Microsoft.MachineLearningServices workspaces/data
Bicep resource definition
The workspaces/data resource type can be deployed with operations that target:
- Resource groups - See resource group deployment commands
For a list of changed properties in each API version, see change log.
Resource format
To create a Microsoft.MachineLearningServices/workspaces/data resource, add the following Bicep to your template.
resource symbolicname 'Microsoft.MachineLearningServices/workspaces/data@2024-07-01-preview' = {
name: 'string'
parent: resourceSymbolicName
properties: {
dataType: 'string'
description: 'string'
isArchived: bool
properties: {
{customized property}: 'string'
}
tags: {}
}
}
Property values
workspaces/data
Name | Description | Value |
---|---|---|
name | The resource name See how to set names and types for child resources in Bicep. |
string (required) |
parent | In Bicep, you can specify the parent resource for a child resource. You only need to add this property when the child resource is declared outside of the parent resource. For more information, see Child resource outside parent resource. |
Symbolic name for resource of type: workspaces |
properties | [Required] Additional attributes of the entity. | DataContainerProperties (required) |
DataContainerProperties
Name | Description | Value |
---|---|---|
dataType | [Required] Specifies the type of data. | 'mltable' 'uri_file' 'uri_folder' (required) |
description | The asset description text. | string |
isArchived | Is the asset archived? | bool |
properties | The asset property dictionary. | ResourceBaseProperties |
tags | Tag dictionary. Tags can be added, removed, and updated. | object |
ResourceBaseProperties
Name | Description | Value |
---|---|---|
{customized property} | string |
Quickstart templates
The following quickstart templates deploy this resource type.
Template | Description |
---|---|
Create a Data Asset from File URI |
This template creates a data asset/container from file URI in an Azure Machine Learning workspace. |
ARM template resource definition
The workspaces/data resource type can be deployed with operations that target:
- Resource groups - See resource group deployment commands
For a list of changed properties in each API version, see change log.
Resource format
To create a Microsoft.MachineLearningServices/workspaces/data resource, add the following JSON to your template.
{
"type": "Microsoft.MachineLearningServices/workspaces/data",
"apiVersion": "2024-07-01-preview",
"name": "string",
"properties": {
"dataType": "string",
"description": "string",
"isArchived": "bool",
"properties": {
"{customized property}": "string"
},
"tags": {}
}
}
Property values
workspaces/data
Name | Description | Value |
---|---|---|
type | The resource type | 'Microsoft.MachineLearningServices/workspaces/data' |
apiVersion | The resource api version | '2024-07-01-preview' |
name | The resource name See how to set names and types for child resources in JSON ARM templates. |
string (required) |
properties | [Required] Additional attributes of the entity. | DataContainerProperties (required) |
DataContainerProperties
Name | Description | Value |
---|---|---|
dataType | [Required] Specifies the type of data. | 'mltable' 'uri_file' 'uri_folder' (required) |
description | The asset description text. | string |
isArchived | Is the asset archived? | bool |
properties | The asset property dictionary. | ResourceBaseProperties |
tags | Tag dictionary. Tags can be added, removed, and updated. | object |
ResourceBaseProperties
Name | Description | Value |
---|---|---|
{customized property} | string |
Quickstart templates
The following quickstart templates deploy this resource type.
Template | Description |
---|---|
Create a Data Asset from File URI |
This template creates a data asset/container from file URI in an Azure Machine Learning workspace. |
Terraform (AzAPI provider) resource definition
The workspaces/data resource type can be deployed with operations that target:
- Resource groups
For a list of changed properties in each API version, see change log.
Resource format
To create a Microsoft.MachineLearningServices/workspaces/data resource, add the following Terraform to your template.
resource "azapi_resource" "symbolicname" {
type = "Microsoft.MachineLearningServices/workspaces/data@2024-07-01-preview"
name = "string"
parent_id = "string"
body = jsonencode({
properties = {
dataType = "string"
description = "string"
isArchived = bool
properties = {
{customized property} = "string"
}
tags = {}
}
})
}
Property values
workspaces/data
Name | Description | Value |
---|---|---|
type | The resource type | "Microsoft.MachineLearningServices/workspaces/data@2024-07-01-preview" |
name | The resource name | string (required) |
parent_id | The ID of the resource that is the parent for this resource. | ID for resource of type: workspaces |
properties | [Required] Additional attributes of the entity. | DataContainerProperties (required) |
DataContainerProperties
Name | Description | Value |
---|---|---|
dataType | [Required] Specifies the type of data. | "mltable" "uri_file" "uri_folder" (required) |
description | The asset description text. | string |
isArchived | Is the asset archived? | bool |
properties | The asset property dictionary. | ResourceBaseProperties |
tags | Tag dictionary. Tags can be added, removed, and updated. | object |
ResourceBaseProperties
Name | Description | Value |
---|---|---|
{customized property} | string |