# BigInteger.Inequality Operator

## Definition

Returns a value that indicates whether two numeric values are not equal.

 Inequality(Int64, BigInteger) Returns a value that indicates whether a 64-bit signed integer and a BigInteger value are not equal. Inequality(BigInteger, Int64) Returns a value that indicates whether a BigInteger value and a 64-bit signed integer are not equal. Inequality(BigInteger, BigInteger) Returns a value that indicates whether two BigInteger objects have different values. Inequality(BigInteger, UInt64) Returns a value that indicates whether a BigInteger value and a 64-bit unsigned integer are not equal. Inequality(UInt64, BigInteger) Returns a value that indicates whether a 64-bit unsigned integer and a BigInteger value are not equal.

## Inequality(Int64, BigInteger)

Source:
BigInteger.cs
Source:
BigInteger.cs
Source:
BigInteger.cs

Returns a value that indicates whether a 64-bit signed integer and a BigInteger value are not equal.

public:
static bool operator !=(long left, System::Numerics::BigInteger right);
public static bool operator != (long left, System.Numerics.BigInteger right);
static member op_Inequality : int64 * System.Numerics.BigInteger -> bool
Public Shared Operator != (left As Long, right As BigInteger) As Boolean

#### Parameters

left
Int64

The first value to compare.

right
BigInteger

The second value to compare.

#### Returns

true if left and right are not equal; otherwise, false.

### Remarks

The Inequality method defines the operation of the inequality operator for BigInteger values. It enables code such as the following:

BigInteger bigNumber = BigInteger.Pow(2, 63);
long number = Int64.MaxValue;
if (number != bigNumber)
{
// Do something...
}
Dim bigNumber As BigInteger = BigInteger.Pow(2, 63)
Dim number As Long = Int64.MaxValue
If number <> bigNumber Then
' Do something...
End If

Languages that do not support custom operators can test for inequality by using one of the following techniques:

If left is a Byte, Int16, Int32, SByte, UInt16, or UInt32 value, it is implicitly converted to an Int64 value when the operation is performed.

## Inequality(BigInteger, Int64)

Source:
BigInteger.cs
Source:
BigInteger.cs
Source:
BigInteger.cs

Returns a value that indicates whether a BigInteger value and a 64-bit signed integer are not equal.

public:
static bool operator !=(System::Numerics::BigInteger left, long right);
public static bool operator != (System.Numerics.BigInteger left, long right);
static member op_Inequality : System.Numerics.BigInteger * int64 -> bool
Public Shared Operator != (left As BigInteger, right As Long) As Boolean

#### Parameters

left
BigInteger

The first value to compare.

right
Int64

The second value to compare.

#### Returns

true if left and right are not equal; otherwise, false.

### Remarks

The Inequality method defines the operation of the inequality operator for BigInteger values. It enables code such as the following:

BigInteger bigNumber = BigInteger.Pow(2, 63);
long number = Int64.MaxValue;
if (bigNumber != number)
{
// Do something...
}
Dim bigNumber As BigInteger = BigInteger.Pow(2, 63)
Dim number As Long = Int64.MaxValue
If bigNumber <> number Then
' Do something...
End If

Languages that do not support custom operators can test for inequality by using one of the following techniques:

If right is a Byte, Int16, Int32, SByte, UInt16, or UInt32 value, it is implicitly converted to an Int64 value when the operation is performed.

The equivalent method for this operator is BigInteger.CompareTo(Int64).

## Inequality(BigInteger, BigInteger)

Source:
BigInteger.cs
Source:
BigInteger.cs
Source:
BigInteger.cs

Returns a value that indicates whether two BigInteger objects have different values.

public:
static bool operator !=(System::Numerics::BigInteger left, System::Numerics::BigInteger right);
public:
static bool operator !=(System::Numerics::BigInteger left, System::Numerics::BigInteger right) = System::Numerics::IEqualityOperators<System::Numerics::BigInteger, System::Numerics::BigInteger, bool>::op_Inequality;
public static bool operator != (System.Numerics.BigInteger left, System.Numerics.BigInteger right);
static member op_Inequality : System.Numerics.BigInteger * System.Numerics.BigInteger -> bool
Public Shared Operator != (left As BigInteger, right As BigInteger) As Boolean

#### Parameters

left
BigInteger

The first value to compare.

right
BigInteger

The second value to compare.

#### Returns

true if left and right are not equal; otherwise, false.

### Remarks

The Inequality method defines the operation of the inequality operator for BigInteger values. It enables code such as the following:

BigInteger number1 = 945834723;
BigInteger number2 = 345145625;
BigInteger number3 = 945834723;
Console.WriteLine(number1 != number2);             // Displays True
Console.WriteLine(number1 != number3);             // Displays False
Dim number1 As BigInteger = 945834723
Dim number2 As BigInteger = 345145625
Dim number3 As BigInteger = 945834723
Console.WriteLine(number1 <> number2)                  ' Displays True
Console.WriteLine(number1 <> number3)                  ' Displays False

Languages that do not support custom operators can test for inequality by using one of the following techniques:

The equivalent method for this operator is BigInteger.Compare(BigInteger, BigInteger).

## Inequality(BigInteger, UInt64)

Source:
BigInteger.cs
Source:
BigInteger.cs
Source:
BigInteger.cs

Important

This API is not CLS-compliant.

Returns a value that indicates whether a BigInteger value and a 64-bit unsigned integer are not equal.

public:
static bool operator !=(System::Numerics::BigInteger left, System::UInt64 right);
[System.CLSCompliant(false)]
public static bool operator != (System.Numerics.BigInteger left, ulong right);
[<System.CLSCompliant(false)>]
static member op_Inequality : System.Numerics.BigInteger * uint64 -> bool
Public Shared Operator != (left As BigInteger, right As ULong) As Boolean

#### Parameters

left
BigInteger

The first value to compare.

right
UInt64

The second value to compare.

#### Returns

true if left and right are not equal; otherwise, false.

Attributes

### Remarks

The Inequality method defines the operation of the inequality operator for BigInteger values. It enables code such as the following:

BigInteger bigNumber = BigInteger.Pow(2, 63) - BigInteger.One;
ulong uNumber = Int64.MaxValue & 0x7FFFFFFFFFFFFFFF;
if (bigNumber != uNumber)
{
// Do something...
}
Dim bigNumber As BigInteger = BigInteger.Pow(2, 63) - BigInteger.One
Dim uNumber As ULong = CULng(Int64.MaxValue And CULng(&h7FFFFFFFFFFFFFFF))
If bigNumber <> uNumber Then
' Do something...
End If

Languages that do not support custom operators can test for inequality by using one of the following techniques:

## Inequality(UInt64, BigInteger)

Source:
BigInteger.cs
Source:
BigInteger.cs
Source:
BigInteger.cs

Important

This API is not CLS-compliant.

Returns a value that indicates whether a 64-bit unsigned integer and a BigInteger value are not equal.

public:
static bool operator !=(System::UInt64 left, System::Numerics::BigInteger right);
[System.CLSCompliant(false)]
public static bool operator != (ulong left, System.Numerics.BigInteger right);
[<System.CLSCompliant(false)>]
static member op_Inequality : uint64 * System.Numerics.BigInteger -> bool
Public Shared Operator != (left As ULong, right As BigInteger) As Boolean

#### Parameters

left
UInt64

The first value to compare.

right
BigInteger

The second value to compare.

#### Returns

true if left and right are not equal; otherwise, false.

Attributes

### Remarks

The Inequality method defines the operation of the inequality operator for BigInteger values. It enables code such as the following:

BigInteger bigNumber = BigInteger.Pow(2, 63) - BigInteger.One;
ulong uNumber = Int64.MaxValue & 0x7FFFFFFFFFFFFFFF;
if (uNumber != bigNumber)
{
// Do something...
}
Dim bigNumber As BigInteger = BigInteger.Pow(2, 63) - BigInteger.One
Dim uNumber As ULong = CULng(Int64.MaxValue And CULng(&h7FFFFFFFFFFFFFFF))
If uNumber <> bigNumber Then
' Do something...
End If

Languages that do not support custom operators can test for inequality by using one of the following techniques: