Compartir a través de


StandardTrainersCatalog.LbfgsLogisticRegression Método

Definición

Sobrecargas

LbfgsLogisticRegression(BinaryClassificationCatalog+BinaryClassificationTrainers, LbfgsLogisticRegressionBinaryTrainer+Options)

Cree LbfgsLogisticRegressionBinaryTrainer con opciones avanzadas, que predice un destino mediante un modelo de clasificación binaria lineal entrenado sobre datos de etiquetas booleanas.

LbfgsLogisticRegression(BinaryClassificationCatalog+BinaryClassificationTrainers, String, String, String, Single, Single, Single, Int32, Boolean)

Cree LbfgsLogisticRegressionBinaryTrainer, que predice un destino mediante un modelo de clasificación binaria lineal entrenado sobre datos de etiquetas booleanas.

LbfgsLogisticRegression(BinaryClassificationCatalog+BinaryClassificationTrainers, LbfgsLogisticRegressionBinaryTrainer+Options)

Cree LbfgsLogisticRegressionBinaryTrainer con opciones avanzadas, que predice un destino mediante un modelo de clasificación binaria lineal entrenado sobre datos de etiquetas booleanas.

public static Microsoft.ML.Trainers.LbfgsLogisticRegressionBinaryTrainer LbfgsLogisticRegression (this Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers catalog, Microsoft.ML.Trainers.LbfgsLogisticRegressionBinaryTrainer.Options options);
static member LbfgsLogisticRegression : Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers * Microsoft.ML.Trainers.LbfgsLogisticRegressionBinaryTrainer.Options -> Microsoft.ML.Trainers.LbfgsLogisticRegressionBinaryTrainer
<Extension()>
Public Function LbfgsLogisticRegression (catalog As BinaryClassificationCatalog.BinaryClassificationTrainers, options As LbfgsLogisticRegressionBinaryTrainer.Options) As LbfgsLogisticRegressionBinaryTrainer

Parámetros

catalog
BinaryClassificationCatalog.BinaryClassificationTrainers

Objeto instructor del catálogo de clasificación binaria.

options
LbfgsLogisticRegressionBinaryTrainer.Options

Argumentos avanzados para el algoritmo.

Devoluciones

Ejemplos

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Trainers;

namespace Samples.Dynamic.Trainers.BinaryClassification
{
    public static class LbfgsLogisticRegressionWithOptions
    {
        public static void Example()
        {
            // Create a new context for ML.NET operations. It can be used for
            // exception tracking and logging, as a catalog of available operations
            // and as the source of randomness. Setting the seed to a fixed number
            // in this example to make outputs deterministic.
            var mlContext = new MLContext(seed: 0);

            // Create a list of training data points.
            var dataPoints = GenerateRandomDataPoints(1000);

            // Convert the list of data points to an IDataView object, which is
            // consumable by ML.NET API.
            var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);

            // Define trainer options.
            var options = new LbfgsLogisticRegressionBinaryTrainer.Options()
            {
                MaximumNumberOfIterations = 100,
                OptimizationTolerance = 1e-8f,
                L2Regularization = 0.01f
            };

            // Define the trainer.
            var pipeline = mlContext.BinaryClassification.Trainers
                .LbfgsLogisticRegression(options);

            // Train the model.
            var model = pipeline.Fit(trainingData);

            // Create testing data. Use different random seed to make it different
            // from training data.
            var testData = mlContext.Data
                .LoadFromEnumerable(GenerateRandomDataPoints(500, seed: 123));

            // Run the model on test data set.
            var transformedTestData = model.Transform(testData);

            // Convert IDataView object to a list.
            var predictions = mlContext.Data
                .CreateEnumerable<Prediction>(transformedTestData,
                reuseRowObject: false).ToList();

            // Print 5 predictions.
            foreach (var p in predictions.Take(5))
                Console.WriteLine($"Label: {p.Label}, "
                    + $"Prediction: {p.PredictedLabel}");

            // Expected output:
            //   Label: True, Prediction: True
            //   Label: False, Prediction: True
            //   Label: True, Prediction: True
            //   Label: True, Prediction: True
            //   Label: False, Prediction: False

            // Evaluate the overall metrics.
            var metrics = mlContext.BinaryClassification
                .Evaluate(transformedTestData);

            PrintMetrics(metrics);

            // Expected output:
            //   Accuracy: 0.87
            //   AUC: 0.96
            //   F1 Score: 0.87
            //   Negative Precision: 0.89
            //   Negative Recall: 0.87
            //   Positive Precision: 0.86
            //   Positive Recall: 0.88
            //   Log Loss: 0.37
            //   Log Loss Reduction: 0.63
            //   Entropy: 1.00
            //
            //   TEST POSITIVE RATIO:    0.4760 (238.0/(238.0+262.0))
            //   Confusion table
            //             ||======================
            //   PREDICTED || positive | negative | Recall
            //   TRUTH     ||======================
            //    positive ||      210 |       28 | 0.8824
            //    negative ||       35 |      227 | 0.8664
            //             ||======================
            //   Precision ||   0.8571 |   0.8902 |
        }

        private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count,
            int seed = 0)

        {
            var random = new Random(seed);
            float randomFloat() => (float)random.NextDouble();
            for (int i = 0; i < count; i++)
            {
                var label = randomFloat() > 0.5f;
                yield return new DataPoint
                {
                    Label = label,
                    // Create random features that are correlated with the label.
                    // For data points with false label, the feature values are
                    // slightly increased by adding a constant.
                    Features = Enumerable.Repeat(label, 50)
                        .Select(x => x ? randomFloat() : randomFloat() +
                        0.1f).ToArray()

                };
            }
        }

        // Example with label and 50 feature values. A data set is a collection of
        // such examples.
        private class DataPoint
        {
            public bool Label { get; set; }
            [VectorType(50)]
            public float[] Features { get; set; }
        }

        // Class used to capture predictions.
        private class Prediction
        {
            // Original label.
            public bool Label { get; set; }
            // Predicted label from the trainer.
            public bool PredictedLabel { get; set; }
        }

        // Pretty-print BinaryClassificationMetrics objects.
        private static void PrintMetrics(BinaryClassificationMetrics metrics)
        {
            Console.WriteLine($"Accuracy: {metrics.Accuracy:F2}");
            Console.WriteLine($"AUC: {metrics.AreaUnderRocCurve:F2}");
            Console.WriteLine($"F1 Score: {metrics.F1Score:F2}");
            Console.WriteLine($"Negative Precision: " +
                $"{metrics.NegativePrecision:F2}");

            Console.WriteLine($"Negative Recall: {metrics.NegativeRecall:F2}");
            Console.WriteLine($"Positive Precision: " +
                $"{metrics.PositivePrecision:F2}");

            Console.WriteLine($"Positive Recall: {metrics.PositiveRecall:F2}\n");
            Console.WriteLine(metrics.ConfusionMatrix.GetFormattedConfusionTable());
        }
    }
}

Se aplica a

LbfgsLogisticRegression(BinaryClassificationCatalog+BinaryClassificationTrainers, String, String, String, Single, Single, Single, Int32, Boolean)

Cree LbfgsLogisticRegressionBinaryTrainer, que predice un destino mediante un modelo de clasificación binaria lineal entrenado sobre datos de etiquetas booleanas.

public static Microsoft.ML.Trainers.LbfgsLogisticRegressionBinaryTrainer LbfgsLogisticRegression (this Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers catalog, string labelColumnName = "Label", string featureColumnName = "Features", string exampleWeightColumnName = default, float l1Regularization = 1, float l2Regularization = 1, float optimizationTolerance = 1E-07, int historySize = 20, bool enforceNonNegativity = false);
static member LbfgsLogisticRegression : Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers * string * string * string * single * single * single * int * bool -> Microsoft.ML.Trainers.LbfgsLogisticRegressionBinaryTrainer
<Extension()>
Public Function LbfgsLogisticRegression (catalog As BinaryClassificationCatalog.BinaryClassificationTrainers, Optional labelColumnName As String = "Label", Optional featureColumnName As String = "Features", Optional exampleWeightColumnName As String = Nothing, Optional l1Regularization As Single = 1, Optional l2Regularization As Single = 1, Optional optimizationTolerance As Single = 1E-07, Optional historySize As Integer = 20, Optional enforceNonNegativity As Boolean = false) As LbfgsLogisticRegressionBinaryTrainer

Parámetros

catalog
BinaryClassificationCatalog.BinaryClassificationTrainers

Objeto instructor del catálogo de clasificación binaria.

labelColumnName
String

Nombre de la columna de etiquetas. Los datos de columna deben ser Boolean.

featureColumnName
String

Nombre de la columna de característica. Los datos de columna deben ser un vector de tamaño conocido de Single.

exampleWeightColumnName
String

Nombre de la columna de peso de ejemplo (opcional).

l1Regularization
Single

Hiperparámetros de regularización L1. Los valores más altos tienden a dar lugar a un modelo más disperso.

l2Regularization
Single

Peso L2 para regularización.

optimizationTolerance
Single

Umbral para la convergencia del optimizador.

historySize
Int32

Tamaño de memoria para LbfgsLogisticRegressionBinaryTrainer. Bajo=más rápido, menos preciso.

enforceNonNegativity
Boolean

Aplicar pesos no negativos.

Devoluciones

Ejemplos

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;

namespace Samples.Dynamic.Trainers.BinaryClassification
{
    public static class LbfgsLogisticRegression
    {
        public static void Example()
        {
            // Create a new context for ML.NET operations. It can be used for
            // exception tracking and logging, as a catalog of available operations
            // and as the source of randomness. Setting the seed to a fixed number
            // in this example to make outputs deterministic.
            var mlContext = new MLContext(seed: 0);

            // Create a list of training data points.
            var dataPoints = GenerateRandomDataPoints(1000);

            // Convert the list of data points to an IDataView object, which is
            // consumable by ML.NET API.
            var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);

            // Define the trainer.
            var pipeline = mlContext.BinaryClassification.Trainers
                .LbfgsLogisticRegression();

            // Train the model.
            var model = pipeline.Fit(trainingData);

            // Create testing data. Use different random seed to make it different
            // from training data.
            var testData = mlContext.Data
                .LoadFromEnumerable(GenerateRandomDataPoints(500, seed: 123));

            // Run the model on test data set.
            var transformedTestData = model.Transform(testData);

            // Convert IDataView object to a list.
            var predictions = mlContext.Data
                .CreateEnumerable<Prediction>(transformedTestData,
                reuseRowObject: false).ToList();

            // Print 5 predictions.
            foreach (var p in predictions.Take(5))
                Console.WriteLine($"Label: {p.Label}, "
                    + $"Prediction: {p.PredictedLabel}");

            // Expected output:
            //   Label: True, Prediction: True
            //   Label: False, Prediction: True
            //   Label: True, Prediction: True
            //   Label: True, Prediction: True
            //   Label: False, Prediction: False

            // Evaluate the overall metrics.
            var metrics = mlContext.BinaryClassification
                .Evaluate(transformedTestData);

            PrintMetrics(metrics);

            // Expected output:
            //   Accuracy: 0.88
            //   AUC: 0.96
            //   F1 Score: 0.87
            //   Negative Precision: 0.90
            //   Negative Recall: 0.87
            //   Positive Precision: 0.86
            //   Positive Recall: 0.89
            //   Log Loss: 0.38
            //   Log Loss Reduction: 0.62
            //   Entropy: 1.00
            //
            //   TEST POSITIVE RATIO:    0.4760 (238.0/(238.0+262.0))
            //   Confusion table
            //             ||======================
            //   PREDICTED || positive | negative | Recall
            //   TRUTH     ||======================
            //    positive ||      212 |       26 | 0.8908
            //    negative ||       35 |      227 | 0.8664
            //             ||======================
            //   Precision ||   0.8583 |   0.8972 |
        }

        private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count,
            int seed = 0)

        {
            var random = new Random(seed);
            float randomFloat() => (float)random.NextDouble();
            for (int i = 0; i < count; i++)
            {
                var label = randomFloat() > 0.5f;
                yield return new DataPoint
                {
                    Label = label,
                    // Create random features that are correlated with the label.
                    // For data points with false label, the feature values are
                    // slightly increased by adding a constant.
                    Features = Enumerable.Repeat(label, 50)
                        .Select(x => x ? randomFloat() : randomFloat() +
                        0.1f).ToArray()

                };
            }
        }

        // Example with label and 50 feature values. A data set is a collection of
        // such examples.
        private class DataPoint
        {
            public bool Label { get; set; }
            [VectorType(50)]
            public float[] Features { get; set; }
        }

        // Class used to capture predictions.
        private class Prediction
        {
            // Original label.
            public bool Label { get; set; }
            // Predicted label from the trainer.
            public bool PredictedLabel { get; set; }
        }

        // Pretty-print BinaryClassificationMetrics objects.
        private static void PrintMetrics(BinaryClassificationMetrics metrics)
        {
            Console.WriteLine($"Accuracy: {metrics.Accuracy:F2}");
            Console.WriteLine($"AUC: {metrics.AreaUnderRocCurve:F2}");
            Console.WriteLine($"F1 Score: {metrics.F1Score:F2}");
            Console.WriteLine($"Negative Precision: " +
                $"{metrics.NegativePrecision:F2}");

            Console.WriteLine($"Negative Recall: {metrics.NegativeRecall:F2}");
            Console.WriteLine($"Positive Precision: " +
                $"{metrics.PositivePrecision:F2}");

            Console.WriteLine($"Positive Recall: {metrics.PositiveRecall:F2}\n");
            Console.WriteLine(metrics.ConfusionMatrix.GetFormattedConfusionTable());
        }
    }
}

Se aplica a