SgdNonCalibratedTrainer Clase
Definición
Importante
Parte de la información hace referencia a la versión preliminar del producto, que puede haberse modificado sustancialmente antes de lanzar la versión definitiva. Microsoft no otorga ninguna garantía, explícita o implícita, con respecto a la información proporcionada aquí.
para IEstimator<TTransformer> la regresión logística de entrenamiento mediante un método de degradado estocástico paralelo.
public sealed class SgdNonCalibratedTrainer : Microsoft.ML.Trainers.SgdBinaryTrainerBase<Microsoft.ML.Trainers.LinearBinaryModelParameters>
type SgdNonCalibratedTrainer = class
inherit SgdBinaryTrainerBase<LinearBinaryModelParameters>
Public NotInheritable Class SgdNonCalibratedTrainer
Inherits SgdBinaryTrainerBase(Of LinearBinaryModelParameters)
- Herencia
-
LinearTrainerBase<BinaryPredictionTransformer<TModel>,TModel>SgdNonCalibratedTrainer
Comentarios
Para crear este instructor, use SgdNonCalibrated o SgdNonCalibrated(Options).
Columnas de entrada y salida
Los datos de la columna de etiquetas de entrada deben ser Boolean. Los datos de columna de las características de entrada deben ser un vector de tamaño conocido de Single. Este instructor genera las siguientes columnas:
Nombre de columna de salida | Tipo de columna | Descripción |
---|---|---|
Score |
Single | Puntuación sin enlazar calculada por el modelo. |
PredictedLabel |
Boolean | Etiqueta de predicción, según el signo de la puntuación. Una puntuación negativa se asigna a false y una positiva a true . |
Características del entrenador
Tarea de Machine Learning | Clasificación binaria |
¿Se requiere normalización? | Sí |
¿Se requiere el almacenamiento en caché? | No |
NuGet necesario además de Microsoft.ML | None |
Exportable a ONNX | Sí |
Detalles del algoritmo de entrenamiento
El descenso de gradiente estocástico (SGD) es uno de los procedimientos populares de optimización estocástica que se pueden integrar en varias tareas de aprendizaje automático para lograr un rendimiento de última generación. Este instructor implementa el descenso de degradado estocástico de Hogwild para la clasificación binaria que admite el multiproceso sin ningún bloqueo. Si el problema de optimización asociado es disperso, el descenso de gradiente estocástico de Hogwild logra una tasa casi óptima de convergencia. Para obtener más detalles sobre el descenso de gradiente estocástico de Hogwild aquí.
Consulte la sección Consulte también los vínculos a ejemplos de uso.
Campos
FeatureColumn |
Columna de características que espera el instructor. (Heredado de TrainerEstimatorBase<TTransformer,TModel>) |
LabelColumn |
Columna de etiqueta que espera el instructor. Puede ser |
WeightColumn |
Columna de peso que espera el entrenador. Puede ser |
Propiedades
Info |
para IEstimator<TTransformer> la regresión logística de entrenamiento mediante un método de degradado estocástico paralelo. (Heredado de SgdBinaryTrainerBase<TModel>) |
Métodos
Fit(IDataView, LinearModelParameters) |
Continúa el entrenamiento de un SdcaLogisticRegressionBinaryTrainer objeto mediante un objeto ya entrenado |
Fit(IDataView) |
Entrena y devuelve un ITransformer. (Heredado de TrainerEstimatorBase<TTransformer,TModel>) |
GetOutputSchema(SchemaShape) |
para IEstimator<TTransformer> la regresión logística de entrenamiento mediante un método de degradado estocástico paralelo. (Heredado de TrainerEstimatorBase<TTransformer,TModel>) |
Métodos de extensión
AppendCacheCheckpoint<TTrans>(IEstimator<TTrans>, IHostEnvironment) |
Anexe un "punto de control de almacenamiento en caché" a la cadena del estimador. Esto garantizará que los estimadores de nivel inferior se entrenarán con los datos almacenados en caché. Resulta útil tener un punto de control de almacenamiento en caché antes de que los instructores tomen varios pases de datos. |
WithOnFitDelegate<TTransformer>(IEstimator<TTransformer>, Action<TTransformer>) |
Dado un estimador, devuelva un objeto de ajuste que llamará a un delegado una vez Fit(IDataView) que se llame. A menudo, es importante que un estimador devuelva información sobre lo que cabe, por lo que el Fit(IDataView) método devuelve un objeto con tipo específico, en lugar de simplemente un general ITransformer. Sin embargo, al mismo tiempo, IEstimator<TTransformer> a menudo se forman en canalizaciones con muchos objetos, por lo que es posible que tengamos que crear una cadena de estimadores a través EstimatorChain<TLastTransformer> de donde el estimador para el que queremos obtener el transformador está enterrado en algún lugar de esta cadena. En ese escenario, podemos a través de este método adjuntar un delegado al que se llamará una vez que se llame a fit. |