En este artículo se muestra cómo usar un diálogo de aptitud dentro de un consumidor de aptitudes.
El diálogo de capacidad expone las actividades del bot primario al bot de capacidad y devuelve las respuestas de la capacidad al usuario.
El bot de aptitud al que tiene acceso este consumidor puede controlar tanto las actividades de mensaje como las actividades de evento.
Para ver un ejemplo de un manifiesto de aptitud e información sobre cómo implementar la aptitud, consulte cómo usar diálogos dentro de una aptitud.
Los SDK de JavaScript, C# y Python de Bot Framework seguirán siendo compatibles, pero el SDK de Java se va a retirar con la compatibilidad final a largo plazo que finaliza en noviembre de 2023.
Los bots existentes creados con el SDK de Java seguirán funcionando.
El ejemplo skills skillDialog incluye proyectos para dos bots:
El bot raíz del diálogo, que utiliza una clase de diálogo de aptitud para consumir una aptitud.
El bot de aptitud de diálogo, que utiliza un diálogo para controlar las actividades que provienen de los consumidores de aptitudes.
Este artículo se centra en el uso de una clase de diálogo de aptitud en un bot raíz para administrar la aptitud, enviar actividades de mensajes y eventos y cancelar la aptitud.
Para los bots implementados, la autenticación entre bots requiere que cada bot participante tenga una identidad válida.
Sin embargo, puede probar las aptitudes y los consumidores de aptitudes localmente con Bot Framework Emulator sin información de identidad.
Configuración de aplicaciones
Opcionalmente, agregue la información de identidad del bot raíz al archivo de configuración.
Agregue el punto de conexión del host de aptitudes (el servicio o la URL de devolución de llamada) al que las habilidades deben responder al consumidor de aptitudes.
Agregue una entrada para cada aptitud que usará el consumidor de aptitudes. Cada entrada incluye:
Un identificador que el consumidor de aptitudes usará para identificar cada aptitud.
Opcionalmente, la aplicación o el identificador de cliente del bot de aptitudes.
El punto de conexión de mensajería de la aptitud.
Nota:
Si la aptitud o el consumidor de aptitudes especifican una identidad, ambos deben especificarla.
Opcionalmente, agregue la información de identidad del bot raíz y agregue la aplicación o el identificador de cliente para el bot de aptitud de eco a la matriz BotFrameworkSkills.
Opcionalmente, agregue el identificador y la contraseña de la aplicación del bot raíz y agregue el identificador de aplicación para el bot de aptitud de eco a la matriz BotFrameworkSkills.
MicrosoftAppId=
MicrosoftAppPassword=
server.port=3978
SkillhostEndpoint=http://localhost:3978/api/skills/
#replicate these three entries, incrementing the index value [0] for each successive Skill that is added.
BotFrameworkSkills[0].Id=DialogSkillBot
BotFrameworkSkills[0].AppId=
BotFrameworkSkills[0].SkillEndpoint=http://localhost:39783/api/messages
dialog-root-bot/config.py
Opcionalmente, agregue el identificador y la contraseña de la aplicación del bot raíz y agregue el identificador de aplicación para el bot de aptitud de eco.
El diálogo principal del bot incluye un diálogo de aptitud para cada aptitud que este bot consume. El diálogo de aptitud administra la aptitud a través de los distintos objetos relacionados con las aptitudes, como el cliente de aptitudes y los objetos del generador de identificadores de conversación de aptitudes.
En el diálogo principal también se muestra cómo cancelar la aptitud (mediante el diálogo de aptitudes) en función de los datos proporcionados por el usuario.
La aptitud que este bot usa es compatible con un par de características diferentes. Puede reservar un vuelo o conocer el tiempo de una ciudad. Además, si recibe un mensaje fuera de estos contextos y se configura un reconocedor de LUIS, intenta interpretar la intención del usuario.
Reconocimiento del lenguaje conversacional (CLU), una característica del lenguaje de Azure AI, es la versión actualizada de LUIS.
Para obtener más información sobre la compatibilidad con reconocimiento del lenguaje en el SDK de Bot Framework, consulte Reconocimiento del lenguaje natural.
El manifiesto de aptitud (C#, JavaScript, Java, Python) describe las acciones que puede realizar la aptitud, sus parámetros de entrada y salida y sus puntos de conexión.
Cabe destacar que la aptitud puede controlar un evento "BookFlight" o "GetWeather". También puede controlar los mensajes.
El diálogo principal hereda de la clase del diálogo de componente. Para más información sobre los diálogos de componente, consulte cómo administrar la complejidad de los diálogos.
Inicializar el diálogo principal
El diálogo principal incluye diálogos (para administrar el flujo de conversación fuera de la aptitud) y un diálogo de aptitud (para administrar las aptitudes).
La cascada incluye los pasos siguientes, que se describen con más detalle en las secciones que figuran a continuación.
Pida al usuario que seleccione la aptitud que se va a usar. (El bot raíz consume una aptitud).
Pida al usuario que seleccione la acción que se va a usar para esa aptitud. (El bot de aptitud define tres acciones).
Inicie la aptitud elegida con una actividad inicial en función de la acción elegida.
Una vez completada la aptitud, muestre los resultados, si los hay. A continuación, reinicie la aptitud.
La clase MainDialog deriva de ComponentDialog.
Además del estado de la conversación, el diálogo necesita la identidad del bot raíz y las referencias al generador de identificadores de conversación de aptitudes, el cliente HTTP de aptitud y los objetos de configuración de aptitud.
El constructor del diálogo comprueba sus parámetros de entrada, agrega diálogos de aptitud, agrega una solicitud y diálogos en cascada para administrar el flujo de conversación fuera de la aptitud y crea un descriptor de acceso de propiedad para realizar el seguimiento de la aptitud activa, si existe.
El constructor llama a AddSkillDialogs, un método auxiliar, para crear un SkillDialog para cada aptitud que se incluye en el archivo de configuración, como se lee de este en un objeto SkillsConfiguration.
// Helper method that creates and adds SkillDialog instances for the configured skills.
private void AddSkillDialogs(ConversationState conversationState, SkillConversationIdFactoryBase conversationIdFactory, SkillsConfiguration skillsConfig, string botId)
{
foreach (var skillInfo in _skillsConfig.Skills.Values)
{
// Create the dialog options.
var skillDialogOptions = new SkillDialogOptions
{
BotId = botId,
ConversationIdFactory = conversationIdFactory,
SkillClient = _auth.CreateBotFrameworkClient(),
SkillHostEndpoint = skillsConfig.SkillHostEndpoint,
ConversationState = conversationState,
Skill = skillInfo
};
// Add a SkillDialog for the selected skill.
AddDialog(new SkillDialog(skillDialogOptions, skillInfo.Id));
}
}
dialogRootBot/dialogs/mainDialog.js
La clase MainDialog deriva de ComponentDialog.
Además del estado de la conversación, el diálogo necesita la identidad del bot raíz y las referencias al generador de identificadores de conversación de aptitudes, el cliente HTTP de aptitud y los objetos de configuración de aptitud. El código recupera la identidad del bot a partir del entorno del usuario.
El constructor del diálogo comprueba sus parámetros de entrada, agrega diálogos de aptitud, agrega una solicitud y diálogos en cascada para administrar el flujo de conversación fuera de la aptitud y crea un descriptor de acceso de propiedad para realizar el seguimiento de la aptitud activa, si existe.
El constructor llama a addSkillDialogs, un método auxiliar, para crear un SkillDialog para cada aptitud que se incluye en el archivo de configuración, como se lee de este en un objeto SkillsConfiguration.
La clase MainDialog deriva de ComponentDialog.
Además del estado de la conversación, el diálogo necesita el identificador de la aplicación del bot raíz y las referencias al generador de identificadores de conversación de aptitudes, el cliente HTTP de aptitud y los objetos de configuración de aptitud.
El constructor del diálogo comprueba sus parámetros de entrada, agrega diálogos de aptitud, agrega una solicitud y diálogos en cascada para administrar el flujo de conversación fuera de la aptitud y crea un descriptor de acceso de propiedad para realizar el seguimiento de la aptitud activa, si existe.
El constructor llama a addSkillDialogs, un método auxiliar, para crear un SkillDialog para cada aptitud que se incluye en el archivo de configuración, como se lee de este en un objeto SkillsConfiguration.
private void addSkillDialogs(
ConversationState conversationState,
SkillConversationIdFactoryBase conversationIdFactory,
SkillHttpClient skillClient,
SkillsConfiguration skillsConfig,
String botId
) {
for (BotFrameworkSkill skillInfo : _skillsConfig.getSkills().values()) {
// Create the dialog options.
SkillDialogOptions skillDialogOptions = new SkillDialogOptions();
skillDialogOptions.setBotId(botId);
skillDialogOptions.setConversationIdFactory(conversationIdFactory);
skillDialogOptions.setSkillClient(skillClient);
skillDialogOptions.setSkillHostEndpoint(skillsConfig.getSkillHostEndpoint());
skillDialogOptions.setConversationState(conversationState);
skillDialogOptions.setSkill(skillInfo);
// Add a SkillDialog for the selected skill.
addDialog(new SkillDialog(skillDialogOptions, skillInfo.getId()));
}
}
dialog-root-bot/dialogs/main_dialog.py
La clase MainDialog deriva de ComponentDialog.
Además del estado de la conversación, el diálogo necesita el identificador de la aplicación del bot raíz y las referencias al generador de identificadores de conversación de aptitudes, el cliente HTTP de aptitud y los objetos de configuración de aptitud.
El constructor del diálogo comprueba sus parámetros de entrada, agrega diálogos de aptitud, agrega una solicitud y diálogos en cascada para administrar el flujo de conversación fuera de la aptitud y crea un descriptor de acceso de propiedad para realizar el seguimiento de la aptitud activa, si existe.
El constructor llama a AddSkillDialogs, un método auxiliar, para crear un SkillDialog para cada aptitud que se incluye en el archivo de configuración, como se lee de este en un objeto SkillConfiguration.
def _add_skill_dialogs(
self,
conversation_state: ConversationState,
conversation_id_factory: ConversationIdFactoryBase,
skill_client: SkillHttpClient,
skills_config: SkillConfiguration,
bot_id: str,
):
"""
Helper method that creates and adds SkillDialog instances for the configured skills.
"""
for _, skill_info in skills_config.SKILLS.items():
# Create the dialog options.
skill_dialog_options = SkillDialogOptions(
bot_id=bot_id,
conversation_id_factory=conversation_id_factory,
skill_client=skill_client,
skill_host_endpoint=skills_config.SKILL_HOST_ENDPOINT,
conversation_state=conversation_state,
skill=skill_info,
)
# Add a SkillDialog for the selected skill.
self.add_dialog(SkillDialog(skill_dialog_options, skill_info.id))
Selección de una aptitud
En el primer paso, el diálogo principal solicita al usuario a qué aptitud le gustaría llamar y utiliza el mensaje de opción "SkillPrompt" para obtener la respuesta. (Este bot solo define una aptitud).
// Render a prompt to select the skill to call.
private async Task<DialogTurnResult> SelectSkillStepAsync(WaterfallStepContext stepContext, CancellationToken cancellationToken)
{
// Create the PromptOptions from the skill configuration which contain the list of configured skills.
var messageText = stepContext.Options?.ToString() ?? "What skill would you like to call?";
var repromptMessageText = "That was not a valid choice, please select a valid skill.";
var options = new PromptOptions
{
Prompt = MessageFactory.Text(messageText, messageText, InputHints.ExpectingInput),
RetryPrompt = MessageFactory.Text(repromptMessageText, repromptMessageText, InputHints.ExpectingInput),
Choices = _skillsConfig.Skills.Select(skill => new Choice(skill.Value.Id)).ToList()
};
// Prompt the user to select a skill.
return await stepContext.PromptAsync("SkillPrompt", options, cancellationToken);
}
dialogRootBot/dialogs/mainDialog.js
/**
* Render a prompt to select the skill to call.
*/
async selectSkillStep(stepContext) {
// Create the PromptOptions from the skill configuration which contains the list of configured skills.
const messageText = stepContext.options && stepContext.options.text ? stepContext.options.text : 'What skill would you like to call?';
const repromptMessageText = 'That was not a valid choice, please select a valid skill.';
const options = {
prompt: MessageFactory.text(messageText, messageText, InputHints.ExpectingInput),
retryPrompt: MessageFactory.text(repromptMessageText, repromptMessageText, InputHints.ExpectingInput),
choices: Object.keys(this.skillsConfig.skills)
};
// Prompt the user to select a skill.
return await stepContext.prompt(SKILL_PROMPT, options);
}
DialogRootBot\Dialogs\MainDialog.java
public CompletableFuture<DialogTurnResult> selectSkillStep(WaterfallStepContext stepContext) {
String messageText = "What skill would you like to call?";
// Create the PromptOptions from the skill configuration which contain the list
// of configured skills.
if (stepContext.getOptions() != null) {
messageText = stepContext.getOptions().toString();
}
String repromptMessageText = "That was not a valid choice, please select a valid skill.";
PromptOptions options = new PromptOptions();
options.setPrompt(MessageFactory.text(messageText, messageText, InputHints.EXPECTING_INPUT));
options
.setRetryPrompt(MessageFactory.text(repromptMessageText, repromptMessageText, InputHints.EXPECTING_INPUT));
List<Choice> choicesList = new ArrayList<Choice>();
for (BotFrameworkSkill skill : _skillsConfig.getSkills().values()) {
choicesList.add(new Choice(skill.getId()));
}
options.setChoices(choicesList);
// Prompt the user to select a skill.
return stepContext.prompt("SkillPrompt", options);
}
dialog-root-bot/dialogs/main_dialog.py
async def _select_skill_action_step(
self, step_context: WaterfallStepContext
) -> DialogTurnResult:
"""
Render a prompt to select the action for the skill.
"""
# Get the skill info based on the selected skill.
selected_skill_id = step_context.result.value
selected_skill = self._skills_config.SKILLS.get(selected_skill_id)
# Remember the skill selected by the user.
step_context.values[self._selected_skill_key] = selected_skill
# Create the PromptOptions with the actions supported by the selected skill.
message_text = (
f"Select an action # to send to **{selected_skill.id}** or just type in a message "
f"and it will be forwarded to the skill"
)
options = PromptOptions(
prompt=MessageFactory.text(
message_text, message_text, InputHints.expecting_input
),
choices=self._get_skill_actions(selected_skill),
)
# Prompt the user to select a skill action.
return await step_context.prompt("SkillActionPrompt", options)
Selección de una acción de aptitud
En el paso siguiente, el diálogo principal:
Guarda la información sobre la aptitud que el usuario seleccionó.
Solicita al usuario qué acción de aptitud le gustaría usar y utiliza el mensaje de opción "SkillActionPrompt" para obtener la respuesta.
Utiliza un método auxiliar para obtener una lista de acciones entre las que elegir.
El validador de solicitud asociado a esta solicitud enviará de forma predeterminada un mensaje a la aptitud si la entrada del usuario no coincide con una de las opciones.
Las opciones incluidas en este bot ayudan a probar las acciones definidas para esta aptitud. Lo más habitual es que lea las opciones del manifiesto de la aptitud y presente opciones al usuario en función de esa lista.
// Render a prompt to select the action for the skill.
private async Task<DialogTurnResult> SelectSkillActionStepAsync(WaterfallStepContext stepContext, CancellationToken cancellationToken)
{
// Get the skill info based on the selected skill.
var selectedSkillId = ((FoundChoice)stepContext.Result).Value;
var selectedSkill = _skillsConfig.Skills.FirstOrDefault(s => s.Value.Id == selectedSkillId).Value;
// Remember the skill selected by the user.
stepContext.Values[_selectedSkillKey] = selectedSkill;
// Create the PromptOptions with the actions supported by the selected skill.
var messageText = $"Select an action # to send to **{selectedSkill.Id}** or just type in a message and it will be forwarded to the skill";
var options = new PromptOptions
{
Prompt = MessageFactory.Text(messageText, messageText, InputHints.ExpectingInput),
Choices = GetSkillActions(selectedSkill)
};
// Prompt the user to select a skill action.
return await stepContext.PromptAsync("SkillActionPrompt", options, cancellationToken);
}
// Helper method to create Choice elements for the actions supported by the skill.
private IList<Choice> GetSkillActions(BotFrameworkSkill skill)
{
// Note: the bot would probably render this by reading the skill manifest.
// We are just using hardcoded skill actions here for simplicity.
var choices = new List<Choice>();
switch (skill.Id)
{
case "DialogSkillBot":
choices.Add(new Choice(SkillActionBookFlight));
choices.Add(new Choice(SkillActionBookFlightWithInputParameters));
choices.Add(new Choice(SkillActionGetWeather));
break;
}
return choices;
}
// This validator defaults to Message if the user doesn't select an existing option.
private Task<bool> SkillActionPromptValidator(PromptValidatorContext<FoundChoice> promptContext, CancellationToken cancellationToken)
{
if (!promptContext.Recognized.Succeeded)
{
// Assume the user wants to send a message if an item in the list is not selected.
promptContext.Recognized.Value = new FoundChoice { Value = SkillActionMessage };
}
return Task.FromResult(true);
}
dialogRootBot/dialogs/mainDialog.js
/**
* Render a prompt to select the action for the skill.
*/
async selectSkillActionStep(stepContext) {
// Get the skill info based on the selected skill.
const selectedSkillId = stepContext.result.value;
const selectedSkill = this.skillsConfig.skills[selectedSkillId];
// Remember the skill selected by the user.
stepContext.values[this.selectedSkillKey] = selectedSkill;
// Create the PromptOptions with the actions supported by the selected skill.
const messageText = `Select an action # to send to **${ selectedSkill.id }** or just type in a message and it will be forwarded to the skill`;
const options = {
prompt: MessageFactory.text(messageText, messageText, InputHints.ExpectingInput),
choices: this.getSkillActions(selectedSkill)
};
// Prompt the user to select a skill action.
return await stepContext.prompt(SKILL_ACTION_PROMPT, options);
}
/**
* Helper method to create Choice elements for the actions supported by the skill.
*/
getSkillActions(skill) {
// Note: The bot would probably render this by reading the skill manifest.
// We are just using hardcoded skill actions here for simplicity.
const choices = [];
switch (skill.id) {
case 'DialogSkillBot':
choices.push({ value: SKILL_ACTION_BOOK_FLIGHT });
choices.push({ value: SKILL_ACTION_BOOK_FLIGHT_WITH_INPUT_PARAMETERS });
choices.push({ value: SKILL_ACTION_GET_WEATHER });
break;
}
return choices;
}
/**
* This validator defaults to Message if the user doesn't select an existing option.
*/
async skillActionPromptValidator(promptContext) {
if (!promptContext.recognized.succeeded) {
promptContext.recognized.value = { value: SKILL_ACTION_MESSAGE };
}
return true;
}
DialogRootBot\Dialogs\MainDialog.java
public CompletableFuture<DialogTurnResult> selectSkillActionStep(WaterfallStepContext stepContext) {
// Get the skill info super. on the selected skill.
String selectedSkillId = ((FoundChoice) stepContext.getResult()).getValue();
BotFrameworkSkill selectedSkill = _skillsConfig.getSkills()
.values()
.stream()
.filter(x -> x.getId().equals(selectedSkillId))
.findFirst()
.get();
// Remember the skill selected by the user.
stepContext.getValues().put(_selectedSkillKey, selectedSkill);
// Create the PromptOptions with the actions supported by the selected skill.
String messageText = String.format(
"Select an action # to send to **%n** or just type in a " + "message and it will be forwarded to the skill",
selectedSkill.getId()
);
PromptOptions options = new PromptOptions();
options.setPrompt(MessageFactory.text(messageText, messageText, InputHints.EXPECTING_INPUT));
options.setChoices(getSkillActions(selectedSkill));
// Prompt the user to select a skill action.
return stepContext.prompt("SkillActionPrompt", options);
}
private List<Choice> getSkillActions(BotFrameworkSkill skill) {
// Note: the bot would probably render this by reading the skill manifest.
// We are just using hardcoded skill actions here for simplicity.
List<Choice> choices = new ArrayList<Choice>();
switch (skill.getId()) {
case "DialogSkillBot":
choices.add(new Choice(SkillActionBookFlight));
choices.add(new Choice(SkillActionBookFlightWithInputParameters));
choices.add(new Choice(SkillActionGetWeather));
break;
}
return choices;
}
addDialog(new ChoicePrompt("SkillActionPrompt", (promptContext) -> {
if (!promptContext.getRecognized().getSucceeded()) {
// Assume the user wants to send a message if an item in the list is not
// selected.
FoundChoice foundChoice = new FoundChoice();
foundChoice.setValue(SkillActionMessage);
promptContext.getRecognized().setValue(foundChoice);
}
return CompletableFuture.completedFuture(true);
}, ""));
dialog-root-bot/dialogs/main_dialog.py
async def _select_skill_action_step(
self, step_context: WaterfallStepContext
) -> DialogTurnResult:
"""
Render a prompt to select the action for the skill.
"""
# Get the skill info based on the selected skill.
selected_skill_id = step_context.result.value
selected_skill = self._skills_config.SKILLS.get(selected_skill_id)
# Remember the skill selected by the user.
step_context.values[self._selected_skill_key] = selected_skill
# Create the PromptOptions with the actions supported by the selected skill.
message_text = (
f"Select an action # to send to **{selected_skill.id}** or just type in a message "
f"and it will be forwarded to the skill"
)
options = PromptOptions(
prompt=MessageFactory.text(
message_text, message_text, InputHints.expecting_input
),
choices=self._get_skill_actions(selected_skill),
)
# Prompt the user to select a skill action.
return await step_context.prompt("SkillActionPrompt", options)
def _get_skill_actions(self, skill: BotFrameworkSkill) -> List[Choice]:
"""
Helper method to create Choice elements for the actions supported by the skill.
"""
# Note: the bot would probably render this by reading the skill manifest.
# We are just using hardcoded skill actions here for simplicity.
choices = []
if skill.id == "DialogSkillBot":
choices.append(Choice(self._skill_action_book_flight))
choices.append(Choice(self._skill_action_book_flight_with_input_parameters))
choices.append(Choice(self._skill_action_get_weather))
return choices
async def _skill_action_prompt_validator(
self, prompt_context: PromptValidatorContext
) -> bool:
"""
This validator defaults to Message if the user doesn't select an existing option.
"""
if not prompt_context.recognized.succeeded:
# Assume the user wants to send a message if an item in the list is not selected.
prompt_context.recognized.value = FoundChoice(
self._skill_action_message, None, None
)
return True
Inicio de una aptitud
En el paso siguiente, el diálogo principal:
Recupera información sobre la aptitud y la actividad de aptitud que el usuario ha seleccionado.
Utiliza un método auxiliar para crear la actividad que se va a enviar inicialmente a la aptitud.
Crea las opciones de diálogo con las que se inicia el diálogo de aptitud. Esto incluye la actividad inicial que se va a enviar.
Guarda el estado antes de llamar a la aptitud. (Esto es necesario, ya que la respuesta de la aptitud puede llegar a una instancia diferente del consumidor de aptitud).
Comienza el diálogo de aptitud, pasando el identificador de aptitud para llamar y las opciones con las que se llama.
// Starts the SkillDialog based on the user's selections.
private async Task<DialogTurnResult> CallSkillActionStepAsync(WaterfallStepContext stepContext, CancellationToken cancellationToken)
{
var selectedSkill = (BotFrameworkSkill)stepContext.Values[_selectedSkillKey];
Activity skillActivity;
switch (selectedSkill.Id)
{
case "DialogSkillBot":
skillActivity = CreateDialogSkillBotActivity(((FoundChoice)stepContext.Result).Value, stepContext.Context);
break;
// We can add other case statements here if we support more than one skill.
default:
throw new Exception($"Unknown target skill id: {selectedSkill.Id}.");
}
// Create the BeginSkillDialogOptions and assign the activity to send.
var skillDialogArgs = new BeginSkillDialogOptions { Activity = skillActivity };
// Save active skill in state.
await _activeSkillProperty.SetAsync(stepContext.Context, selectedSkill, cancellationToken);
// Start the skillDialog instance with the arguments.
return await stepContext.BeginDialogAsync(selectedSkill.Id, skillDialogArgs, cancellationToken);
}
dialogRootBot/dialogs/mainDialog.js
/**
* Starts the SkillDialog based on the user's selections.
*/
async callSkillActionStep(stepContext) {
const selectedSkill = stepContext.values[this.selectedSkillKey];
let skillActivity;
switch (selectedSkill.id) {
case 'DialogSkillBot':
skillActivity = this.createDialogSkillBotActivity(stepContext.result.value, stepContext.context);
break;
// We can add other case statements here if we support more than one skill.
default:
throw new Error(`Unknown target skill id: ${ selectedSkill.id }`);
}
// Create the BeginSkillDialogOptions and assign the activity to send.
const skillDialogArgs = { activity: skillActivity };
// Save active skill in state.
await this.activeSkillProperty.set(stepContext.context, selectedSkill);
// Start the skillDialog instance with the arguments.
return await stepContext.beginDialog(selectedSkill.id, skillDialogArgs);
}
DialogRootBot\Dialogs\MainDialog.java
public CompletableFuture<DialogTurnResult> callSkillActionStep(WaterfallStepContext stepContext) {
BotFrameworkSkill selectedSkill = (BotFrameworkSkill) stepContext.getValues().get(_selectedSkillKey);
Activity skillActivity;
switch (selectedSkill.getId()) {
case "DialogSkillBot":
skillActivity = createDialogSkillBotActivity(
((FoundChoice) stepContext.getResult()).getValue(),
stepContext.getContext()
);
break;
// We can add other case statements here if we support more than one skill.
default:
throw new RuntimeException(String.format("Unknown target skill id: %s.", selectedSkill.getId()));
}
// Create the BeginSkillDialogOptions and assign the activity to send.
BeginSkillDialogOptions skillDialogArgs = new BeginSkillDialogOptions();
skillDialogArgs.setActivity(skillActivity);
// Save active skill in state.
activeSkillProperty.set(stepContext.getContext(), selectedSkill);
// Start the skillDialog instance with the arguments.
return stepContext.beginDialog(selectedSkill.getId(), skillDialogArgs);
}
dialog-root-bot/dialogs/main_dialog.py
async def _call_skill_action_step(
self, step_context: WaterfallStepContext
) -> DialogTurnResult:
"""
Starts the SkillDialog based on the user's selections.
"""
selected_skill: BotFrameworkSkill = step_context.values[
self._selected_skill_key
]
if selected_skill.id == "DialogSkillBot":
skill_activity = self._create_dialog_skill_bot_activity(
step_context.result.value, step_context.context
)
else:
raise Exception(f"Unknown target skill id: {selected_skill.id}.")
# Create the BeginSkillDialogOptions and assign the activity to send.
skill_dialog_args = BeginSkillDialogOptions(skill_activity)
# Save active skill in state.
await self._active_skill_property.set(step_context.context, selected_skill)
# Start the skillDialog instance with the arguments.
return await step_context.begin_dialog(selected_skill.id, skill_dialog_args)
Resumen del resultado de la aptitud
En el último paso, el diálogo principal:
Si la aptitud devolvió un valor, muestra el resultado al usuario.
Borra la aptitud activa del estado del diálogo.
Quita la propiedad de la aptitud activa del estado de conversación.
// The SkillDialog has ended, render the results (if any) and restart MainDialog.
private async Task<DialogTurnResult> FinalStepAsync(WaterfallStepContext stepContext, CancellationToken cancellationToken)
{
var activeSkill = await _activeSkillProperty.GetAsync(stepContext.Context, () => null, cancellationToken);
// Check if the skill returned any results and display them.
if (stepContext.Result != null)
{
var message = $"Skill \"{activeSkill.Id}\" invocation complete.";
message += $" Result: {JsonConvert.SerializeObject(stepContext.Result)}";
await stepContext.Context.SendActivityAsync(MessageFactory.Text(message, message, inputHint: InputHints.IgnoringInput), cancellationToken: cancellationToken);
}
// Clear the skill selected by the user.
stepContext.Values[_selectedSkillKey] = null;
// Clear active skill in state.
await _activeSkillProperty.DeleteAsync(stepContext.Context, cancellationToken);
// Restart the main dialog with a different message the second time around.
return await stepContext.ReplaceDialogAsync(InitialDialogId, $"Done with \"{activeSkill.Id}\". \n\n What skill would you like to call?", cancellationToken);
}
dialogRootBot/dialogs/mainDialog.js
/**
* The SkillDialog has ended, render the results (if any) and restart MainDialog.
*/
async finalStep(stepContext) {
const activeSkill = await this.activeSkillProperty.get(stepContext.context, () => null);
// Check if the skill returned any results and display them.
if (stepContext.result != null) {
let message = `Skill "${ activeSkill.id }" invocation complete.`;
message += `\nResult: ${ JSON.stringify(stepContext.result, null, 2) }`;
await stepContext.context.sendActivity(message, message, InputHints.IgnoringInput);
}
// Clear the skill selected by the user.
stepContext.values[this.selectedSkillKey] = null;
// Clear active skill in state.
await this.activeSkillProperty.delete(stepContext.context);
// Restart the main dialog with a different message the second time around.
return await stepContext.replaceDialog(this.initialDialogId, { text: `Done with "${ activeSkill.id }". \n\n What skill would you like to call?` });
}
DialogRootBot\Dialogs\MainDialog.java
public CompletableFuture<DialogTurnResult> finalStep(WaterfallStepContext stepContext) {
return activeSkillProperty.get(stepContext.getContext(), () -> null).thenCompose(activeSkill -> {
if (stepContext.getResult() != null) {
String jsonResult = "";
try {
jsonResult =
new JacksonAdapter().serialize(stepContext.getResult()).replace("{", "").replace("}", "");
} catch (IOException e) {
e.printStackTrace();
}
String message =
String.format("Skill \"%s\" invocation complete. Result: %s", activeSkill.getId(), jsonResult);
stepContext.getContext().sendActivity(MessageFactory.text(message, message, InputHints.IGNORING_INPUT));
}
// Clear the skill selected by the user.
stepContext.getValues().put(_selectedSkillKey, null);
// Clear active skill in state.
activeSkillProperty.delete(stepContext.getContext());
// Restart the main dialog with a different message the second time around.
return stepContext.replaceDialog(
getInitialDialogId(),
String.format("Done with \"%s\". \n\n What skill would you like to call?", activeSkill.getId())
);
});
// Check if the skill returned any results and display them.
}
dialog-root-bot/dialogs/main_dialog.py
async def _final_step(self, step_context: WaterfallStepContext) -> DialogTurnResult:
"""
The SkillDialog has ended, render the results (if any) and restart MainDialog.
"""
active_skill = await self._active_skill_property.get(step_context.context)
if step_context.result:
message = f"Skill {active_skill.id} invocation complete."
message += f" Result: {step_context.result}"
await step_context.context.send_activity(
MessageFactory.text(message, input_hint=InputHints.ignoring_input)
)
# Clear the skill selected by the user.
step_context.values[self._selected_skill_key] = None
# Clear active skill in state.
await self._active_skill_property.delete(step_context.context)
# Restart the main dialog with a different message the second time around
return await step_context.replace_dialog(
self.initial_dialog_id,
f'Done with "{active_skill.id}". \n\n What skill would you like to call?',
)
Permiso para que el usuario cancele la aptitud
El diálogo principal invalida el comportamiento predeterminado del método on continue dialog para permitir al usuario cancelar la aptitud actual, si existe. Dentro del método:
Si hay una aptitud activa y el usuario envía un mensaje de anulación, cancela todos los diálogos y pone en cola el diálogo principal para reiniciar desde el principio.
A continuación, llama a la implementación base del método on continue dialog para continuar procesando el turno actual.
protected override async Task<DialogTurnResult> OnContinueDialogAsync(DialogContext innerDc, CancellationToken cancellationToken = default)
{
// This is an example on how to cancel a SkillDialog that is currently in progress from the parent bot.
var activeSkill = await _activeSkillProperty.GetAsync(innerDc.Context, () => null, cancellationToken);
var activity = innerDc.Context.Activity;
if (activeSkill != null && activity.Type == ActivityTypes.Message && activity.Text.Equals("abort", StringComparison.OrdinalIgnoreCase))
{
// Cancel all dialogs when the user says abort.
// The SkillDialog automatically sends an EndOfConversation message to the skill to let the
// skill know that it needs to end its current dialogs, too.
await innerDc.CancelAllDialogsAsync(cancellationToken);
return await innerDc.ReplaceDialogAsync(InitialDialogId, "Canceled! \n\n What skill would you like to call?", cancellationToken);
}
return await base.OnContinueDialogAsync(innerDc, cancellationToken);
}
dialogRootBot/dialogs/mainDialog.js
async onContinueDialog(innerDc) {
const activeSkill = await this.activeSkillProperty.get(innerDc.context, () => null);
const activity = innerDc.context.activity;
if (activeSkill != null && activity.type === ActivityTypes.Message && activity.text.toLowerCase() === 'abort') {
// Cancel all dialogs when the user says abort.
// The SkillDialog automatically sends an EndOfConversation message to the skill to let the
// skill know that it needs to end its current dialogs, too.
await innerDc.cancelAllDialogs();
return await innerDc.replaceDialog(this.initialDialogId, { text: 'Canceled! \n\n What skill would you like to call?' });
}
return await super.onContinueDialog(innerDc);
}
DialogRootBot\Dialogs\MainDialog.java
// Cancel all dialogs when the user says abort.
// The SkillDialog automatically sends an EndOfConversation message to the skill
// to let the
// skill know that it needs to end its current dialogs, too.
return innerDc.cancelAllDialogs()
.thenCompose(
result -> innerDc
.replaceDialog(getInitialDialogId(), "Canceled! \n\n What skill would you like to call?")
);
dialog-root-bot/dialogs/main_dialog.py
async def on_continue_dialog(self, inner_dc: DialogContext) -> DialogTurnResult:
# This is an example on how to cancel a SkillDialog that is currently in progress from the parent bot.
active_skill = await self._active_skill_property.get(inner_dc.context)
activity = inner_dc.context.activity
if (
active_skill
and activity.type == ActivityTypes.message
and "abort" in activity.text
):
# Cancel all dialogs when the user says abort.
# The SkillDialog automatically sends an EndOfConversation message to the skill to let the
# skill know that it needs to end its current dialogs, too.
await inner_dc.cancel_all_dialogs()
return await inner_dc.replace_dialog(self.initial_dialog_id)
return await super().on_continue_dialog(inner_dc)
Lógica del controlador de actividades
Dado que un diálogo principal controla la lógica de aptitudes para cada turno, el controlador de actividades se parece mucho a otros ejemplos de diálogo.
public override async Task OnTurnAsync(ITurnContext turnContext, CancellationToken cancellationToken = default)
{
if (turnContext.Activity.Type != ActivityTypes.ConversationUpdate)
{
// Run the Dialog with the Activity.
await _mainDialog.RunAsync(turnContext, _conversationState.CreateProperty<DialogState>("DialogState"), cancellationToken);
}
else
{
// Let the base class handle the activity.
await base.OnTurnAsync(turnContext, cancellationToken);
}
// Save any state changes that might have occurred during the turn.
await _conversationState.SaveChangesAsync(turnContext, false, cancellationToken);
}
dialogRootBot/bots/rootBot.js
class RootBot extends ActivityHandler {
constructor(conversationState, dialog) {
super();
if (!conversationState) throw new Error('[RootBot]: Missing parameter. conversationState is required');
if (!dialog) throw new Error('[RootBot]: Missing parameter. dialog is required');
this.conversationState = conversationState;
this.dialog = dialog;
this.onTurn(async (turnContext, next) => {
if (turnContext.activity.type !== ActivityTypes.ConversationUpdate) {
// Run the Dialog with the activity.
await runDialog(this.dialog, turnContext, this.conversationState.createProperty('DialogState'));
}
await next();
});
/**
* Override the ActivityHandler.run() method to save state changes after the bot logic completes.
*/
async run(context) {
await super.run(context);
// Save any state changes. The load happened during the execution of the Dialog.
await this.conversationState.saveChanges(context, false);
}
DialogRootBot\Bots\RootBot.java
public class RootBot<T extends Dialog> extends ActivityHandler {
public RootBot(ConversationState conversationState, T mainDialog) {
this.conversationState = conversationState;
this.mainDialog = mainDialog;
}
@Override
public CompletableFuture<Void> onTurn(TurnContext turnContext) {
return handleTurn(turnContext).thenCompose(result -> conversationState.saveChanges(turnContext, false));
}
private CompletableFuture<Void> handleTurn(TurnContext turnContext) {
if (!turnContext.getActivity().getType().equals(ActivityTypes.CONVERSATION_UPDATE)) {
// Run the Dialog with the Activity.
return Dialog.run(mainDialog, turnContext, conversationState.createProperty("DialogState"));
} else {
// Let the super.class handle the activity.
return super.onTurn(turnContext);
}
}
dialog-root-bot/bots/root_bot.py
class RootBot(ActivityHandler):
def __init__(
self, conversation_state: ConversationState, main_dialog: Dialog,
):
self._conversation_state = conversation_state
self._main_dialog = main_dialog
async def on_turn(self, turn_context: TurnContext):
if turn_context.activity.type != ActivityTypes.conversation_update:
# Run the Dialog with the Activity.
await DialogExtensions.run_dialog(
self._main_dialog,
turn_context,
self._conversation_state.create_property("DialogState"),
)
else:
# Let the base class handle the activity.
await super().on_turn(turn_context)
# Save any state changes that might have occurred during the turn.
await self._conversation_state.save_changes(turn_context)
Registro de servicios
Los servicios necesarios para usar un diálogo de aptitud son los mismos que los que se necesitan para un consumidor de aptitudes en general.
Vea cómo implementar un consumidor de aptitudes para obtener una explicación de los servicios necesarios.
Prueba del bot raíz
Puede probar el consumidor de aptitudes en el emulador como si fuera un bot normal; sin embargo, tiene que ejecutar los bots de aptitud y del consumidor de aptitudes al mismo tiempo. Vea cómo usar diálogos dentro de una aptitud para obtener más información sobre cómo configurar la aptitud.
Ejecute el bot de aptitud de diálogo y el bot raíz de diálogo localmente en su máquina. Si necesita instrucciones, consulte los ejemplos README de C#, JavaScript, Java y Python.
Use el emulador para probar el bot.
La primera vez que se une a la conversación, el bot muestra un mensaje de bienvenida y le pregunta a qué aptitud le gustaría llamar. El bot de aptitud de este ejemplo tiene solo una aptitud.
Seleccione DialogSkillBot.
A continuación, el bot le pide que elija una acción para la aptitud. Elija "BookFlight".
Responda a las solicitudes.
La aptitud se completa y el bot raíz muestra los detalles de la reserva antes de volver a solicitar la aptitud a la que le gustaría llamar.
Vuelva a seleccionar DialogSkillBot y "BookFlight".
Responda a la primera solicitud y escriba "abort" para interrumpir la aptitud.
El bot raíz cancela la aptitud y solicita la aptitud a la que le gustaría llamar.
Más sobre la depuración
Dado que se autentica el tráfico entre aptitudes y consumidores de aptitudes, hay pasos adicionales al depurar estos bots.
El consumidor de aptitudes y todas las aptitudes que consume, directa o indirectamente, deben ejecutarse.
Si los bots se ejecutan localmente y si alguno de los bots tiene un identificador de aplicación y una contraseña, todos los bots deben tener identificadores y contraseñas válidos.