Estimator Class
Represents a generic estimator to train data using any supplied framework.
DEPRECATED. Use the ScriptRunConfig object with your own defined environment or an Azure ML curated environment. For an introduction to configuring experiment runs with ScriptRunConfig, see Configure and submit training runs.
This class is designed for use with machine learning frameworks that do not already have an Azure Machine Learning pre-configured estimator. Pre-configured estimators exist for Chainer, PyTorch, TensorFlow, and SKLearn. To create an Estimator that is not preconfigured, see Train models with Azure Machine Learning using estimator.
The Estimator class wraps run configuration information to help simplify the tasks of specifying how a script is executed. It supports single-node as well as multi-node execution. Running the estimator produces a model in the output directory specified in your training script.
Initialize the estimator.
azureml.core.environment._DEFAULT_SHM_SIZE is used. For more information, see Docker run reference. :type shm_size: str :param resume_from: The data path containing the checkpoint or model files from which to resume the experiment. :type resume_from: azureml.data.datapath.DataPath :param max_run_duration_seconds: The maximum allowed time for the run. Azure ML will attempt to automatically
cancel the run if it takes longer than this value.
- Inheritance
-
azureml.train.estimator._mml_base_estimator.MMLBaseEstimatorEstimator
Constructor
Estimator(source_directory, *, compute_target=None, vm_size=None, vm_priority=None, entry_script=None, script_params=None, node_count=1, process_count_per_node=1, distributed_backend=None, distributed_training=None, use_gpu=False, use_docker=True, custom_docker_base_image=None, custom_docker_image=None, image_registry_details=None, user_managed=False, conda_packages=None, pip_packages=None, conda_dependencies_file_path=None, pip_requirements_file_path=None, conda_dependencies_file=None, pip_requirements_file=None, environment_variables=None, environment_definition=None, inputs=None, source_directory_data_store=None, shm_size=None, resume_from=None, max_run_duration_seconds=None, _disable_validation=True, _show_lint_warnings=False, _show_package_warnings=False)
Parameters
Name | Description |
---|---|
source_directory
Required
|
A local directory containing experiment configuration and code files needed for a training job. |
compute_target
Required
|
The compute target where training will happen. This can either be an object or the string "local". |
vm_size
Required
|
The VM size of the compute target that will be created for the training. Supported values: Any Azure VM size. |
vm_priority
Required
|
The VM priority of the compute target that will be created for the training. If not specified, 'dedicated' is used. Supported values: 'dedicated' and 'lowpriority'. This takes effect only when the |
entry_script
Required
|
The relative path to the file used to start training. |
script_params
Required
|
A dictionary of command-line arguments to pass to the training script specified in
|
node_count
Required
|
The number of nodes in the compute target used for training. If greater than 1, an MPI distributed job will be run. |
process_count_per_node
Required
|
The number of processes (or "workers") to run on each node. If greater than 1, an MPI distributed job will be run. Only the AmlCompute target is supported for distributed jobs. |
distributed_backend
Required
|
The communication backend for distributed training. DEPRECATED. Use the Supported values: 'mpi'. 'mpi' represents MPI/Horovod. This parameter is required when When |
distributed_training
Required
|
Parameters for running a distributed training job. For running a distributed job with MPI backend, use Mpi
object to specify |
use_gpu
Required
|
Indicates whether the environment to run the experiment should support GPUs.
If true, a GPU-based default Docker image will be used in the environment. If false, a CPU-based
image will be used. Default Docker images (CPU or GPU) will be used only if the |
use_docker
Required
|
Specifies whether the environment to run the experiment should be Docker-based. |
custom_docker_base_image
Required
|
The name of the Docker image from which the image to use for training will be built. DEPRECATED. Use the If not set, a default CPU-based image will be used as the base image. |
custom_docker_image
Required
|
The name of the Docker image from which the image to use for training
will be built. If not set, a default CPU-based image will be used as the base image. Only specify
images available in public docker repositories (Docker Hub). To use an image from a private docker
repository, use the constructor's |
image_registry_details
Required
|
The details of the Docker image registry. |
user_managed
Required
|
Specifies whether Azure ML reuses an existing Python environment. If false, a Python environment is created based on the conda dependencies specification. |
conda_packages
Required
|
A list of strings representing conda packages to be added to the Python environment for the experiment. |
pip_packages
Required
|
A list of strings representing pip packages to be added to the Python environment for the experiment. |
conda_dependencies_file_path
Required
|
The relative path to the conda dependencies yaml file. If specified, Azure ML will not install any framework related packages. DEPRECATED. Use the Specify either |
pip_requirements_file_path
Required
|
The relative path to the pip requirements text file. DEPRECATED. Use the This parameter can be specified in combination with the |
conda_dependencies_file
Required
|
The relative path to the conda dependencies yaml file. If specified, Azure ML will not install any framework related packages. |
pip_requirements_file
Required
|
The relative path to the pip requirements text file.
This parameter can be specified in combination with the |
environment_variables
Required
|
A dictionary of environment variables names and values. These environment variables are set on the process where user script is being executed. |
environment_definition
Required
|
The environment definition for the experiment. It includes
PythonSection, DockerSection, and environment variables. Any environment option not directly
exposed through other parameters to the Estimator construction can be set using this
parameter. If this parameter is specified, it will take precedence over other environment-related
parameters like |
inputs
Required
|
A list of DataReference or DatasetConsumptionConfig objects to use as input. |
source_directory_data_store
Required
|
The backing data store for the project share. |
shm_size
Required
|
The size of the Docker container's shared memory block. If not set, the default azureml.core.environment._DEFAULT_SHM_SIZE is used. For more information, see Docker run reference. |
resume_from
Required
|
The data path containing the checkpoint or model files from which to resume the experiment. |
max_run_duration_seconds
Required
|
The maximum allowed time for the run. Azure ML will attempt to automatically cancel the run if it take longer than this value. |
source_directory
Required
|
A local directory containing experiment configuration and code files needed for a training job. |
compute_target
Required
|
The compute target where training will happen. This can either be an object or the string "local". |
vm_size
Required
|
The VM size of the compute target that will be created for the training. Supported values: Any Azure VM size. |
vm_priority
Required
|
The VM priority of the compute target that will be created for the training. If not specified, 'dedicated' is used. Supported values: 'dedicated' and 'lowpriority'. This takes effect only when the |
entry_script
Required
|
The relative path to the file used to start training. |
script_params
Required
|
A dictionary of command-line arguments to pass to the training script specified in
|
node_count
Required
|
The number of nodes in the compute target used for training. If greater than 1, a MPI distributed job will be run. Only the AmlCompute target is supported for distributed jobs. |
process_count_per_node
Required
|
The number of processes per node. If greater than 1, a MPI distributed job will be run. Only the AmlCompute target is supported for distributed jobs. |
distributed_backend
Required
|
The communication backend for distributed training. DEPRECATED. Use the Supported values: 'mpi'. 'mpi' represents MPI/Horovod. This parameter is required when When |
distributed_training
Required
|
Parameters for running a distributed training job. For running a distributed job with MPI backend, use Mpi
object to specify |
use_gpu
Required
|
Specifies whether the environment to run the experiment should support GPUs.
If true, a GPU-based default Docker image will be used in the environment. If false, a CPU-based
image will be used. Default Docker images (CPU or GPU) will be used only if the |
use_docker
Required
|
Specifies whether the environment to run the experiment should be Docker-based. |
custom_docker_base_image
Required
|
The name of the Docker image from which the image to use for training will be built. DEPRECATED. Use the If not set, a default CPU-based image will be used as the base image. |
custom_docker_image
Required
|
The name of the Docker image from which the image to use for training
will be built. If not set, a default CPU-based image will be used as the base image. Only specify
images available in public docker repositories (Docker Hub). To use an image from a private docker
repository, use the constructor's |
image_registry_details
Required
|
The details of the Docker image registry. |
user_managed
Required
|
Specifies whether Azure ML reuses an existing Python environment. If false, a Python environment is created based on the conda dependencies specification. |
conda_packages
Required
|
A list of strings representing conda packages to be added to the Python environment for the experiment. |
pip_packages
Required
|
A list of strings representing pip packages to be added to the Python environment for the experiment. |
conda_dependencies_file_path
Required
|
The relative path to the conda dependencies yaml file. If specified, Azure ML will not install any framework related packages. DEPRECATED. Use the Specify either |
pip_requirements_file_path
Required
|
The relative path to the pip requirements text file. DEPRECATED. Use the This can be provided in combination with the |
pip_requirements_file
Required
|
The relative path to the pip requirements text file.
This can be provided in combination with the |
environment_variables
Required
|
A dictionary of environment variables names and values. These environment variables are set on the process where user script is being executed. |
environment_definition
Required
|
The environment definition for the experiment. It includes
PythonSection, DockerSection, and environment variables. Any environment option not directly
exposed through other parameters to the Estimator construction can be set using this
parameter. If this parameter is specified, it will take precedence over other environment-related
parameters like |
inputs
Required
|
A list of DataReference or DatasetConsumptionConfig objects to use as input. |
source_directory_data_store
Required
|
The backing data store for the project share. |
shm_size
Required
|
The size of the Docker container's shared memory block. If not set, the default |
_disable_validation
Required
|
Disable script validation before run submission. The default is True. |
_show_lint_warnings
Required
|
Show script linting warnings. The default is False. |
_show_package_warnings
Required
|
Show package validation warnings. The default is False. |