¿Qué es el estimador de recursos de Azure Quantum?
El estimador de recursos de Azure Quantum es una herramienta de código abierto que permite calcular los recursos necesarios para ejecutar un programa cuántico en un equipo cuántico tolerante a errores.
El estimador de recursos calcula el número total de cúbits físicos y lógicos, el tiempo de ejecución y los detalles de las fórmulas y los valores usados para cada estimación. Con el estimador de recursos de Azure Quantum, puede comparar tecnologías de cúbits, esquemas de corrección de errores cuánticos y otras características de hardware para comprender cómo afectan a los recursos necesarios para ejecutar un programa cuántico.
Sugerencia
El estimador de recursos de Azure Quantum es gratuito y no requiere una cuenta de Azure.
¿Qué características hacen que el estimador de recursos sea único?
El estimador de recursos es una herramienta eficaz que implica todos los niveles de pila de computación cuántica. La pila de computación cuántica se puede dividir en tres niveles: el nivel de aplicación, la programación cuántica o el nivel de compilación, y el nivel de hardware o modelado.
El estimador de recursos permite personalizar los parámetros de cada nivel y analizar cómo afectan a los recursos generales necesarios para ejecutar un programa cuántico.
Personalización
El estimador de recursos tiene una API de extensibilidad para modelar cualquier arquitectura cuántica y modificar todas las suposiciones. Puede adaptar el estimador de recursos y especificar las características del sistema cuántico.
Puede usar parámetros cuánticos predefinidos y esquemas de corrección de errores cuánticos (QEC) o configurar opciones únicas en una amplia gama de características de la máquina. Para obtener más información, consulte Personalización de los target parámetros del estimador de recursos.
Parámetros Target | Describir el sistema |
---|---|
Modelo de cúbit físico | Por ejemplo, especifique el conjunto de instrucciones, el tiempo de medición de cúbits, las tasas de error o los tiempos de puerta. |
Esquema de corrección de errores cuánticos | Por ejemplo, especifique el número de cúbits físicos por cúbit lógico, el tiempo del ciclo lógico o el umbral de corrección de errores. |
Presupuesto de errores | Por ejemplo, especifique el presupuesto de errores para implementar cúbits lógicos, destilación de estados T y síntesis de las puertas de rotación. |
Unidades de destilación | Por ejemplo, especifique el número de estados T necesarios para el proceso de destilación, el número de estados T producidos como salida del proceso de destilación o la probabilidad de error del proceso de destilación. |
Restricciones | Por ejemplo, especifique el número máximo de cúbits físicos, el tiempo de ejecución máximo o el número máximo de copias de fábrica de T. |
Nota:
Con el estimador de recursos, puede modelar cualquier arquitectura cuántica. Por ejemplo, el inicio Alice & Bob usa el Estimador de recursos para evaluar su arquitectura, que usa cúbits cat y código de corrección de errores de repetición. Para obtener más información, consulte esta entrada en el blog de Q#
Flexibilidad
Puede traer su propio código y herramientas de compilación al Estimador de recursos. El estimador de recursos admite cualquier idioma que se traduzca a QIR, por ejemplo, Q# y Qiskit. Consulte Diferentes formas de ejecutar el estimador de recursos.
Procesamiento por lotes de varias estimaciones
El estimador de recursos permite calcular los recursos necesarios para ejecutar el mismo algoritmo cuántico para diferentes configuraciones de target parámetros y comparar los resultados. De este modo, puede comprender cómo afecta la arquitectura de cúbits, el esquema QEC y el resto de los target parámetros a los recursos generales.
Optimization
Puede reducir el tiempo de ejecución del estimador de recursos mediante la incorporación de algunas estimaciones en el costo total. Por ejemplo, si está trabajando con un programa grande, puede calcular y almacenar en caché el costo de las subrutinas, o si ya conoce las estimaciones de una operación , puede pasarlas al Estimador de recursos.
Visualización de recursos
Puede visualizar los inconvenientes entre el número de cúbits físicos y el tiempo de ejecución del algoritmo mediante el diagrama de tiempo espaciado, lo que le permite encontrar la combinación óptima de {número de cúbits, pares runtime}.
También puede inspeccionar la distribución de cúbits físicos usados para el algoritmo y las factorías de T mediante el diagrama de espacio.
Introducción al estimador de recursos
El estimador de recursos forma parte del Kit de desarrollo de Azure Quantum (QDK). Para empezar, consulte Ejecución de la primera estimación de recursos.
En la tabla siguiente se muestran diferentes escenarios de usuario y los artículos recomendados para empezar con el estimador de recursos.
Escenario de usuario | Si quiere... |
---|---|
Estoy desarrollando códigos QEC | Puede usar el estimador de recursos para personalizar los códigos QEC y comparar diferentes combinaciones de parámetros. Consulte Personalización de los esquemas de QEC. |
Estoy desarrollando algoritmos cuánticos | Al analizar el impacto de diferentes configuraciones de perfiles de hardware y software en los requisitos de recursos, puede obtener información sobre cómo el algoritmo cuántico puede funcionar en diferentes condiciones de hardware y error. Esta información puede ayudarle a optimizar el algoritmo para velocidades de error o hardware cuántico específicos. Consulte Ejecución de varias configuraciones de target parámetros. |
Quiero mejorar el rendimiento de los programas cuánticos | Para obtener información sobre cómo aprovechar la eficacia del estimador de recursos, consulte Ejecución de programas grandes y Uso de estimaciones conocidas. |
Me interesa la computación cuántica a gran escala | Puede usar el Estimador de recursos para analizar los recursos de los problemas reales que se espera que resuelvan los equipos cuánticos tolerantes a errores a gran escala. Consulte cómo en Estimación de recursos para la computación cuántica a gran escala. |
Estoy desarrollando criptografía segura para quantums | Puede usar el Estimador de recursos para comparar el rendimiento de diferentes algoritmos de cifrado, puntos fuertes de clave, tipos de cúbits y tasas de error, y su resistencia a los ataques cuánticos. Consulte Estimación de recursos y criptografía. |
Nota:
Si tiene algún problema al trabajar con el estimador de recursos, consulte la página Solución de problemas.
Estimación de recursos para la computación cuántica a gran escala
Si desea desarrollar algoritmos cuánticos para equipos cuánticos a gran escala, consulte el tutorial Estimación de los recursos de un problema de química cuántica.
Este tutorial representa un primer paso para integrar la estimación de recursos de soluciones cuánticas a problemas de estructura electrónica. Una de las aplicaciones más importantes de los equipos cuánticos escalados es resolver problemas de química cuántica. La simulación de sistemas mecánicos cuánticos complejos tiene el potencial de desbloquear avances en áreas como la captura de carbono, la inseguridad alimentaria y el diseño de mejores combustibles y materiales.
Por ejemplo, uno de los hamiltonianos usados en este tutorial, el nitrogenase_54orbital, describe la enzima nitrogenasa. Si podría simular con precisión cómo funciona esta enzima en un nivel cuántico, podría ayudarnos a comprender cómo producirla a escala. Podrías reemplazar el proceso muy intensivo de energía que se utiliza para producir suficiente fertilizante para alimentar el planeta. Esto tiene el potencial de reducir la huella de carbono mundial y también para ayudar a abordar las preocupaciones relativas a la inseguridad alimentaria en una población creciente.
¿Por qué es importante la estimación de recursos en el desarrollo de la computación cuántica?
Aunque los equipos cuánticos prometen resolver problemas científicos y comerciales importantes, lograr la viabilidad comercial requerirá equipos cuánticos a gran escala y tolerantes a errores que tengan un gran número de cúbits en superposición y tasas de errores físicos por debajo de un umbral determinado. La viabilidad comercial y científica requerirá también esquemas de QEC para lograr la tolerancia a errores. QEC requiere tanto tiempo como esfuerzo, lo que hace que sea necesario un mayor tiempo de ejecución para las operaciones de nivel lógico o de algoritmo, así como cúbits físicos adicionales para almacenar y calcular información.
Con el Estimador de recursos, puede comprender el impacto de las opciones de diseño arquitectónico y los esquemas de corrección de errores cuánticos. El estimador de recursos le ayudará a comprender cuántos cúbits se necesitan para ejecutar una aplicación, cuánto tiempo tardará en ejecutarse y qué tecnologías de cúbits son más adecuadas para resolver un problema específico. Comprender estos requisitos le permitirá preparar y refinar las soluciones cuánticas para que se ejecuten en máquinas cuánticas futuras y escaladas.