PermutationFeatureImportanceExtensions.PermutationFeatureImportance Método

Definición

Sobrecargas

PermutationFeatureImportance(MulticlassClassificationCatalog, ITransformer, IDataView, String, Boolean, Nullable<Int32>, Int32)

Importancia de la característica de permutación (PFI) para multiclasificación.

PermutationFeatureImportance(RegressionCatalog, ITransformer, IDataView, String, Boolean, Nullable<Int32>, Int32)

Importancia de la característica de permutación (PFI) para regresión.

PermutationFeatureImportance(RankingCatalog, ITransformer, IDataView, String, String, Boolean, Nullable<Int32>, Int32)

Importancia de la característica de permutación (PFI) para la clasificación.

PermutationFeatureImportance<TModel>(BinaryClassificationCatalog, ISingleFeaturePredictionTransformer<TModel>, IDataView, String, Boolean, Nullable<Int32>, Int32)

Importancia de la característica de permutación (PFI) para la clasificación binaria.

PermutationFeatureImportance<TModel>(MulticlassClassificationCatalog, ISingleFeaturePredictionTransformer<TModel>, IDataView, String, Boolean, Nullable<Int32>, Int32)

Importancia de la característica de permutación (PFI) para multiclasificación.

PermutationFeatureImportance<TModel>(RegressionCatalog, ISingleFeaturePredictionTransformer<TModel>, IDataView, String, Boolean, Nullable<Int32>, Int32)

Importancia de la característica de permutación (PFI) para regresión.

PermutationFeatureImportance<TModel>(RankingCatalog, ISingleFeaturePredictionTransformer<TModel>, IDataView, String, String, Boolean, Nullable<Int32>, Int32)

Importancia de la característica de permutación (PFI) para la clasificación.

PermutationFeatureImportance(MulticlassClassificationCatalog, ITransformer, IDataView, String, Boolean, Nullable<Int32>, Int32)

Importancia de la característica de permutación (PFI) para multiclasificación.

public static System.Collections.Immutable.ImmutableDictionary<string,Microsoft.ML.Data.MulticlassClassificationMetricsStatistics> PermutationFeatureImportance (this Microsoft.ML.MulticlassClassificationCatalog catalog, Microsoft.ML.ITransformer model, Microsoft.ML.IDataView data, string labelColumnName = "Label", bool useFeatureWeightFilter = false, int? numberOfExamplesToUse = default, int permutationCount = 1);
static member PermutationFeatureImportance : Microsoft.ML.MulticlassClassificationCatalog * Microsoft.ML.ITransformer * Microsoft.ML.IDataView * string * bool * Nullable<int> * int -> System.Collections.Immutable.ImmutableDictionary<string, Microsoft.ML.Data.MulticlassClassificationMetricsStatistics>
<Extension()>
Public Function PermutationFeatureImportance (catalog As MulticlassClassificationCatalog, model As ITransformer, data As IDataView, Optional labelColumnName As String = "Label", Optional useFeatureWeightFilter As Boolean = false, Optional numberOfExamplesToUse As Nullable(Of Integer) = Nothing, Optional permutationCount As Integer = 1) As ImmutableDictionary(Of String, MulticlassClassificationMetricsStatistics)

Parámetros

catalog
MulticlassClassificationCatalog

Catálogo de clasificación multiclase.

model
ITransformer

Modelo en el que se va a evaluar la importancia de las características.

data
IDataView

Conjunto de datos de evaluación.

labelColumnName
String

Nombre de columna de etiqueta. Los datos de columna deben ser KeyDataViewType.

useFeatureWeightFilter
Boolean

Use el peso de las características para filtrar previamente las características.

numberOfExamplesToUse
Nullable<Int32>

Limite el número de ejemplos en los que evaluar. significa que se usarán hasta ~2 ejemplos de bln.

permutationCount
Int32

Número de permutaciones que se van a realizar.

Devoluciones

Los diccionarios asignan cada característica a su "contribuciones" por característica a la puntuación.

Ejemplos

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;

namespace Samples.Dynamic.Trainers.MulticlassClassification
{
    public static class PermutationFeatureImportance
    {
        public static void Example()
        {
            // Create a new context for ML.NET operations. It can be used for
            // exception tracking and logging, as a catalog of available operations
            // and as the source of randomness.
            var mlContext = new MLContext(seed: 1);

            // Create sample data.
            var samples = GenerateData();

            // Load the sample data as an IDataView.
            var data = mlContext.Data.LoadFromEnumerable(samples);

            // Define a training pipeline that concatenates features into a vector,
            // normalizes them, and then trains a linear model.
            var featureColumns =
                new string[] { nameof(Data.Feature1), nameof(Data.Feature2) };

            var pipeline = mlContext.Transforms
                .Concatenate("Features", featureColumns)
                .Append(mlContext.Transforms.Conversion.MapValueToKey("Label"))
                .Append(mlContext.Transforms.NormalizeMinMax("Features"))
                .Append(mlContext.MulticlassClassification.Trainers
                .SdcaMaximumEntropy());

            // Fit the pipeline to the data.
            var model = pipeline.Fit(data);

            // Transform the dataset.
            var transformedData = model.Transform(data);

            // Extract the predictor.
            var linearPredictor = model.LastTransformer;

            // Compute the permutation metrics for the linear model using the
            // normalized data.
            var permutationMetrics = mlContext.MulticlassClassification
                .PermutationFeatureImportance(linearPredictor, transformedData,
                permutationCount: 30);

            // Now let's look at which features are most important to the model
            // overall. Get the feature indices sorted by their impact on
            // microaccuracy.
            var sortedIndices = permutationMetrics
                .Select((metrics, index) => new { index, metrics.MicroAccuracy })
                .OrderByDescending(feature => Math.Abs(feature.MicroAccuracy.Mean))
                .Select(feature => feature.index);

            Console.WriteLine("Feature\tChange in MicroAccuracy\t95% Confidence in "
                + "the Mean Change in MicroAccuracy");

            var microAccuracy = permutationMetrics.Select(x => x.MicroAccuracy)
                .ToArray();

            foreach (int i in sortedIndices)
            {
                Console.WriteLine("{0}\t{1:G4}\t{2:G4}",
                    featureColumns[i],
                    microAccuracy[i].Mean,
                    1.96 * microAccuracy[i].StandardError);
            }

            // Expected output:
            //Feature     Change in MicroAccuracy  95% Confidence in the Mean Change in MicroAccuracy
            //Feature2     -0.1395                 0.0006567
            //Feature1     -0.05367                0.0006908
        }

        private class Data
        {
            public float Label { get; set; }

            public float Feature1 { get; set; }

            public float Feature2 { get; set; }
        }

        /// <summary>
        /// Generate an enumerable of Data objects, creating the label as a simple
        /// linear combination of the features.
        /// </summary>
        /// <param name="nExamples">The number of examples.</param>
        /// <param name="bias">The bias, or offset, in the calculation of the
        /// label.</param>
        /// <param name="weight1">The weight to multiply the first feature with to
        /// compute the label.</param>
        /// <param name="weight2">The weight to multiply the second feature with to
        /// compute the label.</param>
        /// <param name="seed">The seed for generating feature values and label
        /// noise.</param>
        /// <returns>An enumerable of Data objects.</returns>
        private static IEnumerable<Data> GenerateData(int nExamples = 10000,
            double bias = 0, double weight1 = 1, double weight2 = 2, int seed = 1)
        {
            var rng = new Random(seed);
            var max = bias + 4.5 * weight1 + 4.5 * weight2 + 0.5;
            for (int i = 0; i < nExamples; i++)
            {
                var data = new Data
                {
                    Feature1 = (float)(rng.Next(10) * (rng.NextDouble() - 0.5)),
                    Feature2 = (float)(rng.Next(10) * (rng.NextDouble() - 0.5)),
                };

                // Create a noisy label.
                var value = (float)
                    (bias + weight1 * data.Feature1 + weight2 * data.Feature2 +
                    rng.NextDouble() - 0.5);

                if (value < max / 3)
                    data.Label = 0;
                else if (value < 2 * max / 3)
                    data.Label = 1;
                else
                    data.Label = 2;
                yield return data;
            }
        }
    }
}

Comentarios

La importancia de las características de permutación (PFI) es una técnica para determinar la importancia global de las características en un modelo de aprendizaje automático entrenado. PFI es una técnica sencilla pero poderosa motivado por Breiman en su artículo sobre bosque aleatorio, sección 10 (Breiman. "Bosques aleatorios". Machine Learning, 2001). La ventaja del método PFI es que es independiente del modelo ( funciona con cualquier modelo que se pueda evaluar) y puede usar cualquier conjunto de datos, no solo el conjunto de entrenamiento, para calcular las métricas de importancia de las características.

PFI funciona tomando un conjunto de datos etiquetado, eligiendo una característica y permutando los valores de esa característica en todos los ejemplos, de modo que cada ejemplo ahora tenga un valor aleatorio para la característica y los valores originales de todas las demás características. La métrica de evaluación (por ejemplo, la micro precisión) se calcula para este conjunto de datos modificado y se calcula el cambio en la métrica de evaluación del conjunto de datos original. Cuanto mayor sea el cambio en la métrica de evaluación, más importante será la característica para el modelo. PFI funciona realizando este análisis de permutación en todas las características de un modelo, una después de otra.

En esta implementación, PFI calcula el cambio en todas las métricas de evaluación de clasificación multiclase posibles para cada característica y se devuelve un ImmutableArray de MulticlassClassificationMetrics objetos. Consulte el ejemplo siguiente para ver un ejemplo de cómo trabajar con estos resultados para analizar la importancia de la característica de un modelo.

Se aplica a

PermutationFeatureImportance(RegressionCatalog, ITransformer, IDataView, String, Boolean, Nullable<Int32>, Int32)

Importancia de la característica de permutación (PFI) para regresión.

public static System.Collections.Immutable.ImmutableDictionary<string,Microsoft.ML.Data.RegressionMetricsStatistics> PermutationFeatureImportance (this Microsoft.ML.RegressionCatalog catalog, Microsoft.ML.ITransformer model, Microsoft.ML.IDataView data, string labelColumnName = "Label", bool useFeatureWeightFilter = false, int? numberOfExamplesToUse = default, int permutationCount = 1);
static member PermutationFeatureImportance : Microsoft.ML.RegressionCatalog * Microsoft.ML.ITransformer * Microsoft.ML.IDataView * string * bool * Nullable<int> * int -> System.Collections.Immutable.ImmutableDictionary<string, Microsoft.ML.Data.RegressionMetricsStatistics>
<Extension()>
Public Function PermutationFeatureImportance (catalog As RegressionCatalog, model As ITransformer, data As IDataView, Optional labelColumnName As String = "Label", Optional useFeatureWeightFilter As Boolean = false, Optional numberOfExamplesToUse As Nullable(Of Integer) = Nothing, Optional permutationCount As Integer = 1) As ImmutableDictionary(Of String, RegressionMetricsStatistics)

Parámetros

catalog
RegressionCatalog

Catálogo de regresión.

model
ITransformer

Modelo en el que se va a evaluar la importancia de las características.

data
IDataView

Conjunto de datos de evaluación.

labelColumnName
String

Nombre de columna de etiqueta. Los datos de columna deben ser Single.

useFeatureWeightFilter
Boolean

Use el peso de las características para filtrar previamente las características.

numberOfExamplesToUse
Nullable<Int32>

Limite el número de ejemplos en los que evaluar. significa que se usarán hasta ~2 ejemplos de bln.

permutationCount
Int32

Número de permutaciones que se van a realizar.

Devoluciones

Los diccionarios asignan cada característica a su "contribuciones" por característica a la puntuación.

Ejemplos

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;

namespace Samples.Dynamic.Trainers.Regression
{
    public static class PermutationFeatureImportance
    {
        public static void Example()
        {
            // Create a new context for ML.NET operations. It can be used for
            // exception tracking and logging, as a catalog of available operations
            // and as the source of randomness.
            var mlContext = new MLContext(seed: 1);

            // Create sample data.
            var samples = GenerateData();

            // Load the sample data as an IDataView.
            var data = mlContext.Data.LoadFromEnumerable(samples);

            // Define a training pipeline that concatenates features into a vector,
            // normalizes them, and then trains a linear model.
            var featureColumns = new string[] { nameof(Data.Feature1),
                nameof(Data.Feature2) };

            var pipeline = mlContext.Transforms.Concatenate(
                "Features",
                featureColumns)
                .Append(mlContext.Transforms.NormalizeMinMax("Features"))
                .Append(mlContext.Regression.Trainers.Ols());

            // Fit the pipeline to the data.
            var model = pipeline.Fit(data);

            // Transform the dataset.
            var transformedData = model.Transform(data);

            // Extract the predictor.
            var linearPredictor = model.LastTransformer;

            // Compute the permutation metrics for the linear model using the
            // normalized data.
            var permutationMetrics = mlContext.Regression
                .PermutationFeatureImportance(
                linearPredictor, transformedData, permutationCount: 30);

            // Now let's look at which features are most important to the model
            // overall. Get the feature indices sorted by their impact on RMSE.
            var sortedIndices = permutationMetrics
                .Select((metrics, index) => new
                {
                    index,
                    metrics.RootMeanSquaredError
                })

                .OrderByDescending(feature => Math.Abs(
                    feature.RootMeanSquaredError.Mean))

                .Select(feature => feature.index);

            Console.WriteLine("Feature\tModel Weight\tChange in RMSE\t95%" +
                "Confidence in the Mean Change in RMSE");

            var rmse = permutationMetrics.Select(x => x.RootMeanSquaredError)
                .ToArray();

            foreach (int i in sortedIndices)
            {
                Console.WriteLine("{0}\t{1:0.00}\t{2:G4}\t{3:G4}",
                    featureColumns[i],
                    linearPredictor.Model.Weights[i],
                    rmse[i].Mean,
                    1.96 * rmse[i].StandardError);
            }

            // Expected output:
            //  Feature    Model Weight Change in RMSE  95% Confidence in the Mean Change in RMSE
            //  Feature2        9.00        4.009       0.008304
            //  Feature1        4.48        1.901       0.003351
        }

        private class Data
        {
            public float Label { get; set; }

            public float Feature1 { get; set; }

            public float Feature2 { get; set; }
        }

        /// <summary>
        /// Generate an enumerable of Data objects, creating the label as a simple
        /// linear combination of the features.
        /// </summary>
        /// <param name="nExamples">The number of examples.</param>
        /// <param name="bias">The bias, or offset, in the calculation of the label.
        /// </param>
        /// <param name="weight1">The weight to multiply the first feature with to
        /// compute the label.</param>
        /// <param name="weight2">The weight to multiply the second feature with to
        /// compute the label.</param>
        /// <param name="seed">The seed for generating feature values and label
        /// noise.</param>
        /// <returns>An enumerable of Data objects.</returns>
        private static IEnumerable<Data> GenerateData(int nExamples = 10000,
            double bias = 0, double weight1 = 1, double weight2 = 2, int seed = 1)
        {
            var rng = new Random(seed);
            for (int i = 0; i < nExamples; i++)
            {
                var data = new Data
                {
                    Feature1 = (float)(rng.Next(10) * (rng.NextDouble() - 0.5)),
                    Feature2 = (float)(rng.Next(10) * (rng.NextDouble() - 0.5)),
                };

                // Create a noisy label.
                data.Label = (float)(bias + weight1 * data.Feature1 + weight2 *
                    data.Feature2 + rng.NextDouble() - 0.5);
                yield return data;
            }
        }
    }
}

Comentarios

La importancia de las características de permutación (PFI) es una técnica para determinar la importancia global de las características en un modelo de aprendizaje automático entrenado. PFI es una técnica sencilla pero poderosa motivado por Breiman en su artículo sobre bosque aleatorio, sección 10 (Breiman. "Bosques aleatorios". Machine Learning, 2001). La ventaja del método PFI es que es independiente del modelo ( funciona con cualquier modelo que se pueda evaluar) y puede usar cualquier conjunto de datos, no solo el conjunto de entrenamiento, para calcular las métricas de importancia de las características.

PFI funciona tomando un conjunto de datos etiquetado, eligiendo una característica y permutando los valores de esa característica en todos los ejemplos, de modo que cada ejemplo ahora tenga un valor aleatorio para la característica y los valores originales de todas las demás características. La métrica de evaluación (por ejemplo, R cuadrado) se calcula para este conjunto de datos modificado y se calcula el cambio en la métrica de evaluación del conjunto de datos original. Cuanto mayor sea el cambio en la métrica de evaluación, más importante será la característica para el modelo. PFI funciona realizando este análisis de permutación en todas las características de un modelo, una después de otra.

En esta implementación, PFI calcula el cambio en todas las métricas de evaluación de regresión posibles para cada característica y se devuelve un ImmutableArray de RegressionMetrics objetos. Consulte el ejemplo siguiente para ver un ejemplo de cómo trabajar con estos resultados para analizar la importancia de la característica de un modelo.

Se aplica a

PermutationFeatureImportance(RankingCatalog, ITransformer, IDataView, String, String, Boolean, Nullable<Int32>, Int32)

Importancia de la característica de permutación (PFI) para la clasificación.

public static System.Collections.Immutable.ImmutableDictionary<string,Microsoft.ML.Data.RankingMetricsStatistics> PermutationFeatureImportance (this Microsoft.ML.RankingCatalog catalog, Microsoft.ML.ITransformer model, Microsoft.ML.IDataView data, string labelColumnName = "Label", string rowGroupColumnName = "GroupId", bool useFeatureWeightFilter = false, int? numberOfExamplesToUse = default, int permutationCount = 1);
static member PermutationFeatureImportance : Microsoft.ML.RankingCatalog * Microsoft.ML.ITransformer * Microsoft.ML.IDataView * string * string * bool * Nullable<int> * int -> System.Collections.Immutable.ImmutableDictionary<string, Microsoft.ML.Data.RankingMetricsStatistics>
<Extension()>
Public Function PermutationFeatureImportance (catalog As RankingCatalog, model As ITransformer, data As IDataView, Optional labelColumnName As String = "Label", Optional rowGroupColumnName As String = "GroupId", Optional useFeatureWeightFilter As Boolean = false, Optional numberOfExamplesToUse As Nullable(Of Integer) = Nothing, Optional permutationCount As Integer = 1) As ImmutableDictionary(Of String, RankingMetricsStatistics)

Parámetros

catalog
RankingCatalog

Catálogo de clasificación.

model
ITransformer

Modelo en el que se va a evaluar la importancia de las características.

data
IDataView

Conjunto de datos de evaluación.

labelColumnName
String

Nombre de columna de etiqueta. Los datos de columna deben ser Single o KeyDataViewType.

rowGroupColumnName
String

Nombre de columna GroupId

useFeatureWeightFilter
Boolean

Use el peso de las características para filtrar previamente las características.

numberOfExamplesToUse
Nullable<Int32>

Limite el número de ejemplos en los que evaluar. significa que se usarán hasta ~2 ejemplos de bln.

permutationCount
Int32

Número de permutaciones que se van a realizar.

Devoluciones

Los diccionarios asignan cada característica a su "contribuciones" por característica a la puntuación.

Ejemplos

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;

namespace Samples.Dynamic.Trainers.Ranking
{
    public static class PermutationFeatureImportance
    {
        public static void Example()
        {
            // Create a new context for ML.NET operations. It can be used for
            // exception tracking and logging, as a catalog of available operations
            // and as the source of randomness.
            var mlContext = new MLContext(seed: 1);

            // Create sample data.
            var samples = GenerateData();

            // Load the sample data as an IDataView.
            var data = mlContext.Data.LoadFromEnumerable(samples);

            // Define a training pipeline that concatenates features into a vector,
            // normalizes them, and then trains a linear model.
            var featureColumns = new string[] { nameof(Data.Feature1), nameof(
                Data.Feature2) };
            var pipeline = mlContext.Transforms.Concatenate("Features",
                featureColumns)
                    .Append(mlContext.Transforms.Conversion.MapValueToKey("Label"))
                    .Append(mlContext.Transforms.Conversion.MapValueToKey(
                        "GroupId"))
                    .Append(mlContext.Transforms.NormalizeMinMax("Features"))
                    .Append(mlContext.Ranking.Trainers.FastTree());

            // Fit the pipeline to the data.
            var model = pipeline.Fit(data);

            // Transform the dataset.
            var transformedData = model.Transform(data);

            // Extract the predictor.
            var linearPredictor = model.LastTransformer;

            // Compute the permutation metrics for the linear model using the
            // normalized data.
            var permutationMetrics = mlContext.Ranking.PermutationFeatureImportance(
                linearPredictor, transformedData, permutationCount: 30);

            // Now let's look at which features are most important to the model
            // overall. Get the feature indices sorted by their impact on NDCG@1.
            var sortedIndices = permutationMetrics.Select((metrics, index) => new
            {
                index,
                metrics.NormalizedDiscountedCumulativeGains
            })
                .OrderByDescending(feature => Math.Abs(
                    feature.NormalizedDiscountedCumulativeGains[0].Mean))

                .Select(feature => feature.index);

            Console.WriteLine("Feature\tChange in NDCG@1\t95% Confidence in the" +
                "Mean Change in NDCG@1");
            var ndcg = permutationMetrics.Select(
                x => x.NormalizedDiscountedCumulativeGains).ToArray();
            foreach (int i in sortedIndices)
            {
                Console.WriteLine("{0}\t{1:G4}\t{2:G4}",
                    featureColumns[i],
                    ndcg[i][0].Mean,
                    1.96 * ndcg[i][0].StandardError);
            }

            // Expected output:
            //  Feature     Change in NDCG@1    95% Confidence in the Mean Change in NDCG@1
            //  Feature2     -0.2421            0.001748
            //  Feature1     -0.0513            0.001184
        }

        private class Data
        {
            public float Label { get; set; }

            public int GroupId { get; set; }

            public float Feature1 { get; set; }

            public float Feature2 { get; set; }
        }

        /// <summary>
        /// Generate an enumerable of Data objects, creating the label as a simple
        /// linear combination of the features.
        /// </summary>
        /// 
        /// <param name="nExamples">The number of examples.</param>
        /// 
        /// <param name="bias">The bias, or offset, in the calculation of the label.
        /// </param>
        /// 
        /// <param name="weight1">The weight to multiply the first feature with to
        /// compute the label.</param>
        /// 
        /// <param name="weight2">The weight to multiply the second feature with to
        /// compute the label.</param>
        /// 
        /// <param name="seed">The seed for generating feature values and label
        /// noise.</param>
        /// 
        /// <returns>An enumerable of Data objects.</returns>
        private static IEnumerable<Data> GenerateData(int nExamples = 10000,
            double bias = 0, double weight1 = 1, double weight2 = 2, int seed = 1,
                int groupSize = 5)
        {
            var rng = new Random(seed);
            var max = bias + 4.5 * weight1 + 4.5 * weight2 + 0.5;
            for (int i = 0; i < nExamples; i++)
            {
                var data = new Data
                {
                    GroupId = i / groupSize,
                    Feature1 = (float)(rng.Next(10) * (rng.NextDouble() - 0.5)),
                    Feature2 = (float)(rng.Next(10) * (rng.NextDouble() - 0.5)),
                };

                // Create a noisy label.
                var value = (float)(bias + weight1 * data.Feature1 + weight2 *
                    data.Feature2 + rng.NextDouble() - 0.5);
                if (value < max / 3)
                    data.Label = 0;
                else if (value < 2 * max / 3)
                    data.Label = 1;
                else
                    data.Label = 2;
                yield return data;
            }
        }
    }
}

Comentarios

La importancia de las características de permutación (PFI) es una técnica para determinar la importancia global de las características en un modelo de aprendizaje automático entrenado. PFI es una técnica sencilla pero poderosa motivado por Breiman en su artículo sobre bosque aleatorio, sección 10 (Breiman. "Bosques aleatorios". Machine Learning, 2001). La ventaja del método PFI es que es independiente del modelo ( funciona con cualquier modelo que se pueda evaluar) y puede usar cualquier conjunto de datos, no solo el conjunto de entrenamiento, para calcular las métricas de importancia de las características.

PFI funciona tomando un conjunto de datos etiquetado, eligiendo una característica y permutando los valores de esa característica en todos los ejemplos, de modo que cada ejemplo ahora tenga un valor aleatorio para la característica y los valores originales de todas las demás características. La métrica de evaluación (por ejemplo, NDCG) se calcula para este conjunto de datos modificado y se calcula el cambio en la métrica de evaluación del conjunto de datos original. Cuanto mayor sea el cambio en la métrica de evaluación, más importante será la característica para el modelo. PFI funciona realizando este análisis de permutación en todas las características de un modelo, una después de otra.

En esta implementación, PFI calcula el cambio en todas las métricas de evaluación de clasificación posibles para cada característica y se devuelve un ImmutableArray de RankingMetrics objetos. Consulte el ejemplo siguiente para ver un ejemplo de cómo trabajar con estos resultados para analizar la importancia de la característica de un modelo.

Se aplica a

PermutationFeatureImportance<TModel>(BinaryClassificationCatalog, ISingleFeaturePredictionTransformer<TModel>, IDataView, String, Boolean, Nullable<Int32>, Int32)

Importancia de la característica de permutación (PFI) para la clasificación binaria.

public static System.Collections.Immutable.ImmutableArray<Microsoft.ML.Data.BinaryClassificationMetricsStatistics> PermutationFeatureImportance<TModel> (this Microsoft.ML.BinaryClassificationCatalog catalog, Microsoft.ML.ISingleFeaturePredictionTransformer<TModel> predictionTransformer, Microsoft.ML.IDataView data, string labelColumnName = "Label", bool useFeatureWeightFilter = false, int? numberOfExamplesToUse = default, int permutationCount = 1) where TModel : class;
static member PermutationFeatureImportance : Microsoft.ML.BinaryClassificationCatalog * Microsoft.ML.ISingleFeaturePredictionTransformer<'Model (requires 'Model : null)> * Microsoft.ML.IDataView * string * bool * Nullable<int> * int -> System.Collections.Immutable.ImmutableArray<Microsoft.ML.Data.BinaryClassificationMetricsStatistics> (requires 'Model : null)
<Extension()>
Public Function PermutationFeatureImportance(Of TModel As Class) (catalog As BinaryClassificationCatalog, predictionTransformer As ISingleFeaturePredictionTransformer(Of TModel), data As IDataView, Optional labelColumnName As String = "Label", Optional useFeatureWeightFilter As Boolean = false, Optional numberOfExamplesToUse As Nullable(Of Integer) = Nothing, Optional permutationCount As Integer = 1) As ImmutableArray(Of BinaryClassificationMetricsStatistics)

Parámetros de tipo

TModel

Parámetros

catalog
BinaryClassificationCatalog

Catálogo de clasificación binaria.

predictionTransformer
ISingleFeaturePredictionTransformer<TModel>

Modelo en el que se va a evaluar la importancia de las características.

data
IDataView

Conjunto de datos de evaluación.

labelColumnName
String

Nombre de columna de etiqueta. Los datos de columna deben ser Boolean.

useFeatureWeightFilter
Boolean

Use el peso de las características para filtrar previamente las características.

numberOfExamplesToUse
Nullable<Int32>

Limite el número de ejemplos en los que evaluar. significa que se usarán hasta ~2 ejemplos de bln.

permutationCount
Int32

Número de permutaciones que se van a realizar.

Devoluciones

Matriz de "contribuciones" por característica a la puntuación.

Ejemplos

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;

namespace Samples.Dynamic.Trainers.BinaryClassification
{
    public static class PermutationFeatureImportance
    {
        public static void Example()
        {
            // Create a new context for ML.NET operations. It can be used for
            // exception tracking and logging, as a catalog of available operations
            // and as the source of randomness.
            var mlContext = new MLContext(seed: 1);

            // Create sample data.
            var samples = GenerateData();

            // Load the sample data as an IDataView.
            var data = mlContext.Data.LoadFromEnumerable(samples);

            // Define a training pipeline that concatenates features into a vector,
            // normalizes them, and then trains a linear model.
            var featureColumns =
                new string[] { nameof(Data.Feature1), nameof(Data.Feature2) };
            var pipeline = mlContext.Transforms
                .Concatenate("Features", featureColumns)
                .Append(mlContext.Transforms.NormalizeMinMax("Features"))
                .Append(mlContext.BinaryClassification.Trainers
                .SdcaLogisticRegression());

            // Fit the pipeline to the data.
            var model = pipeline.Fit(data);

            // Transform the dataset.
            var transformedData = model.Transform(data);

            // Extract the predictor.
            var linearPredictor = model.LastTransformer;

            // Compute the permutation metrics for the linear model using the
            // normalized data.
            var permutationMetrics = mlContext.BinaryClassification
                .PermutationFeatureImportance(linearPredictor, transformedData,
                permutationCount: 30);

            // Now let's look at which features are most important to the model
            // overall. Get the feature indices sorted by their impact on AUC.
            var sortedIndices = permutationMetrics
                .Select((metrics, index) => new { index, metrics.AreaUnderRocCurve })
                .OrderByDescending(
                feature => Math.Abs(feature.AreaUnderRocCurve.Mean))
                .Select(feature => feature.index);

            Console.WriteLine("Feature\tModel Weight\tChange in AUC"
                + "\t95% Confidence in the Mean Change in AUC");
            var auc = permutationMetrics.Select(x => x.AreaUnderRocCurve).ToArray();
            foreach (int i in sortedIndices)
            {
                Console.WriteLine("{0}\t{1:0.00}\t{2:G4}\t{3:G4}",
                    featureColumns[i],
                    linearPredictor.Model.SubModel.Weights[i],
                    auc[i].Mean,
                    1.96 * auc[i].StandardError);
            }

            // Expected output:
            //  Feature     Model Weight Change in AUC  95% Confidence in the Mean Change in AUC
            //  Feature2        35.15     -0.387        0.002015
            //  Feature1        17.94     -0.1514       0.0008963
        }

        private class Data
        {
            public bool Label { get; set; }

            public float Feature1 { get; set; }

            public float Feature2 { get; set; }
        }

        /// <summary>
        /// Generate an enumerable of Data objects, creating the label as a simple
        /// linear combination of the features.
        /// </summary>
        /// <param name="nExamples">The number of examples.</param>
        /// <param name="bias">The bias, or offset, in the calculation of the label.
        /// </param>
        /// <param name="weight1">The weight to multiply the first feature with to
        /// compute the label.</param>
        /// <param name="weight2">The weight to multiply the second feature with to
        /// compute the label.</param>
        /// <param name="seed">The seed for generating feature values and label
        /// noise.</param>
        /// <returns>An enumerable of Data objects.</returns>
        private static IEnumerable<Data> GenerateData(int nExamples = 10000,
            double bias = 0, double weight1 = 1, double weight2 = 2, int seed = 1)
        {
            var rng = new Random(seed);
            for (int i = 0; i < nExamples; i++)
            {
                var data = new Data
                {
                    Feature1 = (float)(rng.Next(10) * (rng.NextDouble() - 0.5)),
                    Feature2 = (float)(rng.Next(10) * (rng.NextDouble() - 0.5)),
                };

                // Create a noisy label.
                var value = (float)(bias + weight1 * data.Feature1 + weight2 *
                    data.Feature2 + rng.NextDouble() - 0.5);

                data.Label = Sigmoid(value) > 0.5;
                yield return data;
            }
        }

        private static double Sigmoid(double x) => 1.0 / (1.0 + Math.Exp(-1 * x));
    }
}

Comentarios

La importancia de las características de permutación (PFI) es una técnica para determinar la importancia global de las características en un modelo de aprendizaje automático entrenado. PFI es una técnica sencilla pero poderosa motivado por Breiman en su artículo sobre bosque aleatorio, sección 10 (Breiman. "Bosques aleatorios". Machine Learning, 2001). La ventaja del método PFI es que es independiente del modelo ( funciona con cualquier modelo que se pueda evaluar) y puede usar cualquier conjunto de datos, no solo el conjunto de entrenamiento, para calcular las métricas de importancia de las características.

PFI funciona tomando un conjunto de datos etiquetado, eligiendo una característica y permutando los valores de esa característica en todos los ejemplos, de modo que cada ejemplo ahora tenga un valor aleatorio para la característica y los valores originales de todas las demás características. La métrica de evaluación (por ejemplo, AUC) se calcula para este conjunto de datos modificado y se calcula el cambio en la métrica de evaluación del conjunto de datos original. Cuanto mayor sea el cambio en la métrica de evaluación, más importante será la característica para el modelo. PFI funciona realizando este análisis de permutación en todas las características de un modelo, una después de otra.

En esta implementación, PFI calcula el cambio en todas las métricas de evaluación de clasificación binaria posibles para cada característica y se devuelve un ImmutableArray de BinaryClassificationMetrics objetos. Consulte el ejemplo siguiente para ver un ejemplo de cómo trabajar con estos resultados para analizar la importancia de la característica de un modelo.

Se aplica a

PermutationFeatureImportance<TModel>(MulticlassClassificationCatalog, ISingleFeaturePredictionTransformer<TModel>, IDataView, String, Boolean, Nullable<Int32>, Int32)

Importancia de la característica de permutación (PFI) para multiclasificación.

public static System.Collections.Immutable.ImmutableArray<Microsoft.ML.Data.MulticlassClassificationMetricsStatistics> PermutationFeatureImportance<TModel> (this Microsoft.ML.MulticlassClassificationCatalog catalog, Microsoft.ML.ISingleFeaturePredictionTransformer<TModel> predictionTransformer, Microsoft.ML.IDataView data, string labelColumnName = "Label", bool useFeatureWeightFilter = false, int? numberOfExamplesToUse = default, int permutationCount = 1) where TModel : class;
static member PermutationFeatureImportance : Microsoft.ML.MulticlassClassificationCatalog * Microsoft.ML.ISingleFeaturePredictionTransformer<'Model (requires 'Model : null)> * Microsoft.ML.IDataView * string * bool * Nullable<int> * int -> System.Collections.Immutable.ImmutableArray<Microsoft.ML.Data.MulticlassClassificationMetricsStatistics> (requires 'Model : null)
<Extension()>
Public Function PermutationFeatureImportance(Of TModel As Class) (catalog As MulticlassClassificationCatalog, predictionTransformer As ISingleFeaturePredictionTransformer(Of TModel), data As IDataView, Optional labelColumnName As String = "Label", Optional useFeatureWeightFilter As Boolean = false, Optional numberOfExamplesToUse As Nullable(Of Integer) = Nothing, Optional permutationCount As Integer = 1) As ImmutableArray(Of MulticlassClassificationMetricsStatistics)

Parámetros de tipo

TModel

Parámetros

catalog
MulticlassClassificationCatalog

Catálogo de clasificación multiclase.

predictionTransformer
ISingleFeaturePredictionTransformer<TModel>

Modelo en el que se va a evaluar la importancia de las características.

data
IDataView

Conjunto de datos de evaluación.

labelColumnName
String

Nombre de columna de etiqueta. Los datos de columna deben ser KeyDataViewType.

useFeatureWeightFilter
Boolean

Use el peso de las características para filtrar previamente las características.

numberOfExamplesToUse
Nullable<Int32>

Limite el número de ejemplos en los que evaluar. significa que se usarán hasta ~2 ejemplos de bln.

permutationCount
Int32

Número de permutaciones que se van a realizar.

Devoluciones

Matriz de "contribuciones" por característica a la puntuación.

Ejemplos

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;

namespace Samples.Dynamic.Trainers.MulticlassClassification
{
    public static class PermutationFeatureImportance
    {
        public static void Example()
        {
            // Create a new context for ML.NET operations. It can be used for
            // exception tracking and logging, as a catalog of available operations
            // and as the source of randomness.
            var mlContext = new MLContext(seed: 1);

            // Create sample data.
            var samples = GenerateData();

            // Load the sample data as an IDataView.
            var data = mlContext.Data.LoadFromEnumerable(samples);

            // Define a training pipeline that concatenates features into a vector,
            // normalizes them, and then trains a linear model.
            var featureColumns =
                new string[] { nameof(Data.Feature1), nameof(Data.Feature2) };

            var pipeline = mlContext.Transforms
                .Concatenate("Features", featureColumns)
                .Append(mlContext.Transforms.Conversion.MapValueToKey("Label"))
                .Append(mlContext.Transforms.NormalizeMinMax("Features"))
                .Append(mlContext.MulticlassClassification.Trainers
                .SdcaMaximumEntropy());

            // Fit the pipeline to the data.
            var model = pipeline.Fit(data);

            // Transform the dataset.
            var transformedData = model.Transform(data);

            // Extract the predictor.
            var linearPredictor = model.LastTransformer;

            // Compute the permutation metrics for the linear model using the
            // normalized data.
            var permutationMetrics = mlContext.MulticlassClassification
                .PermutationFeatureImportance(linearPredictor, transformedData,
                permutationCount: 30);

            // Now let's look at which features are most important to the model
            // overall. Get the feature indices sorted by their impact on
            // microaccuracy.
            var sortedIndices = permutationMetrics
                .Select((metrics, index) => new { index, metrics.MicroAccuracy })
                .OrderByDescending(feature => Math.Abs(feature.MicroAccuracy.Mean))
                .Select(feature => feature.index);

            Console.WriteLine("Feature\tChange in MicroAccuracy\t95% Confidence in "
                + "the Mean Change in MicroAccuracy");

            var microAccuracy = permutationMetrics.Select(x => x.MicroAccuracy)
                .ToArray();

            foreach (int i in sortedIndices)
            {
                Console.WriteLine("{0}\t{1:G4}\t{2:G4}",
                    featureColumns[i],
                    microAccuracy[i].Mean,
                    1.96 * microAccuracy[i].StandardError);
            }

            // Expected output:
            //Feature     Change in MicroAccuracy  95% Confidence in the Mean Change in MicroAccuracy
            //Feature2     -0.1395                 0.0006567
            //Feature1     -0.05367                0.0006908
        }

        private class Data
        {
            public float Label { get; set; }

            public float Feature1 { get; set; }

            public float Feature2 { get; set; }
        }

        /// <summary>
        /// Generate an enumerable of Data objects, creating the label as a simple
        /// linear combination of the features.
        /// </summary>
        /// <param name="nExamples">The number of examples.</param>
        /// <param name="bias">The bias, or offset, in the calculation of the
        /// label.</param>
        /// <param name="weight1">The weight to multiply the first feature with to
        /// compute the label.</param>
        /// <param name="weight2">The weight to multiply the second feature with to
        /// compute the label.</param>
        /// <param name="seed">The seed for generating feature values and label
        /// noise.</param>
        /// <returns>An enumerable of Data objects.</returns>
        private static IEnumerable<Data> GenerateData(int nExamples = 10000,
            double bias = 0, double weight1 = 1, double weight2 = 2, int seed = 1)
        {
            var rng = new Random(seed);
            var max = bias + 4.5 * weight1 + 4.5 * weight2 + 0.5;
            for (int i = 0; i < nExamples; i++)
            {
                var data = new Data
                {
                    Feature1 = (float)(rng.Next(10) * (rng.NextDouble() - 0.5)),
                    Feature2 = (float)(rng.Next(10) * (rng.NextDouble() - 0.5)),
                };

                // Create a noisy label.
                var value = (float)
                    (bias + weight1 * data.Feature1 + weight2 * data.Feature2 +
                    rng.NextDouble() - 0.5);

                if (value < max / 3)
                    data.Label = 0;
                else if (value < 2 * max / 3)
                    data.Label = 1;
                else
                    data.Label = 2;
                yield return data;
            }
        }
    }
}

Comentarios

La importancia de las características de permutación (PFI) es una técnica para determinar la importancia global de las características en un modelo de aprendizaje automático entrenado. PFI es una técnica sencilla pero poderosa motivado por Breiman en su artículo sobre bosque aleatorio, sección 10 (Breiman. "Bosques aleatorios". Machine Learning, 2001). La ventaja del método PFI es que es independiente del modelo ( funciona con cualquier modelo que se pueda evaluar) y puede usar cualquier conjunto de datos, no solo el conjunto de entrenamiento, para calcular las métricas de importancia de las características.

PFI funciona tomando un conjunto de datos etiquetado, eligiendo una característica y permutando los valores de esa característica en todos los ejemplos, de modo que cada ejemplo ahora tenga un valor aleatorio para la característica y los valores originales de todas las demás características. La métrica de evaluación (por ejemplo, la micro precisión) se calcula para este conjunto de datos modificado y se calcula el cambio en la métrica de evaluación del conjunto de datos original. Cuanto mayor sea el cambio en la métrica de evaluación, más importante será la característica para el modelo. PFI funciona realizando este análisis de permutación en todas las características de un modelo, una después de otra.

En esta implementación, PFI calcula el cambio en todas las métricas de evaluación de clasificación multiclase posibles para cada característica y se devuelve un ImmutableArray de MulticlassClassificationMetrics objetos. Consulte el ejemplo siguiente para ver un ejemplo de cómo trabajar con estos resultados para analizar la importancia de la característica de un modelo.

Se aplica a

PermutationFeatureImportance<TModel>(RegressionCatalog, ISingleFeaturePredictionTransformer<TModel>, IDataView, String, Boolean, Nullable<Int32>, Int32)

Importancia de la característica de permutación (PFI) para regresión.

public static System.Collections.Immutable.ImmutableArray<Microsoft.ML.Data.RegressionMetricsStatistics> PermutationFeatureImportance<TModel> (this Microsoft.ML.RegressionCatalog catalog, Microsoft.ML.ISingleFeaturePredictionTransformer<TModel> predictionTransformer, Microsoft.ML.IDataView data, string labelColumnName = "Label", bool useFeatureWeightFilter = false, int? numberOfExamplesToUse = default, int permutationCount = 1) where TModel : class;
static member PermutationFeatureImportance : Microsoft.ML.RegressionCatalog * Microsoft.ML.ISingleFeaturePredictionTransformer<'Model (requires 'Model : null)> * Microsoft.ML.IDataView * string * bool * Nullable<int> * int -> System.Collections.Immutable.ImmutableArray<Microsoft.ML.Data.RegressionMetricsStatistics> (requires 'Model : null)
<Extension()>
Public Function PermutationFeatureImportance(Of TModel As Class) (catalog As RegressionCatalog, predictionTransformer As ISingleFeaturePredictionTransformer(Of TModel), data As IDataView, Optional labelColumnName As String = "Label", Optional useFeatureWeightFilter As Boolean = false, Optional numberOfExamplesToUse As Nullable(Of Integer) = Nothing, Optional permutationCount As Integer = 1) As ImmutableArray(Of RegressionMetricsStatistics)

Parámetros de tipo

TModel

Parámetros

catalog
RegressionCatalog

Catálogo de regresión.

predictionTransformer
ISingleFeaturePredictionTransformer<TModel>

Modelo en el que se va a evaluar la importancia de las características.

data
IDataView

Conjunto de datos de evaluación.

labelColumnName
String

Nombre de columna de etiqueta. Los datos de columna deben ser Single.

useFeatureWeightFilter
Boolean

Use el peso de las características para filtrar previamente las características.

numberOfExamplesToUse
Nullable<Int32>

Limite el número de ejemplos en los que evaluar. significa que se usarán hasta ~2 ejemplos de bln.

permutationCount
Int32

Número de permutaciones que se van a realizar.

Devoluciones

Matriz de "contribuciones" por característica a la puntuación.

Ejemplos

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;

namespace Samples.Dynamic.Trainers.Regression
{
    public static class PermutationFeatureImportance
    {
        public static void Example()
        {
            // Create a new context for ML.NET operations. It can be used for
            // exception tracking and logging, as a catalog of available operations
            // and as the source of randomness.
            var mlContext = new MLContext(seed: 1);

            // Create sample data.
            var samples = GenerateData();

            // Load the sample data as an IDataView.
            var data = mlContext.Data.LoadFromEnumerable(samples);

            // Define a training pipeline that concatenates features into a vector,
            // normalizes them, and then trains a linear model.
            var featureColumns = new string[] { nameof(Data.Feature1),
                nameof(Data.Feature2) };

            var pipeline = mlContext.Transforms.Concatenate(
                "Features",
                featureColumns)
                .Append(mlContext.Transforms.NormalizeMinMax("Features"))
                .Append(mlContext.Regression.Trainers.Ols());

            // Fit the pipeline to the data.
            var model = pipeline.Fit(data);

            // Transform the dataset.
            var transformedData = model.Transform(data);

            // Extract the predictor.
            var linearPredictor = model.LastTransformer;

            // Compute the permutation metrics for the linear model using the
            // normalized data.
            var permutationMetrics = mlContext.Regression
                .PermutationFeatureImportance(
                linearPredictor, transformedData, permutationCount: 30);

            // Now let's look at which features are most important to the model
            // overall. Get the feature indices sorted by their impact on RMSE.
            var sortedIndices = permutationMetrics
                .Select((metrics, index) => new
                {
                    index,
                    metrics.RootMeanSquaredError
                })

                .OrderByDescending(feature => Math.Abs(
                    feature.RootMeanSquaredError.Mean))

                .Select(feature => feature.index);

            Console.WriteLine("Feature\tModel Weight\tChange in RMSE\t95%" +
                "Confidence in the Mean Change in RMSE");

            var rmse = permutationMetrics.Select(x => x.RootMeanSquaredError)
                .ToArray();

            foreach (int i in sortedIndices)
            {
                Console.WriteLine("{0}\t{1:0.00}\t{2:G4}\t{3:G4}",
                    featureColumns[i],
                    linearPredictor.Model.Weights[i],
                    rmse[i].Mean,
                    1.96 * rmse[i].StandardError);
            }

            // Expected output:
            //  Feature    Model Weight Change in RMSE  95% Confidence in the Mean Change in RMSE
            //  Feature2        9.00        4.009       0.008304
            //  Feature1        4.48        1.901       0.003351
        }

        private class Data
        {
            public float Label { get; set; }

            public float Feature1 { get; set; }

            public float Feature2 { get; set; }
        }

        /// <summary>
        /// Generate an enumerable of Data objects, creating the label as a simple
        /// linear combination of the features.
        /// </summary>
        /// <param name="nExamples">The number of examples.</param>
        /// <param name="bias">The bias, or offset, in the calculation of the label.
        /// </param>
        /// <param name="weight1">The weight to multiply the first feature with to
        /// compute the label.</param>
        /// <param name="weight2">The weight to multiply the second feature with to
        /// compute the label.</param>
        /// <param name="seed">The seed for generating feature values and label
        /// noise.</param>
        /// <returns>An enumerable of Data objects.</returns>
        private static IEnumerable<Data> GenerateData(int nExamples = 10000,
            double bias = 0, double weight1 = 1, double weight2 = 2, int seed = 1)
        {
            var rng = new Random(seed);
            for (int i = 0; i < nExamples; i++)
            {
                var data = new Data
                {
                    Feature1 = (float)(rng.Next(10) * (rng.NextDouble() - 0.5)),
                    Feature2 = (float)(rng.Next(10) * (rng.NextDouble() - 0.5)),
                };

                // Create a noisy label.
                data.Label = (float)(bias + weight1 * data.Feature1 + weight2 *
                    data.Feature2 + rng.NextDouble() - 0.5);
                yield return data;
            }
        }
    }
}

Comentarios

La importancia de las características de permutación (PFI) es una técnica para determinar la importancia global de las características en un modelo de aprendizaje automático entrenado. PFI es una técnica sencilla pero poderosa motivado por Breiman en su artículo sobre bosque aleatorio, sección 10 (Breiman. "Bosques aleatorios". Machine Learning, 2001). La ventaja del método PFI es que es independiente del modelo ( funciona con cualquier modelo que se pueda evaluar) y puede usar cualquier conjunto de datos, no solo el conjunto de entrenamiento, para calcular las métricas de importancia de las características.

PFI funciona tomando un conjunto de datos etiquetado, eligiendo una característica y permutando los valores de esa característica en todos los ejemplos, de modo que cada ejemplo ahora tenga un valor aleatorio para la característica y los valores originales de todas las demás características. La métrica de evaluación (por ejemplo, R cuadrado) se calcula para este conjunto de datos modificado y se calcula el cambio en la métrica de evaluación del conjunto de datos original. Cuanto mayor sea el cambio en la métrica de evaluación, más importante será la característica para el modelo. PFI funciona realizando este análisis de permutación en todas las características de un modelo, una después de otra.

En esta implementación, PFI calcula el cambio en todas las métricas de evaluación de regresión posibles para cada característica y se devuelve un ImmutableArray de RegressionMetrics objetos. Consulte el ejemplo siguiente para ver un ejemplo de cómo trabajar con estos resultados para analizar la importancia de la característica de un modelo.

Se aplica a

PermutationFeatureImportance<TModel>(RankingCatalog, ISingleFeaturePredictionTransformer<TModel>, IDataView, String, String, Boolean, Nullable<Int32>, Int32)

Importancia de la característica de permutación (PFI) para la clasificación.

public static System.Collections.Immutable.ImmutableArray<Microsoft.ML.Data.RankingMetricsStatistics> PermutationFeatureImportance<TModel> (this Microsoft.ML.RankingCatalog catalog, Microsoft.ML.ISingleFeaturePredictionTransformer<TModel> predictionTransformer, Microsoft.ML.IDataView data, string labelColumnName = "Label", string rowGroupColumnName = "GroupId", bool useFeatureWeightFilter = false, int? numberOfExamplesToUse = default, int permutationCount = 1) where TModel : class;
static member PermutationFeatureImportance : Microsoft.ML.RankingCatalog * Microsoft.ML.ISingleFeaturePredictionTransformer<'Model (requires 'Model : null)> * Microsoft.ML.IDataView * string * string * bool * Nullable<int> * int -> System.Collections.Immutable.ImmutableArray<Microsoft.ML.Data.RankingMetricsStatistics> (requires 'Model : null)
<Extension()>
Public Function PermutationFeatureImportance(Of TModel As Class) (catalog As RankingCatalog, predictionTransformer As ISingleFeaturePredictionTransformer(Of TModel), data As IDataView, Optional labelColumnName As String = "Label", Optional rowGroupColumnName As String = "GroupId", Optional useFeatureWeightFilter As Boolean = false, Optional numberOfExamplesToUse As Nullable(Of Integer) = Nothing, Optional permutationCount As Integer = 1) As ImmutableArray(Of RankingMetricsStatistics)

Parámetros de tipo

TModel

Parámetros

catalog
RankingCatalog

Catálogo de clasificación.

predictionTransformer
ISingleFeaturePredictionTransformer<TModel>

Modelo en el que se va a evaluar la importancia de las características.

data
IDataView

Conjunto de datos de evaluación.

labelColumnName
String

Nombre de columna de etiqueta. Los datos de columna deben ser Single o KeyDataViewType.

rowGroupColumnName
String

Nombre de columna GroupId

useFeatureWeightFilter
Boolean

Use el peso de las características para filtrar previamente las características.

numberOfExamplesToUse
Nullable<Int32>

Limite el número de ejemplos en los que evaluar. significa que se usarán hasta ~2 ejemplos de bln.

permutationCount
Int32

Número de permutaciones que se van a realizar.

Devoluciones

Matriz de "contribuciones" por característica a la puntuación.

Ejemplos

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;

namespace Samples.Dynamic.Trainers.Ranking
{
    public static class PermutationFeatureImportance
    {
        public static void Example()
        {
            // Create a new context for ML.NET operations. It can be used for
            // exception tracking and logging, as a catalog of available operations
            // and as the source of randomness.
            var mlContext = new MLContext(seed: 1);

            // Create sample data.
            var samples = GenerateData();

            // Load the sample data as an IDataView.
            var data = mlContext.Data.LoadFromEnumerable(samples);

            // Define a training pipeline that concatenates features into a vector,
            // normalizes them, and then trains a linear model.
            var featureColumns = new string[] { nameof(Data.Feature1), nameof(
                Data.Feature2) };
            var pipeline = mlContext.Transforms.Concatenate("Features",
                featureColumns)
                    .Append(mlContext.Transforms.Conversion.MapValueToKey("Label"))
                    .Append(mlContext.Transforms.Conversion.MapValueToKey(
                        "GroupId"))
                    .Append(mlContext.Transforms.NormalizeMinMax("Features"))
                    .Append(mlContext.Ranking.Trainers.FastTree());

            // Fit the pipeline to the data.
            var model = pipeline.Fit(data);

            // Transform the dataset.
            var transformedData = model.Transform(data);

            // Extract the predictor.
            var linearPredictor = model.LastTransformer;

            // Compute the permutation metrics for the linear model using the
            // normalized data.
            var permutationMetrics = mlContext.Ranking.PermutationFeatureImportance(
                linearPredictor, transformedData, permutationCount: 30);

            // Now let's look at which features are most important to the model
            // overall. Get the feature indices sorted by their impact on NDCG@1.
            var sortedIndices = permutationMetrics.Select((metrics, index) => new
            {
                index,
                metrics.NormalizedDiscountedCumulativeGains
            })
                .OrderByDescending(feature => Math.Abs(
                    feature.NormalizedDiscountedCumulativeGains[0].Mean))

                .Select(feature => feature.index);

            Console.WriteLine("Feature\tChange in NDCG@1\t95% Confidence in the" +
                "Mean Change in NDCG@1");
            var ndcg = permutationMetrics.Select(
                x => x.NormalizedDiscountedCumulativeGains).ToArray();
            foreach (int i in sortedIndices)
            {
                Console.WriteLine("{0}\t{1:G4}\t{2:G4}",
                    featureColumns[i],
                    ndcg[i][0].Mean,
                    1.96 * ndcg[i][0].StandardError);
            }

            // Expected output:
            //  Feature     Change in NDCG@1    95% Confidence in the Mean Change in NDCG@1
            //  Feature2     -0.2421            0.001748
            //  Feature1     -0.0513            0.001184
        }

        private class Data
        {
            public float Label { get; set; }

            public int GroupId { get; set; }

            public float Feature1 { get; set; }

            public float Feature2 { get; set; }
        }

        /// <summary>
        /// Generate an enumerable of Data objects, creating the label as a simple
        /// linear combination of the features.
        /// </summary>
        /// 
        /// <param name="nExamples">The number of examples.</param>
        /// 
        /// <param name="bias">The bias, or offset, in the calculation of the label.
        /// </param>
        /// 
        /// <param name="weight1">The weight to multiply the first feature with to
        /// compute the label.</param>
        /// 
        /// <param name="weight2">The weight to multiply the second feature with to
        /// compute the label.</param>
        /// 
        /// <param name="seed">The seed for generating feature values and label
        /// noise.</param>
        /// 
        /// <returns>An enumerable of Data objects.</returns>
        private static IEnumerable<Data> GenerateData(int nExamples = 10000,
            double bias = 0, double weight1 = 1, double weight2 = 2, int seed = 1,
                int groupSize = 5)
        {
            var rng = new Random(seed);
            var max = bias + 4.5 * weight1 + 4.5 * weight2 + 0.5;
            for (int i = 0; i < nExamples; i++)
            {
                var data = new Data
                {
                    GroupId = i / groupSize,
                    Feature1 = (float)(rng.Next(10) * (rng.NextDouble() - 0.5)),
                    Feature2 = (float)(rng.Next(10) * (rng.NextDouble() - 0.5)),
                };

                // Create a noisy label.
                var value = (float)(bias + weight1 * data.Feature1 + weight2 *
                    data.Feature2 + rng.NextDouble() - 0.5);
                if (value < max / 3)
                    data.Label = 0;
                else if (value < 2 * max / 3)
                    data.Label = 1;
                else
                    data.Label = 2;
                yield return data;
            }
        }
    }
}

Comentarios

La importancia de las características de permutación (PFI) es una técnica para determinar la importancia global de las características en un modelo de aprendizaje automático entrenado. PFI es una técnica sencilla pero poderosa motivado por Breiman en su artículo sobre bosque aleatorio, sección 10 (Breiman. "Bosques aleatorios". Machine Learning, 2001). La ventaja del método PFI es que es independiente del modelo ( funciona con cualquier modelo que se pueda evaluar) y puede usar cualquier conjunto de datos, no solo el conjunto de entrenamiento, para calcular las métricas de importancia de las características.

PFI funciona tomando un conjunto de datos etiquetado, eligiendo una característica y permutando los valores de esa característica en todos los ejemplos, de modo que cada ejemplo ahora tenga un valor aleatorio para la característica y los valores originales de todas las demás características. La métrica de evaluación (por ejemplo, NDCG) se calcula para este conjunto de datos modificado y se calcula el cambio en la métrica de evaluación del conjunto de datos original. Cuanto mayor sea el cambio en la métrica de evaluación, más importante será la característica para el modelo. PFI funciona realizando este análisis de permutación en todas las características de un modelo, una después de otra.

En esta implementación, PFI calcula el cambio en todas las métricas de evaluación de clasificación posibles para cada característica y se devuelve un ImmutableArray de RankingMetrics objetos. Consulte el ejemplo siguiente para ver un ejemplo de cómo trabajar con estos resultados para analizar la importancia de la característica de un modelo.

Se aplica a