Compartir a través de


NormalizationCatalog.NormalizeRobustScaling Método

Definición

Sobrecargas

NormalizeRobustScaling(TransformsCatalog, InputOutputColumnPair[], Int64, Boolean, UInt32, UInt32)

Cree un NormalizingEstimator, que normaliza el uso de estadísticas sólidas para valores atípicos al centrar los datos alrededor de 0 (quitando la mediana) y escala los datos según el intervalo cuantiles (el valor predeterminado es el intervalo intercuartil).

NormalizeRobustScaling(TransformsCatalog, String, String, Int64, Boolean, UInt32, UInt32)

Cree un NormalizingEstimator, que normaliza el uso de estadísticas sólidas para valores atípicos al centrar los datos alrededor de 0 (quitando la mediana) y escala los datos según el intervalo cuantiles (el valor predeterminado es el intervalo intercuartil).

NormalizeRobustScaling(TransformsCatalog, InputOutputColumnPair[], Int64, Boolean, UInt32, UInt32)

Cree un NormalizingEstimator, que normaliza el uso de estadísticas sólidas para valores atípicos al centrar los datos alrededor de 0 (quitando la mediana) y escala los datos según el intervalo cuantiles (el valor predeterminado es el intervalo intercuartil).

public static Microsoft.ML.Transforms.NormalizingEstimator NormalizeRobustScaling (this Microsoft.ML.TransformsCatalog catalog, Microsoft.ML.InputOutputColumnPair[] columns, long maximumExampleCount = 1000000000, bool centerData = true, uint quantileMin = 25, uint quantileMax = 75);
static member NormalizeRobustScaling : Microsoft.ML.TransformsCatalog * Microsoft.ML.InputOutputColumnPair[] * int64 * bool * uint32 * uint32 -> Microsoft.ML.Transforms.NormalizingEstimator
<Extension()>
Public Function NormalizeRobustScaling (catalog As TransformsCatalog, columns As InputOutputColumnPair(), Optional maximumExampleCount As Long = 1000000000, Optional centerData As Boolean = true, Optional quantileMin As UInteger = 25, Optional quantileMax As UInteger = 75) As NormalizingEstimator

Parámetros

catalog
TransformsCatalog

Catálogo de transformación

columns
InputOutputColumnPair[]

Pares de columnas de entrada y salida. Las columnas de entrada deben ser de tipo Singlede datos o Double un vector de tamaño conocido de esos tipos. El tipo de datos de la columna de salida será el mismo que la columna de entrada asociada.

maximumExampleCount
Int64

Número máximo de ejemplos usados para entrenar el normalizador.

centerData
Boolean

Si se van a centrar los datos alrededor de 0, se va a quitar la mediana. El valor predeterminado es true.

quantileMin
UInt32

Min cuantiles usados para escalar los datos. El valor predeterminado es 25.

quantileMax
UInt32

Cantidad máxima usada para escalar los datos. El valor predeterminado es 75.

Devoluciones

Ejemplos

using System;
using System.Collections.Generic;
using System.Collections.Immutable;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using static Microsoft.ML.Transforms.NormalizingTransformer;

namespace Samples.Dynamic
{
    public class NormalizeBinningMulticolumn
    {
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var mlContext = new MLContext();
            var samples = new List<DataPoint>()
            {
                new DataPoint(){ Features = new float[4] { 8, 1, 3, 0},
                    Features2 = 1 },

                new DataPoint(){ Features = new float[4] { 6, 2, 2, 0},
                    Features2 = 4 },

                new DataPoint(){ Features = new float[4] { 4, 0, 1, 0},
                    Features2 = 1 },

                new DataPoint(){ Features = new float[4] { 2,-1,-1, 1},
                    Features2 = 2 }
            };
            // Convert training data to IDataView, the general data type used in
            // ML.NET.
            var data = mlContext.Data.LoadFromEnumerable(samples);
            // NormalizeBinning normalizes the data by constructing equidensity bins
            // and produce output based on to which bin the original value belongs.
            var normalize = mlContext.Transforms.NormalizeBinning(new[]{
                new InputOutputColumnPair("Features"),
                new InputOutputColumnPair("Features2"),
                },
                maximumBinCount: 4, fixZero: false);

            // Now we can transform the data and look at the output to confirm the
            // behavior of the estimator. This operation doesn't actually evaluate
            // data until we read the data below.
            var normalizeTransform = normalize.Fit(data);
            var transformedData = normalizeTransform.Transform(data);
            var column = transformedData.GetColumn<float[]>("Features").ToArray();
            var column2 = transformedData.GetColumn<float>("Features2").ToArray();

            for (int i = 0; i < column.Length; i++)
                Console.WriteLine(string.Join(", ", column[i].Select(x => x
                .ToString("f4"))) + "\t\t" + column2[i]);
            // Expected output:
            //
            //  Features                            Feature2
            //  1.0000, 0.6667, 1.0000, 0.0000          0
            //  0.6667, 1.0000, 0.6667, 0.0000          1
            //  0.3333, 0.3333, 0.3333, 0.0000          0
            //  0.0000, 0.0000, 0.0000, 1.0000          0.5
        }

        private class DataPoint
        {
            [VectorType(4)]
            public float[] Features { get; set; }

            public float Features2 { get; set; }
        }
    }
}

Se aplica a

NormalizeRobustScaling(TransformsCatalog, String, String, Int64, Boolean, UInt32, UInt32)

Cree un NormalizingEstimator, que normaliza el uso de estadísticas sólidas para valores atípicos al centrar los datos alrededor de 0 (quitando la mediana) y escala los datos según el intervalo cuantiles (el valor predeterminado es el intervalo intercuartil).

public static Microsoft.ML.Transforms.NormalizingEstimator NormalizeRobustScaling (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName = default, long maximumExampleCount = 1000000000, bool centerData = true, uint quantileMin = 25, uint quantileMax = 75);
static member NormalizeRobustScaling : Microsoft.ML.TransformsCatalog * string * string * int64 * bool * uint32 * uint32 -> Microsoft.ML.Transforms.NormalizingEstimator
<Extension()>
Public Function NormalizeRobustScaling (catalog As TransformsCatalog, outputColumnName As String, Optional inputColumnName As String = Nothing, Optional maximumExampleCount As Long = 1000000000, Optional centerData As Boolean = true, Optional quantileMin As UInteger = 25, Optional quantileMax As UInteger = 75) As NormalizingEstimator

Parámetros

catalog
TransformsCatalog

Catálogo de transformación

outputColumnName
String

Nombre de la columna resultante de la transformación de inputColumnName. El tipo de datos de esta columna es el mismo que la columna de entrada.

inputColumnName
String

Nombre de la columna que se va a transformar. Si se establece en null, el valor de outputColumnName se usará como origen. El tipo de datos de esta columna debe ser Single, Double o un vector de tamaño conocido de esos tipos.

maximumExampleCount
Int64

Número máximo de ejemplos usados para entrenar el normalizador.

centerData
Boolean

Si se van a centrar los datos alrededor de 0 quitando la mediana. El valor predeterminado es true.

quantileMin
UInt32

Min cuantiles usados para escalar los datos. El valor predeterminado es 25.

quantileMax
UInt32

Cantidad máxima usada para escalar los datos. El valor predeterminado es 75.

Devoluciones

Ejemplos

using System;
using System.Collections.Generic;
using System.Collections.Immutable;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using static Microsoft.ML.Transforms.NormalizingTransformer;

namespace Samples.Dynamic
{
    public class NormalizeSupervisedBinning
    {
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var mlContext = new MLContext();
            var samples = new List<DataPoint>()
            {
                new DataPoint(){ Features = new float[4] { 8, 1, 3, 0},
                    Bin ="Bin1" },

                new DataPoint(){ Features = new float[4] { 6, 2, 2, 1},
                    Bin ="Bin2" },

                new DataPoint(){ Features = new float[4] { 5, 3, 0, 2},
                    Bin ="Bin2" },

                new DataPoint(){ Features = new float[4] { 4,-8, 1, 3},
                    Bin ="Bin3" },

                new DataPoint(){ Features = new float[4] { 2,-5,-1, 4},
                    Bin ="Bin3" }
            };
            // Convert training data to IDataView, the general data type used in
            // ML.NET.
            var data = mlContext.Data.LoadFromEnumerable(samples);
            // Let's transform "Bin" column from string to key.
            data = mlContext.Transforms.Conversion.MapValueToKey("Bin").Fit(data)
                .Transform(data);
            // NormalizeSupervisedBinning normalizes the data by constructing bins
            // based on correlation with the label column and produce output based
            // on to which bin original value belong.
            var normalize = mlContext.Transforms.NormalizeSupervisedBinning(
                "Features", labelColumnName: "Bin", mininimumExamplesPerBin: 1,
                fixZero: false);

            // NormalizeSupervisedBinning normalizes the data by constructing bins
            // based on correlation with the label column and produce output based
            // on to which bin original value belong but make sure zero values would
            // remain zero after normalization. Helps preserve sparsity.
            var normalizeFixZero = mlContext.Transforms.NormalizeSupervisedBinning(
                "Features", labelColumnName: "Bin", mininimumExamplesPerBin: 1,
                fixZero: true);

            // Now we can transform the data and look at the output to confirm the
            // behavior of the estimator. This operation doesn't actually evaluate
            // data until we read the data below.
            var normalizeTransform = normalize.Fit(data);
            var transformedData = normalizeTransform.Transform(data);
            var normalizeFixZeroTransform = normalizeFixZero.Fit(data);
            var fixZeroData = normalizeFixZeroTransform.Transform(data);
            var column = transformedData.GetColumn<float[]>("Features").ToArray();
            foreach (var row in column)
                Console.WriteLine(string.Join(", ", row.Select(x => x.ToString(
                    "f4"))));
            // Expected output:
            //  1.0000, 0.5000, 1.0000, 0.0000
            //  0.5000, 1.0000, 0.0000, 0.5000
            //  0.5000, 1.0000, 0.0000, 0.5000
            //  0.0000, 0.0000, 0.0000, 1.0000
            //  0.0000, 0.0000, 0.0000, 1.0000

            var columnFixZero = fixZeroData.GetColumn<float[]>("Features")
                .ToArray();

            foreach (var row in columnFixZero)
                Console.WriteLine(string.Join(", ", row.Select(x => x.ToString(
                    "f4"))));
            // Expected output:
            //  1.0000, 0.0000, 1.0000, 0.0000
            //  0.5000, 0.5000, 0.0000, 0.5000
            //  0.5000, 0.5000, 0.0000, 0.5000
            //  0.0000,-0.5000, 0.0000, 1.0000
            //  0.0000,-0.5000, 0.0000, 1.0000

            // Let's get transformation parameters. Since we work with only one
            // column we need to pass 0 as parameter for
            // GetNormalizerModelParameters.
            // If we have multiple columns transformations we need to pass index of
            // InputOutputColumnPair.
            var transformParams = normalizeTransform.GetNormalizerModelParameters(0)
                as BinNormalizerModelParameters<ImmutableArray<float>>;

            Console.WriteLine($"The 1-index value in resulting array would be " +
                $"produce by:");

            Console.WriteLine("y = (Index(x) / " + transformParams.Density[0] +
                ") - " + (transformParams.Offset.Length == 0 ? 0 : transformParams
                .Offset[0]));

            Console.WriteLine("Where Index(x) is the index of the bin to which " +
                "x belongs");

            Console.WriteLine("Bins upper borders are: " + string.Join(" ",
                transformParams.UpperBounds[0]));
            // Expected output:
            //  The 1-index value in resulting array would be produce by:
            //  y = (Index(x) / 2) - 0
            //  Where Index(x) is the index of the bin to which x belongs
            //  Bins upper bounds are: 4.5 7 ∞

            var fixZeroParams = normalizeFixZeroTransform
                .GetNormalizerModelParameters(0) as BinNormalizerModelParameters<
                ImmutableArray<float>>;

            Console.WriteLine($"The 1-index value in resulting array would be " +
                $"produce by:");

            Console.WriteLine(" y = (Index(x) / " + fixZeroParams.Density[1] +
                ") - " + (fixZeroParams.Offset.Length == 0 ? 0 : fixZeroParams
                .Offset[1]));

            Console.WriteLine("Where Index(x) is the index of the bin to which x " +
                "belongs");

            Console.WriteLine("Bins upper borders are: " + string.Join(" ",
                fixZeroParams.UpperBounds[1]));
            // Expected output:
            //  The 1-index value in resulting array would be produce by:
            //  y = (Index(x) / 2) - 0.5
            //  Where Index(x) is the index of the bin to which x belongs
            //  Bins upper bounds are: -2 1.5 ∞
        }

        private class DataPoint
        {
            [VectorType(4)]
            public float[] Features { get; set; }

            public string Bin { get; set; }
        }
    }
}

Se aplica a