRateScheduler = "string"
modelName = "string"
momentum = int
nesterov = bool
numberOfEpochs = int
numberOfWorkers = int
optimizer = "string"
randomSeed = int
stepLRGamma = int
stepLRStepSize = int
trainingBatchSize = int
trainingCropSize = int
validationBatchSize = int
validationCropSize = int
validationResizeSize = int
warmupCosineLRCycles = int
warmupCosineLRWarmupEpochs = int
weightDecay = int
weightedLoss = int
}
primaryMetric = "string"
searchSpace = [
{
amsGradient = "string"
augmentations = "string"
beta1 = "string"
beta2 = "string"
distributed = "string"
earlyStopping = "string"
earlyStoppingDelay = "string"
earlyStoppingPatience = "string"
enableOnnxNormalization = "string"
evaluationFrequency = "string"
gradientAccumulationStep = "string"
layersToFreeze = "string"
learningRate = "string"
learningRateScheduler = "string"
modelName = "string"
momentum = "string"
nesterov = "string"
numberOfEpochs = "string"
numberOfWorkers = "string"
optimizer = "string"
randomSeed = "string"
stepLRGamma = "string"
stepLRStepSize = "string"
trainingBatchSize = "string"
trainingCropSize = "string"
validationBatchSize = "string"
validationCropSize = "string"
validationResizeSize = "string"
warmupCosineLRCycles = "string"
warmupCosineLRWarmupEpochs = "string"
weightDecay = "string"
weightedLoss = "string"
}
]
sweepSettings = {
earlyTermination = {
delayEvaluation = int
evaluationInterval = int
policyType = "string"
// For remaining properties, see EarlyTerminationPolicy objects
}
samplingAlgorithm = "string"
}
validationData = {
description = "string"
jobInputType = "string"
mode = "string"
uri = "string"
}
validationDataSize = int
For ImageInstanceSegmentation, use:
taskType = "ImageInstanceSegmentation"
limitSettings = {
maxConcurrentTrials = int
maxTrials = int
timeout = "string"
}
modelSettings = {
advancedSettings = "string"
amsGradient = bool
augmentations = "string"
beta1 = int
beta2 = int
boxDetectionsPerImage = int
boxScoreThreshold = int
checkpointFrequency = int
checkpointModel = {
description = "string"
jobInputType = "string"
mode = "string"
uri = "string"
}
checkpointRunId = "string"
distributed = bool
earlyStopping = bool
earlyStoppingDelay = int
earlyStoppingPatience = int
enableOnnxNormalization = bool
evaluationFrequency = int
gradientAccumulationStep = int
imageSize = int
layersToFreeze = int
learningRate = int
learningRateScheduler = "string"
maxSize = int
minSize = int
modelName = "string"
modelSize = "string"
momentum = int
multiScale = bool
nesterov = bool
nmsIouThreshold = int
numberOfEpochs = int
numberOfWorkers = int
optimizer = "string"
randomSeed = int
stepLRGamma = int
stepLRStepSize = int
tileGridSize = "string"
tileOverlapRatio = int
tilePredictionsNmsThreshold = int
trainingBatchSize = int
validationBatchSize = int
validationIouThreshold = int
validationMetricType = "string"
warmupCosineLRCycles = int
warmupCosineLRWarmupEpochs = int
weightDecay = int
}
primaryMetric = "MeanAveragePrecision"
searchSpace = [
{
amsGradient = "string"
augmentations = "string"
beta1 = "string"
beta2 = "string"
boxDetectionsPerImage = "string"
boxScoreThreshold = "string"
distributed = "string"
earlyStopping = "string"
earlyStoppingDelay = "string"
earlyStoppingPatience = "string"
enableOnnxNormalization = "string"
evaluationFrequency = "string"
gradientAccumulationStep = "string"
imageSize = "string"
layersToFreeze = "string"
learningRate = "string"
learningRateScheduler = "string"
maxSize = "string"
minSize = "string"
modelName = "string"
modelSize = "string"
momentum = "string"
multiScale = "string"
nesterov = "string"
nmsIouThreshold = "string"
numberOfEpochs = "string"
numberOfWorkers = "string"
optimizer = "string"
randomSeed = "string"
stepLRGamma = "string"
stepLRStepSize = "string"
tileGridSize = "string"
tileOverlapRatio = "string"
tilePredictionsNmsThreshold = "string"
trainingBatchSize = "string"
validationBatchSize = "string"
validationIouThreshold = "string"
validationMetricType = "string"
warmupCosineLRCycles = "string"
warmupCosineLRWarmupEpochs = "string"
weightDecay = "string"
}
]
sweepSettings = {
earlyTermination = {
delayEvaluation = int
evaluationInterval = int
policyType = "string"
// For remaining properties, see EarlyTerminationPolicy objects
}
samplingAlgorithm = "string"
}
validationData = {
description = "string"
jobInputType = "string"
mode = "string"
uri = "string"
}
validationDataSize = int
For ImageObjectDetection, use:
taskType = "ImageObjectDetection"
limitSettings = {
maxConcurrentTrials = int
maxTrials = int
timeout = "string"
}
modelSettings = {
advancedSettings = "string"
amsGradient = bool
augmentations = "string"
beta1 = int
beta2 = int
boxDetectionsPerImage = int
boxScoreThreshold = int
checkpointFrequency = int
checkpointModel = {
description = "string"
jobInputType = "string"
mode = "string"
uri = "string"
}
checkpointRunId = "string"
distributed = bool
earlyStopping = bool
earlyStoppingDelay = int
earlyStoppingPatience = int
enableOnnxNormalization = bool
evaluationFrequency = int
gradientAccumulationStep = int
imageSize = int
layersToFreeze = int
learningRate = int
learningRateScheduler = "string"
maxSize = int
minSize = int
modelName = "string"
modelSize = "string"
momentum = int
multiScale = bool
nesterov = bool
nmsIouThreshold = int
numberOfEpochs = int
numberOfWorkers = int
optimizer = "string"
randomSeed = int
stepLRGamma = int
stepLRStepSize = int
tileGridSize = "string"
tileOverlapRatio = int
tilePredictionsNmsThreshold = int
trainingBatchSize = int
validationBatchSize = int
validationIouThreshold = int
validationMetricType = "string"
warmupCosineLRCycles = int
warmupCosineLRWarmupEpochs = int
weightDecay = int
}
primaryMetric = "MeanAveragePrecision"
searchSpace = [
{
amsGradient = "string"
augmentations = "string"
beta1 = "string"
beta2 = "string"
boxDetectionsPerImage = "string"
boxScoreThreshold = "string"
distributed = "string"
earlyStopping = "string"
earlyStoppingDelay = "string"
earlyStoppingPatience = "string"
enableOnnxNormalization = "string"
evaluationFrequency = "string"
gradientAccumulationStep = "string"
imageSize = "string"
layersToFreeze = "string"
learningRate = "string"
learningRateScheduler = "string"
maxSize = "string"
minSize = "string"
modelName = "string"
modelSize = "string"
momentum = "string"
multiScale = "string"
nesterov = "string"
nmsIouThreshold = "string"
numberOfEpochs = "string"
numberOfWorkers = "string"
optimizer = "string"
randomSeed = "string"
stepLRGamma = "string"
stepLRStepSize = "string"
tileGridSize = "string"
tileOverlapRatio = "string"
tilePredictionsNmsThreshold = "string"
trainingBatchSize = "string"
validationBatchSize = "string"
validationIouThreshold = "string"
validationMetricType = "string"
warmupCosineLRCycles = "string"
warmupCosineLRWarmupEpochs = "string"
weightDecay = "string"
}
]
sweepSettings = {
earlyTermination = {
delayEvaluation = int
evaluationInterval = int
policyType = "string"
// For remaining properties, see EarlyTerminationPolicy objects
}
samplingAlgorithm = "string"
}
validationData = {
description = "string"
jobInputType = "string"
mode = "string"
uri = "string"
}
validationDataSize = int
For Regression, use:
taskType = "Regression"
cvSplitColumnNames = [
"string"
]
featurizationSettings = {
blockedTransformers = [
"string"
]
columnNameAndTypes = {
{customized property} = "string"
}
datasetLanguage = "string"
enableDnnFeaturization = bool
mode = "string"
transformerParams = {
{customized property} = [
{
fields = [
"string"
]
}
]
}
}
fixedParameters = {
booster = "string"
boostingType = "string"
growPolicy = "string"
learningRate = int
maxBin = int
maxDepth = int
maxLeaves = int
minDataInLeaf = int
minSplitGain = int
modelName = "string"
nEstimators = int
numLeaves = int
preprocessorName = "string"
regAlpha = int
regLambda = int
subsample = int
subsampleFreq = int
treeMethod = "string"
withMean = bool
withStd = bool
}
limitSettings = {
enableEarlyTermination = bool
exitScore = int
maxConcurrentTrials = int
maxCoresPerTrial = int
maxNodes = int
maxTrials = int
sweepConcurrentTrials = int
sweepTrials = int
timeout = "string"
trialTimeout = "string"
}
nCrossValidations = {
mode = "string"
// For remaining properties, see NCrossValidations objects
}
primaryMetric = "string"
searchSpace = [
{
booster = "string"
boostingType = "string"
growPolicy = "string"
learningRate = "string"
maxBin = "string"
maxDepth = "string"
maxLeaves = "string"
minDataInLeaf = "string"
minSplitGain = "string"
modelName = "string"
nEstimators = "string"
numLeaves = "string"
preprocessorName = "string"
regAlpha = "string"
regLambda = "string"
subsample = "string"
subsampleFreq = "string"
treeMethod = "string"
withMean = "string"
withStd = "string"
}
]
sweepSettings = {
earlyTermination = {
delayEvaluation = int
evaluationInterval = int
policyType = "string"
// For remaining properties, see EarlyTerminationPolicy objects
}
samplingAlgorithm = "string"
}
testData = {
description = "string"
jobInputType = "string"
mode = "string"
uri = "string"
}
testDataSize = int
trainingSettings = {
allowedTrainingAlgorithms = [
"string"
]
blockedTrainingAlgorithms = [
"string"
]
enableDnnTraining = bool
enableModelExplainability = bool
enableOnnxCompatibleModels = bool
enableStackEnsemble = bool
enableVoteEnsemble = bool
ensembleModelDownloadTimeout = "string"
stackEnsembleSettings = {
stackMetaLearnerTrainPercentage = int
stackMetaLearnerType = "string"
}
trainingMode = "string"
}
validationData = {
description = "string"
jobInputType = "string"
mode = "string"
uri = "string"
}
validationDataSize = int
weightColumnName = "string"
For TextClassification, use:
taskType = "TextClassification"
featurizationSettings = {
datasetLanguage = "string"
}
fixedParameters = {
gradientAccumulationSteps = int
learningRate = int
learningRateScheduler = "string"
modelName = "string"
numberOfEpochs = int
trainingBatchSize = int
validationBatchSize = int
warmupRatio = int
weightDecay = int
}
limitSettings = {
maxConcurrentTrials = int
maxNodes = int
maxTrials = int
timeout = "string"
trialTimeout = "string"
}
primaryMetric = "string"
searchSpace = [
{
gradientAccumulationSteps = "string"
learningRate = "string"
learningRateScheduler = "string"
modelName = "string"
numberOfEpochs = "string"
trainingBatchSize = "string"
validationBatchSize = "string"
warmupRatio = "string"
weightDecay = "string"
}
]
sweepSettings = {
earlyTermination = {
delayEvaluation = int
evaluationInterval = int
policyType = "string"
// For remaining properties, see EarlyTerminationPolicy objects
}
samplingAlgorithm = "string"
}
validationData = {
description = "string"
jobInputType = "string"
mode = "string"
uri = "string"
}
For TextClassificationMultilabel, use:
taskType = "TextClassificationMultilabel"
featurizationSettings = {
datasetLanguage = "string"
}
fixedParameters = {
gradientAccumulationSteps = int
learningRate = int
learningRateScheduler = "string"
modelName = "string"
numberOfEpochs = int
trainingBatchSize = int
validationBatchSize = int
warmupRatio = int
weightDecay = int
}
limitSettings = {
maxConcurrentTrials = int
maxNodes = int
maxTrials = int
timeout = "string"
trialTimeout = "string"
}
searchSpace = [
{
gradientAccumulationSteps = "string"
learningRate = "string"
learningRateScheduler = "string"
modelName = "string"
numberOfEpochs = "string"
trainingBatchSize = "string"
validationBatchSize = "string"
warmupRatio = "string"
weightDecay = "string"
}
]
sweepSettings = {
earlyTermination = {
delayEvaluation = int
evaluationInterval = int
policyType = "string"
// For remaining properties, see EarlyTerminationPolicy objects
}
samplingAlgorithm = "string"
}
validationData = {
description = "string"
jobInputType = "string"
mode = "string"
uri = "string"
}
For TextNER, use:
taskType = "TextNER"
featurizationSettings = {
datasetLanguage = "string"
}
fixedParameters = {
gradientAccumulationSteps = int
learningRate = int
learningRateScheduler = "string"
modelName = "string"
numberOfEpochs = int
trainingBatchSize = int
validationBatchSize = int
warmupRatio = int
weightDecay = int
}
limitSettings = {
maxConcurrentTrials = int
maxNodes = int
maxTrials = int
timeout = "string"
trialTimeout = "string"
}
searchSpace = [
{
gradientAccumulationSteps = "string"
learningRate = "string"
learningRateScheduler = "string"
modelName = "string"
numberOfEpochs = "string"
trainingBatchSize = "string"
validationBatchSize = "string"
warmupRatio = "string"
weightDecay = "string"
}
]
sweepSettings = {
earlyTermination = {
delayEvaluation = int
evaluationInterval = int
policyType = "string"
// For remaining properties, see EarlyTerminationPolicy objects
}
samplingAlgorithm = "string"
}
validationData = {
description = "string"
jobInputType = "string"
mode = "string"
uri = "string"
}
NCrossValidations objects
Set the mode property to specify the type of object.
For Auto, use:
mode = "Auto"
For Custom, use:
mode = "Custom"
value = int
EarlyTerminationPolicy objects
Set the policyType property to specify the type of object.
For Bandit, use:
policyType = "Bandit"
slackAmount = int
slackFactor = int
For MedianStopping, use:
policyType = "MedianStopping"
For TruncationSelection, use:
policyType = "TruncationSelection"
truncationPercentage = int
ForecastHorizon objects
Set the mode property to specify the type of object.
For Auto, use:
mode = "Auto"
For Custom, use:
mode = "Custom"
value = int
Seasonality objects
Set the mode property to specify the type of object.
For Auto, use:
mode = "Auto"
For Custom, use:
mode = "Custom"
value = int
TargetLags objects
Set the mode property to specify the type of object.
For Auto, use:
mode = "Auto"
For Custom, use:
mode = "Custom"
values = [
int
]
TargetRollingWindowSize objects
Set the mode property to specify the type of object.
For Auto, use:
mode = "Auto"
For Custom, use:
mode = "Custom"
value = int
DistributionConfiguration objects
Set the distributionType property to specify the type of object.
For Mpi, use:
distributionType = "Mpi"
processCountPerInstance = int
For PyTorch, use:
distributionType = "PyTorch"
processCountPerInstance = int
For TensorFlow, use:
distributionType = "TensorFlow"
parameterServerCount = int
workerCount = int
JobInput objects
Set the jobInputType property to specify the type of object.
For custom_model, use:
jobInputType = "custom_model"
mode = "string"
uri = "string"
For literal, use:
jobInputType = "literal"
value = "string"
For mlflow_model, use:
jobInputType = "mlflow_model"
mode = "string"
uri = "string"
For mltable, use:
jobInputType = "mltable"
mode = "string"
uri = "string"
For triton_model, use:
jobInputType = "triton_model"
mode = "string"
uri = "string"
For uri_file, use:
jobInputType = "uri_file"
mode = "string"
uri = "string"
For uri_folder, use:
jobInputType = "uri_folder"
mode = "string"
uri = "string"
LabelingJobMediaProperties objects
Set the mediaType property to specify the type of object.
For Image, use:
mediaType = "Image"
annotationType = "string"
For Text, use:
mediaType = "Text"
annotationType = "string"
MLAssistConfiguration objects
Set the mlAssist property to specify the type of object.
For Disabled, use:
mlAssist = "Disabled"
For Enabled, use:
mlAssist = "Enabled"
inferencingComputeBinding = "string"
trainingComputeBinding = "string"
SparkJobEntry objects
Set the sparkJobEntryType property to specify the type of object.
For SparkJobPythonEntry, use:
sparkJobEntryType = "SparkJobPythonEntry"
file = "string"
For SparkJobScalaEntry, use:
sparkJobEntryType = "SparkJobScalaEntry"
className = "string"
SamplingAlgorithm objects
Set the samplingAlgorithmType property to specify the type of object.
For Bayesian, use:
samplingAlgorithmType = "Bayesian"
For Grid, use:
samplingAlgorithmType = "Grid"
For Random, use:
samplingAlgorithmType = "Random"
logbase = "string"
rule = "string"
seed = int
Property values
workspaces/jobs
Name | Description | Value |
---|---|---|
type | The resource type | "Microsoft.MachineLearningServices/workspaces/jobs@2022-12-01-preview" |
name | The resource name | string (required) |
parent_id | The ID of the resource that is the parent for this resource. | ID for resource of type: workspaces |
properties | [Required] Additional attributes of the entity. | JobBaseProperties (required) |
JobBaseProperties
Name | Description | Value |
---|---|---|
componentId | ARM resource ID of the component resource. | string |
computeId | ARM resource ID of the compute resource. | string |
description | The asset description text. | string |
displayName | Display name of job. | string |
experimentName | The name of the experiment the job belongs to. If not set, the job is placed in the "Default" experiment. | string |
identity | Identity configuration. If set, this should be one of AmlToken, ManagedIdentity, UserIdentity or null. Defaults to AmlToken if null. |
IdentityConfiguration |
isArchived | Is the asset archived? | bool |
properties | The asset property dictionary. | ResourceBaseProperties |
services | List of JobEndpoints. For local jobs, a job endpoint will have an endpoint value of FileStreamObject. |
JobBaseServices |
tags | Tag dictionary. Tags can be added, removed, and updated. | object |
jobType | Set the object type | AutoML Command Labeling Pipeline Spark Sweep (required) |
IdentityConfiguration
Name | Description | Value |
---|---|---|
identityType | Set the object type | AMLToken Managed UserIdentity (required) |
AmlToken
Name | Description | Value |
---|---|---|
identityType | [Required] Specifies the type of identity framework. | "AMLToken" (required) |
ManagedIdentity
Name | Description | Value |
---|---|---|
identityType | [Required] Specifies the type of identity framework. | "Managed" (required) |
clientId | Specifies a user-assigned identity by client ID. For system-assigned, do not set this field. | string Constraints: Min length = 36 Max length = 36 Pattern = ^[0-9a-fA-F]{8}-([0-9a-fA-F]{4}-){3}[0-9a-fA-F]{12}$ |
objectId | Specifies a user-assigned identity by object ID. For system-assigned, do not set this field. | string Constraints: Min length = 36 Max length = 36 Pattern = ^[0-9a-fA-F]{8}-([0-9a-fA-F]{4}-){3}[0-9a-fA-F]{12}$ |
resourceId | Specifies a user-assigned identity by ARM resource ID. For system-assigned, do not set this field. | string |
UserIdentity
Name | Description | Value |
---|---|---|
identityType | [Required] Specifies the type of identity framework. | "UserIdentity" (required) |
ResourceBaseProperties
Name | Description | Value |
---|---|---|
{customized property} | string |
JobBaseServices
Name | Description | Value |
---|---|---|
{customized property} | JobService |
JobService
Name | Description | Value |
---|---|---|
endpoint | Url for endpoint. | string |
jobServiceType | Endpoint type. | string |
nodes | Nodes that user would like to start the service on. If Nodes is not set or set to null, the service will only be started on leader node. |
Nodes |
port | Port for endpoint set by user. | int |
properties | Additional properties to set on the endpoint. | JobServiceProperties |
Nodes
Name | Description | Value |
---|---|---|
nodesValueType | Set the object type | All (required) |
AllNodes
Name | Description | Value |
---|---|---|
nodesValueType | [Required] Type of the Nodes value | "All" (required) |
JobServiceProperties
Name | Description | Value |
---|---|---|
{customized property} | string |
AutoMLJob
Name | Description | Value |
---|---|---|
jobType | [Required] Specifies the type of job. | "AutoML" (required) |
environmentId | The ARM resource ID of the Environment specification for the job. This is optional value to provide, if not provided, AutoML will default this to Production AutoML curated environment version when running the job. |
string |
environmentVariables | Environment variables included in the job. | AutoMLJobEnvironmentVariables |
outputs | Mapping of output data bindings used in the job. | AutoMLJobOutputs |
resources | Compute Resource configuration for the job. | JobResourceConfiguration |
taskDetails | [Required] This represents scenario which can be one of Tables/NLP/Image | AutoMLVertical (required) |
AutoMLJobEnvironmentVariables
Name | Description | Value |
---|---|---|
{customized property} | string |
AutoMLJobOutputs
Name | Description | Value |
---|---|---|
{customized property} | JobOutput |
JobOutput
Name | Description | Value |
---|---|---|
description | Description for the output. | string |
jobOutputType | Set the object type | custom_model mlflow_model mltable triton_model uri_file uri_folder (required) |
CustomModelJobOutput
Name | Description | Value |
---|---|---|
jobOutputType | [Required] Specifies the type of job. | "custom_model" (required) |
assetName | Output Asset Name. | string |
assetVersion | Output Asset Version. | string |
mode | Output Asset Delivery Mode. | "Direct" "ReadWriteMount" "Upload" |
uri | Output Asset URI. | string |
MLFlowModelJobOutput
Name | Description | Value |
---|---|---|
jobOutputType | [Required] Specifies the type of job. | "mlflow_model" (required) |
assetName | Output Asset Name. | string |
assetVersion | Output Asset Version. | string |
mode | Output Asset Delivery Mode. | "Direct" "ReadWriteMount" "Upload" |
uri | Output Asset URI. | string |
MLTableJobOutput
Name | Description | Value |
---|---|---|
jobOutputType | [Required] Specifies the type of job. | "mltable" (required) |
assetName | Output Asset Name. | string |
assetVersion | Output Asset Version. | string |
mode | Output Asset Delivery Mode. | "Direct" "ReadWriteMount" "Upload" |
uri | Output Asset URI. | string |
TritonModelJobOutput
Name | Description | Value |
---|---|---|
jobOutputType | [Required] Specifies the type of job. | "triton_model" (required) |
assetName | Output Asset Name. | string |
assetVersion | Output Asset Version. | string |
mode | Output Asset Delivery Mode. | "Direct" "ReadWriteMount" "Upload" |
uri | Output Asset URI. | string |
UriFileJobOutput
Name | Description | Value |
---|---|---|
jobOutputType | [Required] Specifies the type of job. | "uri_file" (required) |
assetName | Output Asset Name. | string |
assetVersion | Output Asset Version. | string |
mode | Output Asset Delivery Mode. | "Direct" "ReadWriteMount" "Upload" |
uri | Output Asset URI. | string |
UriFolderJobOutput
Name | Description | Value |
---|---|---|
jobOutputType | [Required] Specifies the type of job. | "uri_folder" (required) |
assetName | Output Asset Name. | string |
assetVersion | Output Asset Version. | string |
mode | Output Asset Delivery Mode. | "Direct" "ReadWriteMount" "Upload" |
uri | Output Asset URI. | string |
JobResourceConfiguration
Name | Description | Value |
---|---|---|
dockerArgs | Extra arguments to pass to the Docker run command. This would override any parameters that have already been set by the system, or in this section. This parameter is only supported for Azure ML compute types. | string |
instanceCount | Optional number of instances or nodes used by the compute target. | int |
instanceType | Optional type of VM used as supported by the compute target. | string |
properties | Additional properties bag. | ResourceConfigurationProperties |
shmSize | Size of the docker container's shared memory block. This should be in the format of (number)(unit) where number as to be greater than 0 and the unit can be one of b(bytes), k(kilobytes), m(megabytes), or g(gigabytes). | string Constraints: Pattern = \d+[bBkKmMgG] |
ResourceConfigurationProperties
Name | Description | Value |
---|---|---|
{customized property} |
AutoMLVertical
Name | Description | Value |
---|---|---|
logVerbosity | Log verbosity for the job. | "Critical" "Debug" "Error" "Info" "NotSet" "Warning" |
targetColumnName | Target column name: This is prediction values column. Also known as label column name in context of classification tasks. |
string |
trainingData | [Required] Training data input. | MLTableJobInput (required) |
taskType | Set the object type | Classification Forecasting ImageClassification ImageClassificationMultilabel ImageInstanceSegmentation ImageObjectDetection Regression TextClassification TextClassificationMultilabel TextNER (required) |
MLTableJobInput
Name | Description | Value |
---|---|---|
description | Description for the input. | string |
jobInputType | [Required] Specifies the type of job. | "custom_model" "literal" "mlflow_model" "mltable" "triton_model" "uri_file" "uri_folder" (required) |
mode | Input Asset Delivery Mode. | "Direct" "Download" "EvalDownload" "EvalMount" "ReadOnlyMount" "ReadWriteMount" |
uri | [Required] Input Asset URI. | string (required) Constraints: Pattern = [a-zA-Z0-9_] |
Classification
Name | Description | Value |
---|---|---|
taskType | [Required] Task type for AutoMLJob. | "Classification" (required) |
cvSplitColumnNames | Columns to use for CVSplit data. | string[] |
featurizationSettings | Featurization inputs needed for AutoML job. | TableVerticalFeaturizationSettings |
fixedParameters | Model/training parameters that will remain constant throughout training. | TableFixedParameters |
limitSettings | Execution constraints for AutoMLJob. | TableVerticalLimitSettings |
nCrossValidations | Number of cross validation folds to be applied on training dataset when validation dataset is not provided. |
NCrossValidations |
positiveLabel | Positive label for binary metrics calculation. | string |
primaryMetric | Primary metric for the task. | "AUCWeighted" "Accuracy" "AveragePrecisionScoreWeighted" "NormMacroRecall" "PrecisionScoreWeighted" |
searchSpace | Search space for sampling different combinations of models and their hyperparameters. | TableParameterSubspace[] |
sweepSettings | Settings for model sweeping and hyperparameter tuning. | TableSweepSettings |
testData | Test data input. | MLTableJobInput |
testDataSize | The fraction of test dataset that needs to be set aside for validation purpose. Values between (0.0 , 1.0) Applied when validation dataset is not provided. |
int |
trainingSettings | Inputs for training phase for an AutoML Job. | ClassificationTrainingSettings |
validationData | Validation data inputs. | MLTableJobInput |
validationDataSize | The fraction of training dataset that needs to be set aside for validation purpose. Values between (0.0 , 1.0) Applied when validation dataset is not provided. |
int |
weightColumnName | The name of the sample weight column. Automated ML supports a weighted column as an input, causing rows in the data to be weighted up or down. | string |
TableVerticalFeaturizationSettings
Name | Description | Value |
---|---|---|
blockedTransformers | These transformers shall not be used in featurization. | String array containing any of: "CatTargetEncoder" "CountVectorizer" "HashOneHotEncoder" "LabelEncoder" "NaiveBayes" "OneHotEncoder" "TextTargetEncoder" "TfIdf" "WoETargetEncoder" "WordEmbedding" |
columnNameAndTypes | Dictionary of column name and its type (int, float, string, datetime etc). | TableVerticalFeaturizationSettingsColumnNameAndTypes |
datasetLanguage | Dataset language, useful for the text data. | string |
enableDnnFeaturization | Determines whether to use Dnn based featurizers for data featurization. | bool |
mode | Featurization mode - User can keep the default 'Auto' mode and AutoML will take care of necessary transformation of the data in featurization phase. If 'Off' is selected then no featurization is done. If 'Custom' is selected then user can specify additional inputs to customize how featurization is done. |
"Auto" "Custom" "Off" |
transformerParams | User can specify additional transformers to be used along with the columns to which it would be applied and parameters for the transformer constructor. | TableVerticalFeaturizationSettingsTransformerParams |
TableVerticalFeaturizationSettingsColumnNameAndTypes
Name | Description | Value |
---|---|---|
{customized property} | string |
TableVerticalFeaturizationSettingsTransformerParams
Name | Description | Value |
---|---|---|
{customized property} | ColumnTransformer[] |
ColumnTransformer
Name | Description | Value |
---|---|---|
fields | Fields to apply transformer logic on. | string[] |
parameters | Different properties to be passed to transformer. Input expected is dictionary of key,value pairs in JSON format. |
TableFixedParameters
Name | Description | Value |
---|---|---|
booster | Specify the boosting type, e.g gbdt for XGBoost. | string |
boostingType | Specify the boosting type, e.g gbdt for LightGBM. | string |
growPolicy | Specify the grow policy, which controls the way new nodes are added to the tree. | string |
learningRate | The learning rate for the training procedure. | int |
maxBin | Specify the Maximum number of discrete bins to bucket continuous features . | int |
maxDepth | Specify the max depth to limit the tree depth explicitly. | int |
maxLeaves | Specify the max leaves to limit the tree leaves explicitly. | int |
minDataInLeaf | The minimum number of data per leaf. | int |
minSplitGain | Minimum loss reduction required to make a further partition on a leaf node of the tree. | int |
modelName | The name of the model to train. | string |
nEstimators | Specify the number of trees (or rounds) in an model. | int |
numLeaves | Specify the number of leaves. | int |
preprocessorName | The name of the preprocessor to use. | string |
regAlpha | L1 regularization term on weights. | int |
regLambda | L2 regularization term on weights. | int |
subsample | Subsample ratio of the training instance. | int |
subsampleFreq | Frequency of subsample. | int |
treeMethod | Specify the tree method. | string |
withMean | If true, center before scaling the data with StandardScalar. | bool |
withStd | If true, scaling the data with Unit Variance with StandardScalar. | bool |
TableVerticalLimitSettings
Name | Description | Value |
---|---|---|
enableEarlyTermination | Enable early termination, determines whether or not if AutoMLJob will terminate early if there is no score improvement in last 20 iterations. | bool |
exitScore | Exit score for the AutoML job. | int |
maxConcurrentTrials | Maximum Concurrent iterations. | int |
maxCoresPerTrial | Max cores per iteration. | int |
maxNodes | Maximum nodes to use for the experiment. | int |
maxTrials | Number of iterations. | int |
sweepConcurrentTrials | Number of concurrent sweeping runs that user wants to trigger. | int |
sweepTrials | Number of sweeping runs that user wants to trigger. | int |
timeout | AutoML job timeout. | string |
trialTimeout | Iteration timeout. | string |
NCrossValidations
Name | Description | Value |
---|---|---|
mode | Set the object type | Auto Custom (required) |
AutoNCrossValidations
Name | Description | Value |
---|---|---|
mode | [Required] Mode for determining N-Cross validations. | "Auto" (required) |
CustomNCrossValidations
Name | Description | Value |
---|---|---|
mode | [Required] Mode for determining N-Cross validations. | "Custom" (required) |
value | [Required] N-Cross validations value. | int (required) |
TableParameterSubspace
Name | Description | Value |
---|---|---|
booster | Specify the boosting type, e.g gbdt for XGBoost. | string |
boostingType | Specify the boosting type, e.g gbdt for LightGBM. | string |
growPolicy | Specify the grow policy, which controls the way new nodes are added to the tree. | string |
learningRate | The learning rate for the training procedure. | string |
maxBin | Specify the Maximum number of discrete bins to bucket continuous features . | string |
maxDepth | Specify the max depth to limit the tree depth explicitly. | string |
maxLeaves | Specify the max leaves to limit the tree leaves explicitly. | string |
minDataInLeaf | The minimum number of data per leaf. | string |
minSplitGain | Minimum loss reduction required to make a further partition on a leaf node of the tree. | string |
modelName | The name of the model to train. | string |
nEstimators | Specify the number of trees (or rounds) in an model. | string |
numLeaves | Specify the number of leaves. | string |
preprocessorName | The name of the preprocessor to use. | string |
regAlpha | L1 regularization term on weights. | string |
regLambda | L2 regularization term on weights. | string |
subsample | Subsample ratio of the training instance. | string |
subsampleFreq | Frequency of subsample | string |
treeMethod | Specify the tree method. | string |
withMean | If true, center before scaling the data with StandardScalar. | string |
withStd | If true, scaling the data with Unit Variance with StandardScalar. | string |
TableSweepSettings
Name | Description | Value |
---|---|---|
earlyTermination | Type of early termination policy for the sweeping job. | EarlyTerminationPolicy |
samplingAlgorithm | [Required] Type of sampling algorithm. | "Bayesian" "Grid" "Random" (required) |
EarlyTerminationPolicy
Name | Description | Value |
---|---|---|
delayEvaluation | Number of intervals by which to delay the first evaluation. | int |
evaluationInterval | Interval (number of runs) between policy evaluations. | int |
policyType | Set the object type | Bandit MedianStopping TruncationSelection (required) |
BanditPolicy
Name | Description | Value |
---|---|---|
policyType | [Required] Name of policy configuration | "Bandit" (required) |
slackAmount | Absolute distance allowed from the best performing run. | int |
slackFactor | Ratio of the allowed distance from the best performing run. | int |
MedianStoppingPolicy
Name | Description | Value |
---|---|---|
policyType | [Required] Name of policy configuration | "MedianStopping" (required) |
TruncationSelectionPolicy
Name | Description | Value |
---|---|---|
policyType | [Required] Name of policy configuration | "TruncationSelection" (required) |
truncationPercentage | The percentage of runs to cancel at each evaluation interval. | int |
ClassificationTrainingSettings
Name | Description | Value |
---|---|---|
allowedTrainingAlgorithms | Allowed models for classification task. | String array containing any of: "BernoulliNaiveBayes" "DecisionTree" "ExtremeRandomTrees" "GradientBoosting" "KNN" "LightGBM" "LinearSVM" "LogisticRegression" "MultinomialNaiveBayes" "RandomForest" "SGD" "SVM" "XGBoostClassifier" |
blockedTrainingAlgorithms | Blocked models for classification task. | String array containing any of: "BernoulliNaiveBayes" "DecisionTree" "ExtremeRandomTrees" "GradientBoosting" "KNN" "LightGBM" "LinearSVM" "LogisticRegression" "MultinomialNaiveBayes" "RandomForest" "SGD" "SVM" "XGBoostClassifier" |
enableDnnTraining | Enable recommendation of DNN models. | bool |
enableModelExplainability | Flag to turn on explainability on best model. | bool |
enableOnnxCompatibleModels | Flag for enabling onnx compatible models. | bool |
enableStackEnsemble | Enable stack ensemble run. | bool |
enableVoteEnsemble | Enable voting ensemble run. | bool |
ensembleModelDownloadTimeout | During VotingEnsemble and StackEnsemble model generation, multiple fitted models from the previous child runs are downloaded. Configure this parameter with a higher value than 300 secs, if more time is needed. |
string |
stackEnsembleSettings | Stack ensemble settings for stack ensemble run. | StackEnsembleSettings |
trainingMode | TrainingMode mode - Setting to 'auto' is same as setting it to 'non-distributed' for now, however in the future may result in mixed mode or heuristics based mode selection. Default is 'auto'. If 'Distributed' then only distributed featurization is used and distributed algorithms are chosen. If 'NonDistributed' then only non distributed algorithms are chosen. |
"Auto" "Distributed" "NonDistributed" |
StackEnsembleSettings
Name | Description | Value |
---|---|---|
stackMetaLearnerKWargs | Optional parameters to pass to the initializer of the meta-learner. | |
stackMetaLearnerTrainPercentage | Specifies the proportion of the training set (when choosing train and validation type of training) to be reserved for training the meta-learner. Default value is 0.2. | int |
stackMetaLearnerType | The meta-learner is a model trained on the output of the individual heterogeneous models. | "ElasticNet" "ElasticNetCV" "LightGBMClassifier" "LightGBMRegressor" "LinearRegression" "LogisticRegression" "LogisticRegressionCV" "None" |
Forecasting
Name | Description | Value |
---|---|---|
taskType | [Required] Task type for AutoMLJob. | "Forecasting" (required) |
cvSplitColumnNames | Columns to use for CVSplit data. | string[] |
featurizationSettings | Featurization inputs needed for AutoML job. | TableVerticalFeaturizationSettings |
fixedParameters | Model/training parameters that will remain constant throughout training. | TableFixedParameters |
forecastingSettings | Forecasting task specific inputs. | ForecastingSettings |
limitSettings | Execution constraints for AutoMLJob. | TableVerticalLimitSettings |
nCrossValidations | Number of cross validation folds to be applied on training dataset when validation dataset is not provided. |
NCrossValidations |
primaryMetric | Primary metric for forecasting task. | "NormalizedMeanAbsoluteError" "NormalizedRootMeanSquaredError" "R2Score" "SpearmanCorrelation" |
searchSpace | Search space for sampling different combinations of models and their hyperparameters. | TableParameterSubspace[] |
sweepSettings | Settings for model sweeping and hyperparameter tuning. | TableSweepSettings |
testData | Test data input. | MLTableJobInput |
testDataSize | The fraction of test dataset that needs to be set aside for validation purpose. Values between (0.0 , 1.0) Applied when validation dataset is not provided. |
int |
trainingSettings | Inputs for training phase for an AutoML Job. | ForecastingTrainingSettings |
validationData | Validation data inputs. | MLTableJobInput |
validationDataSize | The fraction of training dataset that needs to be set aside for validation purpose. Values between (0.0 , 1.0) Applied when validation dataset is not provided. |
int |
weightColumnName | The name of the sample weight column. Automated ML supports a weighted column as an input, causing rows in the data to be weighted up or down. | string |
ForecastingSettings
Name | Description | Value |
---|---|---|
countryOrRegionForHolidays | Country or region for holidays for forecasting tasks. These should be ISO 3166 two-letter country/region codes, for example 'US' or 'GB'. |
string |
cvStepSize | Number of periods between the origin time of one CV fold and the next fold. For example, if CVStepSize = 3 for daily data, the origin time for each fold will bethree days apart. |
int |
featureLags | Flag for generating lags for the numeric features with 'auto' or null. | "Auto" "None" |
forecastHorizon | The desired maximum forecast horizon in units of time-series frequency. | ForecastHorizon |
frequency | When forecasting, this parameter represents the period with which the forecast is desired, for example daily, weekly, yearly, etc. The forecast frequency is dataset frequency by default. | string |
seasonality | Set time series seasonality as an integer multiple of the series frequency. If seasonality is set to 'auto', it will be inferred. |
Seasonality |
shortSeriesHandlingConfig | The parameter defining how if AutoML should handle short time series. | "Auto" "Drop" "None" "Pad" |
targetAggregateFunction | The function to be used to aggregate the time series target column to conform to a user specified frequency. If the TargetAggregateFunction is set i.e. not 'None', but the freq parameter is not set, the error is raised. The possible target aggregation functions are: "sum", "max", "min" and "mean". |
"Max" "Mean" "Min" "None" "Sum" |
targetLags | The number of past periods to lag from the target column. | TargetLags |
targetRollingWindowSize | The number of past periods used to create a rolling window average of the target column. | TargetRollingWindowSize |
timeColumnName | The name of the time column. This parameter is required when forecasting to specify the datetime column in the input data used for building the time series and inferring its frequency. | string |
timeSeriesIdColumnNames | The names of columns used to group a timeseries. It can be used to create multiple series. If grain is not defined, the data set is assumed to be one time-series. This parameter is used with task type forecasting. |
string[] |
useStl | Configure STL Decomposition of the time-series target column. | "None" "Season" "SeasonTrend" |
ForecastHorizon
Name | Description | Value |
---|---|---|
mode | Set the object type | Auto Custom (required) |
AutoForecastHorizon
Name | Description | Value |
---|---|---|
mode | [Required] Set forecast horizon value selection mode. | "Auto" (required) |
CustomForecastHorizon
Name | Description | Value |
---|---|---|
mode | [Required] Set forecast horizon value selection mode. | "Custom" (required) |
value | [Required] Forecast horizon value. | int (required) |
Seasonality
Name | Description | Value |
---|---|---|
mode | Set the object type | Auto Custom (required) |
AutoSeasonality
Name | Description | Value |
---|---|---|
mode | [Required] Seasonality mode. | "Auto" (required) |
CustomSeasonality
Name | Description | Value |
---|---|---|
mode | [Required] Seasonality mode. | "Custom" (required) |
value | [Required] Seasonality value. | int (required) |
TargetLags
Name | Description | Value |
---|---|---|
mode | Set the object type | Auto Custom (required) |
AutoTargetLags
Name | Description | Value |
---|---|---|
mode | [Required] Set target lags mode - Auto/Custom | "Auto" (required) |
CustomTargetLags
Name | Description | Value |
---|---|---|
mode | [Required] Set target lags mode - Auto/Custom | "Custom" (required) |
values | [Required] Set target lags values. | int[] (required) |
TargetRollingWindowSize
Name | Description | Value |
---|---|---|
mode | Set the object type | Auto Custom (required) |
AutoTargetRollingWindowSize
Name | Description | Value |
---|---|---|
mode | [Required] TargetRollingWindowSiz detection mode. | "Auto" (required) |
CustomTargetRollingWindowSize
Name | Description | Value |
---|---|---|
mode | [Required] TargetRollingWindowSiz detection mode. | "Custom" (required) |
value | [Required] TargetRollingWindowSize value. | int (required) |
ForecastingTrainingSettings
Name | Description | Value |
---|---|---|
allowedTrainingAlgorithms | Allowed models for forecasting task. | String array containing any of: "Arimax" "AutoArima" "Average" "DecisionTree" "ElasticNet" "ExponentialSmoothing" "ExtremeRandomTrees" "GradientBoosting" "KNN" "LassoLars" "LightGBM" "Naive" "Prophet" "RandomForest" "SGD" "SeasonalAverage" "SeasonalNaive" "TCNForecaster" "XGBoostRegressor" |
blockedTrainingAlgorithms | Blocked models for forecasting task. | String array containing any of: "Arimax" "AutoArima" "Average" "DecisionTree" "ElasticNet" "ExponentialSmoothing" "ExtremeRandomTrees" "GradientBoosting" "KNN" "LassoLars" "LightGBM" "Naive" "Prophet" "RandomForest" "SGD" "SeasonalAverage" "SeasonalNaive" "TCNForecaster" "XGBoostRegressor" |
enableDnnTraining | Enable recommendation of DNN models. | bool |
enableModelExplainability | Flag to turn on explainability on best model. | bool |
enableOnnxCompatibleModels | Flag for enabling onnx compatible models. | bool |
enableStackEnsemble | Enable stack ensemble run. | bool |
enableVoteEnsemble | Enable voting ensemble run. | bool |
ensembleModelDownloadTimeout | During VotingEnsemble and StackEnsemble model generation, multiple fitted models from the previous child runs are downloaded. Configure this parameter with a higher value than 300 secs, if more time is needed. |
string |
stackEnsembleSettings | Stack ensemble settings for stack ensemble run. | StackEnsembleSettings |
trainingMode | TrainingMode mode - Setting to 'auto' is same as setting it to 'non-distributed' for now, however in the future may result in mixed mode or heuristics based mode selection. Default is 'auto'. If 'Distributed' then only distributed featurization is used and distributed algorithms are chosen. If 'NonDistributed' then only non distributed algorithms are chosen. |
"Auto" "Distributed" "NonDistributed" |
ImageClassification
Name | Description | Value |
---|---|---|
taskType | [Required] Task type for AutoMLJob. | "ImageClassification" (required) |
limitSettings | [Required] Limit settings for the AutoML job. | ImageLimitSettings (required) |
modelSettings | Settings used for training the model. | ImageModelSettingsClassification |
primaryMetric | Primary metric to optimize for this task. | "AUCWeighted" "Accuracy" "AveragePrecisionScoreWeighted" "NormMacroRecall" "PrecisionScoreWeighted" |
searchSpace | Search space for sampling different combinations of models and their hyperparameters. | ImageModelDistributionSettingsClassification[] |
sweepSettings | Model sweeping and hyperparameter sweeping related settings. | ImageSweepSettings |
validationData | Validation data inputs. | MLTableJobInput |
validationDataSize | The fraction of training dataset that needs to be set aside for validation purpose. Values between (0.0 , 1.0) Applied when validation dataset is not provided. |
int |
ImageLimitSettings
Name | Description | Value |
---|---|---|
maxConcurrentTrials | Maximum number of concurrent AutoML iterations. | int |
maxTrials | Maximum number of AutoML iterations. | int |
timeout | AutoML job timeout. | string |
ImageModelSettingsClassification
Name | Description | Value |
---|---|---|
advancedSettings | Settings for advanced scenarios. | string |
amsGradient | Enable AMSGrad when optimizer is 'adam' or 'adamw'. | bool |
augmentations | Settings for using Augmentations. | string |
beta1 | Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. | int |
beta2 | Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. | int |
checkpointFrequency | Frequency to store model checkpoints. Must be a positive integer. | int |
checkpointModel | The pretrained checkpoint model for incremental training. | MLFlowModelJobInput |
checkpointRunId | The id of a previous run that has a pretrained checkpoint for incremental training. | string |
distributed | Whether to use distributed training. | bool |
earlyStopping | Enable early stopping logic during training. | bool |
earlyStoppingDelay | Minimum number of epochs or validation evaluations to wait before primary metric improvement is tracked for early stopping. Must be a positive integer. |
int |
earlyStoppingPatience | Minimum number of epochs or validation evaluations with no primary metric improvement before the run is stopped. Must be a positive integer. |
int |
enableOnnxNormalization | Enable normalization when exporting ONNX model. | bool |
evaluationFrequency | Frequency to evaluate validation dataset to get metric scores. Must be a positive integer. | int |
gradientAccumulationStep | Gradient accumulation means running a configured number of "GradAccumulationStep" steps without updating the model weights while accumulating the gradients of those steps, and then using the accumulated gradients to compute the weight updates. Must be a positive integer. |
int |
layersToFreeze | Number of layers to freeze for the model. Must be a positive integer. For instance, passing 2 as value for 'seresnext' means freezing layer0 and layer1. For a full list of models supported and details on layer freeze, please see: /azure/machine-learning/how-to-auto-train-image-models. |
int |
learningRate | Initial learning rate. Must be a float in the range [0, 1]. | int |
learningRateScheduler | Type of learning rate scheduler. Must be 'warmup_cosine' or 'step'. | "None" "Step" "WarmupCosine" |
modelName | Name of the model to use for training. For more information on the available models please visit the official documentation: /azure/machine-learning/how-to-auto-train-image-models. |
string |
momentum | Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1]. | int |
nesterov | Enable nesterov when optimizer is 'sgd'. | bool |
numberOfEpochs | Number of training epochs. Must be a positive integer. | int |
numberOfWorkers | Number of data loader workers. Must be a non-negative integer. | int |
optimizer | Type of optimizer. | "Adam" "Adamw" "None" "Sgd" |
randomSeed | Random seed to be used when using deterministic training. | int |
stepLRGamma | Value of gamma when learning rate scheduler is 'step'. Must be a float in the range [0, 1]. | int |
stepLRStepSize | Value of step size when learning rate scheduler is 'step'. Must be a positive integer. | int |
trainingBatchSize | Training batch size. Must be a positive integer. | int |
trainingCropSize | Image crop size that is input to the neural network for the training dataset. Must be a positive integer. | int |
validationBatchSize | Validation batch size. Must be a positive integer. | int |
validationCropSize | Image crop size that is input to the neural network for the validation dataset. Must be a positive integer. | int |
validationResizeSize | Image size to which to resize before cropping for validation dataset. Must be a positive integer. | int |
warmupCosineLRCycles | Value of cosine cycle when learning rate scheduler is 'warmup_cosine'. Must be a float in the range [0, 1]. | int |
warmupCosineLRWarmupEpochs | Value of warmup epochs when learning rate scheduler is 'warmup_cosine'. Must be a positive integer. | int |
weightDecay | Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be a float in the range[0, 1]. | int |
weightedLoss | Weighted loss. The accepted values are 0 for no weighted loss. 1 for weighted loss with sqrt.(class_weights). 2 for weighted loss with class_weights. Must be 0 or 1 or 2. |
int |
MLFlowModelJobInput
Name | Description | Value |
---|---|---|
description | Description for the input. | string |
jobInputType | [Required] Specifies the type of job. | "custom_model" "literal" "mlflow_model" "mltable" "triton_model" "uri_file" "uri_folder" (required) |
mode | Input Asset Delivery Mode. | "Direct" "Download" "EvalDownload" "EvalMount" "ReadOnlyMount" "ReadWriteMount" |
uri | [Required] Input Asset URI. | string (required) Constraints: Pattern = [a-zA-Z0-9_] |
ImageModelDistributionSettingsClassification
Name | Description | Value |
---|---|---|
amsGradient | Enable AMSGrad when optimizer is 'adam' or 'adamw'. | string |
augmentations | Settings for using Augmentations. | string |
beta1 | Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. | string |
beta2 | Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. | string |
distributed | Whether to use distributer training. | string |
earlyStopping | Enable early stopping logic during training. | string |
earlyStoppingDelay | Minimum number of epochs or validation evaluations to wait before primary metric improvement is tracked for early stopping. Must be a positive integer. |
string |
earlyStoppingPatience | Minimum number of epochs or validation evaluations with no primary metric improvement before the run is stopped. Must be a positive integer. |
string |
enableOnnxNormalization | Enable normalization when exporting ONNX model. | string |
evaluationFrequency | Frequency to evaluate validation dataset to get metric scores. Must be a positive integer. | string |
gradientAccumulationStep | Gradient accumulation means running a configured number of "GradAccumulationStep" steps without updating the model weights while accumulating the gradients of those steps, and then using the accumulated gradients to compute the weight updates. Must be a positive integer. |
string |
layersToFreeze | Number of layers to freeze for the model. Must be a positive integer. For instance, passing 2 as value for 'seresnext' means freezing layer0 and layer1. For a full list of models supported and details on layer freeze, please see: /azure/machine-learning/how-to-auto-train-image-models. |
string |
learningRate | Initial learning rate. Must be a float in the range [0, 1]. | string |
learningRateScheduler | Type of learning rate scheduler. Must be 'warmup_cosine' or 'step'. | string |
modelName | Name of the model to use for training. For more information on the available models please visit the official documentation: /azure/machine-learning/how-to-auto-train-image-models. |
string |
momentum | Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1]. | string |
nesterov | Enable nesterov when optimizer is 'sgd'. | string |
numberOfEpochs | Number of training epochs. Must be a positive integer. | string |
numberOfWorkers | Number of data loader workers. Must be a non-negative integer. | string |
optimizer | Type of optimizer. Must be either 'sgd', 'adam', or 'adamw'. | string |
randomSeed | Random seed to be used when using deterministic training. | string |
stepLRGamma | Value of gamma when learning rate scheduler is 'step'. Must be a float in the range [0, 1]. | string |
stepLRStepSize | Value of step size when learning rate scheduler is 'step'. Must be a positive integer. | string |
trainingBatchSize | Training batch size. Must be a positive integer. | string |
trainingCropSize | Image crop size that is input to the neural network for the training dataset. Must be a positive integer. | string |
validationBatchSize | Validation batch size. Must be a positive integer. | string |
validationCropSize | Image crop size that is input to the neural network for the validation dataset. Must be a positive integer. | string |
validationResizeSize | Image size to which to resize before cropping for validation dataset. Must be a positive integer. | string |
warmupCosineLRCycles | Value of cosine cycle when learning rate scheduler is 'warmup_cosine'. Must be a float in the range [0, 1]. | string |
warmupCosineLRWarmupEpochs | Value of warmup epochs when learning rate scheduler is 'warmup_cosine'. Must be a positive integer. | string |
weightDecay | Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be a float in the range[0, 1]. | string |
weightedLoss | Weighted loss. The accepted values are 0 for no weighted loss. 1 for weighted loss with sqrt.(class_weights). 2 for weighted loss with class_weights. Must be 0 or 1 or 2. |
string |
ImageSweepSettings
Name | Description | Value |
---|---|---|
earlyTermination | Type of early termination policy. | EarlyTerminationPolicy |
samplingAlgorithm | [Required] Type of the hyperparameter sampling algorithms. | "Bayesian" "Grid" "Random" (required) |
ImageClassificationMultilabel
Name | Description | Value |
---|---|---|
taskType | [Required] Task type for AutoMLJob. | "ImageClassificationMultilabel" (required) |
limitSettings | [Required] Limit settings for the AutoML job. | ImageLimitSettings (required) |
modelSettings | Settings used for training the model. | ImageModelSettingsClassification |
primaryMetric | Primary metric to optimize for this task. | "AUCWeighted" "Accuracy" "AveragePrecisionScoreWeighted" "IOU" "NormMacroRecall" "PrecisionScoreWeighted" |
searchSpace | Search space for sampling different combinations of models and their hyperparameters. | ImageModelDistributionSettingsClassification[] |
sweepSettings | Model sweeping and hyperparameter sweeping related settings. | ImageSweepSettings |
validationData | Validation data inputs. | MLTableJobInput |
validationDataSize | The fraction of training dataset that needs to be set aside for validation purpose. Values between (0.0 , 1.0) Applied when validation dataset is not provided. |
int |
ImageInstanceSegmentation
Name | Description | Value |
---|---|---|
taskType | [Required] Task type for AutoMLJob. | "ImageInstanceSegmentation" (required) |
limitSettings | [Required] Limit settings for the AutoML job. | ImageLimitSettings (required) |
modelSettings | Settings used for training the model. | ImageModelSettingsObjectDetection |
primaryMetric | Primary metric to optimize for this task. | "MeanAveragePrecision" |
searchSpace | Search space for sampling different combinations of models and their hyperparameters. | ImageModelDistributionSettingsObjectDetection[] |
sweepSettings | Model sweeping and hyperparameter sweeping related settings. | ImageSweepSettings |
validationData | Validation data inputs. | MLTableJobInput |
validationDataSize | The fraction of training dataset that needs to be set aside for validation purpose. Values between (0.0 , 1.0) Applied when validation dataset is not provided. |
int |
ImageModelSettingsObjectDetection
Name | Description | Value |
---|---|---|
advancedSettings | Settings for advanced scenarios. | string |
amsGradient | Enable AMSGrad when optimizer is 'adam' or 'adamw'. | bool |
augmentations | Settings for using Augmentations. | string |
beta1 | Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. | int |
beta2 | Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. | int |
boxDetectionsPerImage | Maximum number of detections per image, for all classes. Must be a positive integer. Note: This settings is not supported for the 'yolov5' algorithm. |
int |
boxScoreThreshold | During inference, only return proposals with a classification score greater than BoxScoreThreshold. Must be a float in the range[0, 1]. |
int |
checkpointFrequency | Frequency to store model checkpoints. Must be a positive integer. | int |
checkpointModel | The pretrained checkpoint model for incremental training. | MLFlowModelJobInput |
checkpointRunId | The id of a previous run that has a pretrained checkpoint for incremental training. | string |
distributed | Whether to use distributed training. | bool |
earlyStopping | Enable early stopping logic during training. | bool |
earlyStoppingDelay | Minimum number of epochs or validation evaluations to wait before primary metric improvement is tracked for early stopping. Must be a positive integer. |
int |
earlyStoppingPatience | Minimum number of epochs or validation evaluations with no primary metric improvement before the run is stopped. Must be a positive integer. |
int |
enableOnnxNormalization | Enable normalization when exporting ONNX model. | bool |
evaluationFrequency | Frequency to evaluate validation dataset to get metric scores. Must be a positive integer. | int |
gradientAccumulationStep | Gradient accumulation means running a configured number of "GradAccumulationStep" steps without updating the model weights while accumulating the gradients of those steps, and then using the accumulated gradients to compute the weight updates. Must be a positive integer. |
int |
imageSize | Image size for train and validation. Must be a positive integer. Note: The training run may get into CUDA OOM if the size is too big. Note: This settings is only supported for the 'yolov5' algorithm. |
int |
layersToFreeze | Number of layers to freeze for the model. Must be a positive integer. For instance, passing 2 as value for 'seresnext' means freezing layer0 and layer1. For a full list of models supported and details on layer freeze, please see: /azure/machine-learning/how-to-auto-train-image-models. |
int |
learningRate | Initial learning rate. Must be a float in the range [0, 1]. | int |
learningRateScheduler | Type of learning rate scheduler. Must be 'warmup_cosine' or 'step'. | "None" "Step" "WarmupCosine" |
maxSize | Maximum size of the image to be rescaled before feeding it to the backbone. Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big. Note: This settings is not supported for the 'yolov5' algorithm. |
int |
minSize | Minimum size of the image to be rescaled before feeding it to the backbone. Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big. Note: This settings is not supported for the 'yolov5' algorithm. |
int |
modelName | Name of the model to use for training. For more information on the available models please visit the official documentation: /azure/machine-learning/how-to-auto-train-image-models. |
string |
modelSize | Model size. Must be 'small', 'medium', 'large', or 'xlarge'. Note: training run may get into CUDA OOM if the model size is too big. Note: This settings is only supported for the 'yolov5' algorithm. |
"ExtraLarge" "Large" "Medium" "None" "Small" |
momentum | Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1]. | int |
multiScale | Enable multi-scale image by varying image size by +/- 50%. Note: training run may get into CUDA OOM if no sufficient GPU memory. Note: This settings is only supported for the 'yolov5' algorithm. |
bool |
nesterov | Enable nesterov when optimizer is 'sgd'. | bool |
nmsIouThreshold | IOU threshold used during inference in NMS post processing. Must be a float in the range [0, 1]. | int |
numberOfEpochs | Number of training epochs. Must be a positive integer. | int |
numberOfWorkers | Number of data loader workers. Must be a non-negative integer. | int |
optimizer | Type of optimizer. | "Adam" "Adamw" "None" "Sgd" |
randomSeed | Random seed to be used when using deterministic training. | int |
stepLRGamma | Value of gamma when learning rate scheduler is 'step'. Must be a float in the range [0, 1]. | int |
stepLRStepSize | Value of step size when learning rate scheduler is 'step'. Must be a positive integer. | int |
tileGridSize | The grid size to use for tiling each image. Note: TileGridSize must not be None to enable small object detection logic. A string containing two integers in mxn format. Note: This settings is not supported for the 'yolov5' algorithm. |
string |
tileOverlapRatio | Overlap ratio between adjacent tiles in each dimension. Must be float in the range [0, 1). Note: This settings is not supported for the 'yolov5' algorithm. |
int |
tilePredictionsNmsThreshold | The IOU threshold to use to perform NMS while merging predictions from tiles and image. Used in validation/ inference. Must be float in the range [0, 1]. Note: This settings is not supported for the 'yolov5' algorithm. |
int |
trainingBatchSize | Training batch size. Must be a positive integer. | int |
validationBatchSize | Validation batch size. Must be a positive integer. | int |
validationIouThreshold | IOU threshold to use when computing validation metric. Must be float in the range [0, 1]. | int |
validationMetricType | Metric computation method to use for validation metrics. | "Coco" "CocoVoc" "None" "Voc" |
warmupCosineLRCycles | Value of cosine cycle when learning rate scheduler is 'warmup_cosine'. Must be a float in the range [0, 1]. | int |
warmupCosineLRWarmupEpochs | Value of warmup epochs when learning rate scheduler is 'warmup_cosine'. Must be a positive integer. | int |
weightDecay | Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be a float in the range[0, 1]. | int |
ImageModelDistributionSettingsObjectDetection
Name | Description | Value |
---|---|---|
amsGradient | Enable AMSGrad when optimizer is 'adam' or 'adamw'. | string |
augmentations | Settings for using Augmentations. | string |
beta1 | Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. | string |
beta2 | Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. | string |
boxDetectionsPerImage | Maximum number of detections per image, for all classes. Must be a positive integer. Note: This settings is not supported for the 'yolov5' algorithm. |
string |
boxScoreThreshold | During inference, only return proposals with a classification score greater than BoxScoreThreshold. Must be a float in the range[0, 1]. |
string |
distributed | Whether to use distributer training. | string |
earlyStopping | Enable early stopping logic during training. | string |
earlyStoppingDelay | Minimum number of epochs or validation evaluations to wait before primary metric improvement is tracked for early stopping. Must be a positive integer. |
string |
earlyStoppingPatience | Minimum number of epochs or validation evaluations with no primary metric improvement before the run is stopped. Must be a positive integer. |
string |
enableOnnxNormalization | Enable normalization when exporting ONNX model. | string |
evaluationFrequency | Frequency to evaluate validation dataset to get metric scores. Must be a positive integer. | string |
gradientAccumulationStep | Gradient accumulation means running a configured number of "GradAccumulationStep" steps without updating the model weights while accumulating the gradients of those steps, and then using the accumulated gradients to compute the weight updates. Must be a positive integer. |
string |
imageSize | Image size for train and validation. Must be a positive integer. Note: The training run may get into CUDA OOM if the size is too big. Note: This settings is only supported for the 'yolov5' algorithm. |
string |
layersToFreeze | Number of layers to freeze for the model. Must be a positive integer. For instance, passing 2 as value for 'seresnext' means freezing layer0 and layer1. For a full list of models supported and details on layer freeze, please see: /azure/machine-learning/how-to-auto-train-image-models. |
string |
learningRate | Initial learning rate. Must be a float in the range [0, 1]. | string |
learningRateScheduler | Type of learning rate scheduler. Must be 'warmup_cosine' or 'step'. | string |
maxSize | Maximum size of the image to be rescaled before feeding it to the backbone. Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big. Note: This settings is not supported for the 'yolov5' algorithm. |
string |
minSize | Minimum size of the image to be rescaled before feeding it to the backbone. Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big. Note: This settings is not supported for the 'yolov5' algorithm. |
string |
modelName | Name of the model to use for training. For more information on the available models please visit the official documentation: /azure/machine-learning/how-to-auto-train-image-models. |
string |
modelSize | Model size. Must be 'small', 'medium', 'large', or 'xlarge'. Note: training run may get into CUDA OOM if the model size is too big. Note: This settings is only supported for the 'yolov5' algorithm. |
string |
momentum | Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1]. | string |
multiScale | Enable multi-scale image by varying image size by +/- 50%. Note: training run may get into CUDA OOM if no sufficient GPU memory. Note: This settings is only supported for the 'yolov5' algorithm. |
string |
nesterov | Enable nesterov when optimizer is 'sgd'. | string |
nmsIouThreshold | IOU threshold used during inference in NMS post processing. Must be float in the range [0, 1]. | string |
numberOfEpochs | Number of training epochs. Must be a positive integer. | string |
numberOfWorkers | Number of data loader workers. Must be a non-negative integer. | string |
optimizer | Type of optimizer. Must be either 'sgd', 'adam', or 'adamw'. | string |
randomSeed | Random seed to be used when using deterministic training. | string |
stepLRGamma | Value of gamma when learning rate scheduler is 'step'. Must be a float in the range [0, 1]. | string |
stepLRStepSize | Value of step size when learning rate scheduler is 'step'. Must be a positive integer. | string |
tileGridSize | The grid size to use for tiling each image. Note: TileGridSize must not be None to enable small object detection logic. A string containing two integers in mxn format. Note: This settings is not supported for the 'yolov5' algorithm. |
string |
tileOverlapRatio | Overlap ratio between adjacent tiles in each dimension. Must be float in the range [0, 1). Note: This settings is not supported for the 'yolov5' algorithm. |
string |
tilePredictionsNmsThreshold | The IOU threshold to use to perform NMS while merging predictions from tiles and image. Used in validation/ inference. Must be float in the range [0, 1]. Note: This settings is not supported for the 'yolov5' algorithm. NMS: Non-maximum suppression |
string |
trainingBatchSize | Training batch size. Must be a positive integer. | string |
validationBatchSize | Validation batch size. Must be a positive integer. | string |
validationIouThreshold | IOU threshold to use when computing validation metric. Must be float in the range [0, 1]. | string |
validationMetricType | Metric computation method to use for validation metrics. Must be 'none', 'coco', 'voc', or 'coco_voc'. | string |
warmupCosineLRCycles | Value of cosine cycle when learning rate scheduler is 'warmup_cosine'. Must be a float in the range [0, 1]. | string |
warmupCosineLRWarmupEpochs | Value of warmup epochs when learning rate scheduler is 'warmup_cosine'. Must be a positive integer. | string |
weightDecay | Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be a float in the range[0, 1]. | string |
ImageObjectDetection
Name | Description | Value |
---|---|---|
taskType | [Required] Task type for AutoMLJob. | "ImageObjectDetection" (required) |
limitSettings | [Required] Limit settings for the AutoML job. | ImageLimitSettings (required) |
modelSettings | Settings used for training the model. | ImageModelSettingsObjectDetection |
primaryMetric | Primary metric to optimize for this task. | "MeanAveragePrecision" |
searchSpace | Search space for sampling different combinations of models and their hyperparameters. | ImageModelDistributionSettingsObjectDetection[] |
sweepSettings | Model sweeping and hyperparameter sweeping related settings. | ImageSweepSettings |
validationData | Validation data inputs. | MLTableJobInput |
validationDataSize | The fraction of training dataset that needs to be set aside for validation purpose. Values between (0.0 , 1.0) Applied when validation dataset is not provided. |
int |
Regression
Name | Description | Value |
---|---|---|
taskType | [Required] Task type for AutoMLJob. | "Regression" (required) |
cvSplitColumnNames | Columns to use for CVSplit data. | string[] |
featurizationSettings | Featurization inputs needed for AutoML job. | TableVerticalFeaturizationSettings |
fixedParameters | Model/training parameters that will remain constant throughout training. | TableFixedParameters |
limitSettings | Execution constraints for AutoMLJob. | TableVerticalLimitSettings |
nCrossValidations | Number of cross validation folds to be applied on training dataset when validation dataset is not provided. |
NCrossValidations |
primaryMetric | Primary metric for regression task. | "NormalizedMeanAbsoluteError" "NormalizedRootMeanSquaredError" "R2Score" "SpearmanCorrelation" |
searchSpace | Search space for sampling different combinations of models and their hyperparameters. | TableParameterSubspace[] |
sweepSettings | Settings for model sweeping and hyperparameter tuning. | TableSweepSettings |
testData | Test data input. | MLTableJobInput |
testDataSize | The fraction of test dataset that needs to be set aside for validation purpose. Values between (0.0 , 1.0) Applied when validation dataset is not provided. |
int |
trainingSettings | Inputs for training phase for an AutoML Job. | RegressionTrainingSettings |
validationData | Validation data inputs. | MLTableJobInput |
validationDataSize | The fraction of training dataset that needs to be set aside for validation purpose. Values between (0.0 , 1.0) Applied when validation dataset is not provided. |
int |
weightColumnName | The name of the sample weight column. Automated ML supports a weighted column as an input, causing rows in the data to be weighted up or down. | string |
RegressionTrainingSettings
Name | Description | Value |
---|---|---|
allowedTrainingAlgorithms | Allowed models for regression task. | String array containing any of: "DecisionTree" "ElasticNet" "ExtremeRandomTrees" "GradientBoosting" "KNN" "LassoLars" "LightGBM" "RandomForest" "SGD" "XGBoostRegressor" |
blockedTrainingAlgorithms | Blocked models for regression task. | String array containing any of: "DecisionTree" "ElasticNet" "ExtremeRandomTrees" "GradientBoosting" "KNN" "LassoLars" "LightGBM" "RandomForest" "SGD" "XGBoostRegressor" |
enableDnnTraining | Enable recommendation of DNN models. | bool |
enableModelExplainability | Flag to turn on explainability on best model. | bool |
enableOnnxCompatibleModels | Flag for enabling onnx compatible models. | bool |
enableStackEnsemble | Enable stack ensemble run. | bool |
enableVoteEnsemble | Enable voting ensemble run. | bool |
ensembleModelDownloadTimeout | During VotingEnsemble and StackEnsemble model generation, multiple fitted models from the previous child runs are downloaded. Configure this parameter with a higher value than 300 secs, if more time is needed. |
string |
stackEnsembleSettings | Stack ensemble settings for stack ensemble run. | StackEnsembleSettings |
trainingMode | TrainingMode mode - Setting to 'auto' is same as setting it to 'non-distributed' for now, however in the future may result in mixed mode or heuristics based mode selection. Default is 'auto'. If 'Distributed' then only distributed featurization is used and distributed algorithms are chosen. If 'NonDistributed' then only non distributed algorithms are chosen. |
"Auto" "Distributed" "NonDistributed" |
TextClassification
Name | Description | Value |
---|---|---|
taskType | [Required] Task type for AutoMLJob. | "TextClassification" (required) |
featurizationSettings | Featurization inputs needed for AutoML job. | NlpVerticalFeaturizationSettings |
fixedParameters | Model/training parameters that will remain constant throughout training. | NlpFixedParameters |
limitSettings | Execution constraints for AutoMLJob. | NlpVerticalLimitSettings |
primaryMetric | Primary metric for Text-Classification task. | "AUCWeighted" "Accuracy" "AveragePrecisionScoreWeighted" "NormMacroRecall" "PrecisionScoreWeighted" |
searchSpace | Search space for sampling different combinations of models and their hyperparameters. | NlpParameterSubspace[] |
sweepSettings | Settings for model sweeping and hyperparameter tuning. | NlpSweepSettings |
validationData | Validation data inputs. | MLTableJobInput |
NlpVerticalFeaturizationSettings
Name | Description | Value |
---|---|---|
datasetLanguage | Dataset language, useful for the text data. | string |
NlpFixedParameters
Name | Description | Value |
---|---|---|
gradientAccumulationSteps | Number of steps to accumulate gradients over before running a backward pass. | int |
learningRate | The learning rate for the training procedure. | int |
learningRateScheduler | The type of learning rate schedule to use during the training procedure. | "Constant" "ConstantWithWarmup" "Cosine" "CosineWithRestarts" "Linear" "None" "Polynomial" |
modelName | The name of the model to train. | string |
numberOfEpochs | Number of training epochs. | int |
trainingBatchSize | The batch size for the training procedure. | int |
validationBatchSize | The batch size to be used during evaluation. | int |
warmupRatio | The warmup ratio, used alongside LrSchedulerType. | int |
weightDecay | The weight decay for the training procedure. | int |
NlpVerticalLimitSettings
Name | Description | Value |
---|---|---|
maxConcurrentTrials | Maximum Concurrent AutoML iterations. | int |
maxNodes | Maximum nodes to use for the experiment. | int |
maxTrials | Number of AutoML iterations. | int |
timeout | AutoML job timeout. | string |
trialTimeout | Timeout for individual HD trials. | string |
NlpParameterSubspace
Name | Description | Value |
---|---|---|
gradientAccumulationSteps | Number of steps to accumulate gradients over before running a backward pass. | string |
learningRate | The learning rate for the training procedure. | string |
learningRateScheduler | The type of learning rate schedule to use during the training procedure. | string |
modelName | The name of the model to train. | string |
numberOfEpochs | Number of training epochs. | string |
trainingBatchSize | The batch size for the training procedure. | string |
validationBatchSize | The batch size to be used during evaluation. | string |
warmupRatio | The warmup ratio, used alongside LrSchedulerType. | string |
weightDecay | The weight decay for the training procedure. | string |
NlpSweepSettings
Name | Description | Value |
---|---|---|
earlyTermination | Type of early termination policy for the sweeping job. | EarlyTerminationPolicy |
samplingAlgorithm | [Required] Type of sampling algorithm. | "Bayesian" "Grid" "Random" (required) |
TextClassificationMultilabel
Name | Description | Value |
---|---|---|
taskType | [Required] Task type for AutoMLJob. | "TextClassificationMultilabel" (required) |
featurizationSettings | Featurization inputs needed for AutoML job. | NlpVerticalFeaturizationSettings |
fixedParameters | Model/training parameters that will remain constant throughout training. | NlpFixedParameters |
limitSettings | Execution constraints for AutoMLJob. | NlpVerticalLimitSettings |
searchSpace | Search space for sampling different combinations of models and their hyperparameters. | NlpParameterSubspace[] |
sweepSettings | Settings for model sweeping and hyperparameter tuning. | NlpSweepSettings |
validationData | Validation data inputs. | MLTableJobInput |
TextNer
Name | Description | Value |
---|---|---|
taskType | [Required] Task type for AutoMLJob. | "TextNER" (required) |
featurizationSettings | Featurization inputs needed for AutoML job. | NlpVerticalFeaturizationSettings |
fixedParameters | Model/training parameters that will remain constant throughout training. | NlpFixedParameters |
limitSettings | Execution constraints for AutoMLJob. | NlpVerticalLimitSettings |
searchSpace | Search space for sampling different combinations of models and their hyperparameters. | NlpParameterSubspace[] |
sweepSettings | Settings for model sweeping and hyperparameter tuning. | NlpSweepSettings |
validationData | Validation data inputs. | MLTableJobInput |
CommandJob
Name | Description | Value |
---|---|---|
jobType | [Required] Specifies the type of job. | "Command" (required) |
autologgerSettings | Distribution configuration of the job. If set, this should be one of Mpi, Tensorflow, PyTorch, or null. | AutologgerSettings |
codeId | ARM resource ID of the code asset. | string |
command | [Required] The command to execute on startup of the job. eg. "python train.py" | string (required) Constraints: Min length = 1 Pattern = [a-zA-Z0-9_] |
distribution | Distribution configuration of the job. If set, this should be one of Mpi, Tensorflow, PyTorch, or null. | DistributionConfiguration |
environmentId | [Required] The ARM resource ID of the Environment specification for the job. | string (required) Constraints: Pattern = [a-zA-Z0-9_] |
environmentVariables | Environment variables included in the job. | CommandJobEnvironmentVariables |
inputs | Mapping of input data bindings used in the job. | CommandJobInputs |
limits | Command Job limit. | CommandJobLimits |
outputs | Mapping of output data bindings used in the job. | CommandJobOutputs |
resources | Compute Resource configuration for the job. | JobResourceConfiguration |
AutologgerSettings
Name | Description | Value |
---|---|---|
mlflowAutologger | [Required] Indicates whether mlflow autologger is enabled. | "Disabled" "Enabled" (required) |
DistributionConfiguration
Name | Description | Value |
---|---|---|
distributionType | Set the object type | Mpi PyTorch TensorFlow (required) |
Mpi
Name | Description | Value |
---|---|---|
distributionType | [Required] Specifies the type of distribution framework. | "Mpi" (required) |
processCountPerInstance | Number of processes per MPI node. | int |
PyTorch
Name | Description | Value |
---|---|---|
distributionType | [Required] Specifies the type of distribution framework. | "PyTorch" (required) |
processCountPerInstance | Number of processes per node. | int |
TensorFlow
Name | Description | Value |
---|---|---|
distributionType | [Required] Specifies the type of distribution framework. | "TensorFlow" (required) |
parameterServerCount | Number of parameter server tasks. | int |
workerCount | Number of workers. If not specified, will default to the instance count. | int |
CommandJobEnvironmentVariables
Name | Description | Value |
---|---|---|
{customized property} | string |
CommandJobInputs
Name | Description | Value |
---|---|---|
{customized property} | JobInput |
JobInput
Name | Description | Value |
---|---|---|
description | Description for the input. | string |
jobInputType | Set the object type | custom_model literal mlflow_model mltable triton_model uri_file uri_folder (required) |
CustomModelJobInput
Name | Description | Value |
---|---|---|
jobInputType | [Required] Specifies the type of job. | "custom_model" (required) |
mode | Input Asset Delivery Mode. | "Direct" "Download" "EvalDownload" "EvalMount" "ReadOnlyMount" "ReadWriteMount" |
uri | [Required] Input Asset URI. | string (required) Constraints: Pattern = [a-zA-Z0-9_] |
LiteralJobInput
Name | Description | Value |
---|---|---|
jobInputType | [Required] Specifies the type of job. | "literal" (required) |
value | [Required] Literal value for the input. | string (required) Constraints: Pattern = [a-zA-Z0-9_] |
TritonModelJobInput
Name | Description | Value |
---|---|---|
jobInputType | [Required] Specifies the type of job. | "triton_model" (required) |
mode | Input Asset Delivery Mode. | "Direct" "Download" "EvalDownload" "EvalMount" "ReadOnlyMount" "ReadWriteMount" |
uri | [Required] Input Asset URI. | string (required) Constraints: Pattern = [a-zA-Z0-9_] |
UriFileJobInput
Name | Description | Value |
---|---|---|
jobInputType | [Required] Specifies the type of job. | "uri_file" (required) |
mode | Input Asset Delivery Mode. | "Direct" "Download" "EvalDownload" "EvalMount" "ReadOnlyMount" "ReadWriteMount" |
uri | [Required] Input Asset URI. | string (required) Constraints: Pattern = [a-zA-Z0-9_] |
UriFolderJobInput
Name | Description | Value |
---|---|---|
jobInputType | [Required] Specifies the type of job. | "uri_folder" (required) |
mode | Input Asset Delivery Mode. | "Direct" "Download" "EvalDownload" "EvalMount" "ReadOnlyMount" "ReadWriteMount" |
uri | [Required] Input Asset URI. | string (required) Constraints: Pattern = [a-zA-Z0-9_] |
CommandJobLimits
Name | Description | Value |
---|---|---|
jobLimitsType | [Required] JobLimit type. | "Command" "Sweep" (required) |
timeout | The max run duration in ISO 8601 format, after which the job will be cancelled. Only supports duration with precision as low as Seconds. | string |
CommandJobOutputs
Name | Description | Value |
---|---|---|
{customized property} | JobOutput |
LabelingJobProperties
Name | Description | Value |
---|---|---|
componentId | ARM resource ID of the component resource. | string |
computeId | ARM resource ID of the compute resource. | string |
dataConfiguration | Configuration of data used in the job. | LabelingDataConfiguration |
description | The asset description text. | string |
displayName | Display name of job. | string |
experimentName | The name of the experiment the job belongs to. If not set, the job is placed in the "Default" experiment. | string |
identity | Identity configuration. If set, this should be one of AmlToken, ManagedIdentity, UserIdentity or null. Defaults to AmlToken if null. |
IdentityConfiguration |
isArchived | Is the asset archived? | bool |
jobInstructions | Labeling instructions of the job. | LabelingJobInstructions |
jobType | [Required] Specifies the type of job. | "AutoML" "Command" "Labeling" "Pipeline" "Spark" "Sweep" (required) |
labelCategories | Label categories of the job. | LabelingJobLabelCategories |
labelingJobMediaProperties | Media type specific properties in the job. | LabelingJobMediaProperties |
mlAssistConfiguration | Configuration of MLAssist feature in the job. | MLAssistConfiguration |
properties | The asset property dictionary. | ResourceBaseProperties |
services | List of JobEndpoints. For local jobs, a job endpoint will have an endpoint value of FileStreamObject. |
JobBaseServices |
tags | Tag dictionary. Tags can be added, removed, and updated. | object |
LabelingDataConfiguration
Name | Description | Value |
---|---|---|
dataId | Resource Id of the data asset to perform labeling. | string |
incrementalDataRefresh | Indicates whether to enable incremental data refresh. | "Disabled" "Enabled" |
LabelingJobInstructions
Name | Description | Value |
---|---|---|
uri | The link to a page with detailed labeling instructions for labelers. | string |
LabelingJobLabelCategories
Name | Description | Value |
---|---|---|
{customized property} | LabelCategory |
LabelCategory
Name | Description | Value |
---|---|---|
classes | Dictionary of label classes in this category. | LabelCategoryClasses |
displayName | Display name of the label category. | string |
multiSelect | Indicates whether it is allowed to select multiple classes in this category. | "Disabled" "Enabled" |
LabelCategoryClasses
Name | Description | Value |
---|---|---|
{customized property} | LabelClass |
LabelClass
Name | Description | Value |
---|---|---|
displayName | Display name of the label class. | string |
subclasses | Dictionary of subclasses of the label class. | LabelClassSubclasses |
LabelClassSubclasses
Name | Description | Value |
---|---|---|
{customized property} | LabelClass |
LabelingJobMediaProperties
Name | Description | Value |
---|---|---|
mediaType | Set the object type | Image Text (required) |
LabelingJobImageProperties
Name | Description | Value |
---|---|---|
mediaType | [Required] Media type of the job. | "Image" (required) |
annotationType | Annotation type of image labeling job. | "BoundingBox" "Classification" "InstanceSegmentation" |
LabelingJobTextProperties
Name | Description | Value |
---|---|---|
mediaType | [Required] Media type of the job. | "Text" (required) |
annotationType | Annotation type of text labeling job. | "Classification" "NamedEntityRecognition" |
MLAssistConfiguration
Name | Description | Value |
---|---|---|
mlAssist | Set the object type | Disabled Enabled (required) |
MLAssistConfigurationDisabled
Name | Description | Value |
---|---|---|
mlAssist | [Required] Indicates whether MLAssist feature is enabled. | "Disabled" (required) |
MLAssistConfigurationEnabled
Name | Description | Value |
---|---|---|
mlAssist | [Required] Indicates whether MLAssist feature is enabled. | "Enabled" (required) |
inferencingComputeBinding | [Required] AML compute binding used in inferencing. | string (required) Constraints: Pattern = [a-zA-Z0-9_] |
trainingComputeBinding | [Required] AML compute binding used in training. | string (required) Constraints: Pattern = [a-zA-Z0-9_] |
PipelineJob
Name | Description | Value |
---|---|---|
jobType | [Required] Specifies the type of job. | "Pipeline" (required) |
inputs | Inputs for the pipeline job. | PipelineJobInputs |
jobs | Jobs construct the Pipeline Job. | PipelineJobJobs |
outputs | Outputs for the pipeline job | PipelineJobOutputs |
settings | Pipeline settings, for things like ContinueRunOnStepFailure etc. | |
sourceJobId | ARM resource ID of source job. | string |
PipelineJobInputs
Name | Description | Value |
---|---|---|
{customized property} | JobInput |
PipelineJobJobs
Name | Description | Value |
---|---|---|
{customized property} |
PipelineJobOutputs
Name | Description | Value |
---|---|---|
{customized property} | JobOutput |
SparkJob
Name | Description | Value |
---|---|---|
jobType | [Required] Specifies the type of job. | "Spark" (required) |
archives | Archive files used in the job. | string[] |
args | Arguments for the job. | string |
codeId | [Required] ARM resource ID of the code asset. | string (required) Constraints: Pattern = [a-zA-Z0-9_] |
conf | Spark configured properties. | SparkJobConf |
entry | [Required] The entry to execute on startup of the job. | SparkJobEntry (required) |
environmentId | The ARM resource ID of the Environment specification for the job. | string |
files | Files used in the job. | string[] |
inputs | Mapping of input data bindings used in the job. | SparkJobInputs |
jars | Jar files used in the job. | string[] |
outputs | Mapping of output data bindings used in the job. | SparkJobOutputs |
pyFiles | Python files used in the job. | string[] |
resources | Compute Resource configuration for the job. | SparkResourceConfiguration |
SparkJobConf
Name | Description | Value |
---|---|---|
{customized property} | string |
SparkJobEntry
Name | Description | Value |
---|---|---|
sparkJobEntryType | Set the object type | SparkJobPythonEntry SparkJobScalaEntry (required) |
SparkJobPythonEntry
Name | Description | Value |
---|---|---|
sparkJobEntryType | [Required] Type of the job's entry point. | "SparkJobPythonEntry" (required) |
file | [Required] Relative python file path for job entry point. | string (required) Constraints: Min length = 1 Pattern = [a-zA-Z0-9_] |
SparkJobScalaEntry
Name | Description | Value |
---|---|---|
sparkJobEntryType | [Required] Type of the job's entry point. | "SparkJobScalaEntry" (required) |
className | [Required] Scala class name used as entry point. | string (required) Constraints: Min length = 1 Pattern = [a-zA-Z0-9_] |
SparkJobInputs
Name | Description | Value |
---|---|---|
{customized property} | JobInput |
SparkJobOutputs
Name | Description | Value |
---|---|---|
{customized property} | JobOutput |
SparkResourceConfiguration
Name | Description | Value |
---|---|---|
instanceType | Optional type of VM used as supported by the compute target. | string |
runtimeVersion | Version of spark runtime used for the job. | string |
SweepJob
Name | Description | Value |
---|---|---|
jobType | [Required] Specifies the type of job. | "Sweep" (required) |
earlyTermination | Early termination policies enable canceling poor-performing runs before they complete | EarlyTerminationPolicy |
inputs | Mapping of input data bindings used in the job. | SweepJobInputs |
limits | Sweep Job limit. | SweepJobLimits |
objective | [Required] Optimization objective. | Objective (required) |
outputs | Mapping of output data bindings used in the job. | SweepJobOutputs |
samplingAlgorithm | [Required] The hyperparameter sampling algorithm | SamplingAlgorithm (required) |
searchSpace | [Required] A dictionary containing each parameter and its distribution. The dictionary key is the name of the parameter | |
trial | [Required] Trial component definition. | TrialComponent (required) |
SweepJobInputs
Name | Description | Value |
---|---|---|
{customized property} | JobInput |
SweepJobLimits
Name | Description | Value |
---|---|---|
jobLimitsType | [Required] JobLimit type. | "Command" "Sweep" (required) |
maxConcurrentTrials | Sweep Job max concurrent trials. | int |
maxTotalTrials | Sweep Job max total trials. | int |
timeout | The max run duration in ISO 8601 format, after which the job will be cancelled. Only supports duration with precision as low as Seconds. | string |
trialTimeout | Sweep Job Trial timeout value. | string |
Objective
Name | Description | Value |
---|---|---|
goal | [Required] Defines supported metric goals for hyperparameter tuning | "Maximize" "Minimize" (required) |
primaryMetric | [Required] Name of the metric to optimize. | string (required) Constraints: Pattern = [a-zA-Z0-9_] |
SweepJobOutputs
Name | Description | Value |
---|---|---|
{customized property} | JobOutput |
SamplingAlgorithm
Name | Description | Value |
---|---|---|
samplingAlgorithmType | Set the object type | Bayesian Grid Random (required) |
BayesianSamplingAlgorithm
Name | Description | Value |
---|---|---|
samplingAlgorithmType | [Required] The algorithm used for generating hyperparameter values, along with configuration properties | "Bayesian" (required) |
GridSamplingAlgorithm
Name | Description | Value |
---|---|---|
samplingAlgorithmType | [Required] The algorithm used for generating hyperparameter values, along with configuration properties | "Grid" (required) |
RandomSamplingAlgorithm
Name | Description | Value |
---|---|---|
samplingAlgorithmType | [Required] The algorithm used for generating hyperparameter values, along with configuration properties | "Random" (required) |
logbase | An optional positive number or e in string format to be used as base for log based random sampling | string |
rule | The specific type of random algorithm | "Random" "Sobol" |
seed | An optional integer to use as the seed for random number generation | int |
TrialComponent
Name | Description | Value |
---|---|---|
codeId | ARM resource ID of the code asset. | string |
command | [Required] The command to execute on startup of the job. eg. "python train.py" | string (required) Constraints: Min length = 1 Pattern = [a-zA-Z0-9_] |
distribution | Distribution configuration of the job. If set, this should be one of Mpi, Tensorflow, PyTorch, or null. | DistributionConfiguration |
environmentId | [Required] The ARM resource ID of the Environment specification for the job. | string (required) Constraints: Pattern = [a-zA-Z0-9_] |
environmentVariables | Environment variables included in the job. | TrialComponentEnvironmentVariables |
resources | Compute Resource configuration for the job. | JobResourceConfiguration |
TrialComponentEnvironmentVariables
Name | Description | Value |
---|---|---|
{customized property} | string |