HashSet<T>.Overlaps(IEnumerable<T>) Método
Definición
Importante
Parte de la información hace referencia a la versión preliminar del producto, que puede haberse modificado sustancialmente antes de lanzar la versión definitiva. Microsoft no otorga ninguna garantía, explícita o implícita, con respecto a la información proporcionada aquí.
Determina si el objeto HashSet<T> actual y una colección especificada comparten elementos comunes.
public:
virtual bool Overlaps(System::Collections::Generic::IEnumerable<T> ^ other);
public:
bool Overlaps(System::Collections::Generic::IEnumerable<T> ^ other);
public bool Overlaps (System.Collections.Generic.IEnumerable<T> other);
abstract member Overlaps : seq<'T> -> bool
override this.Overlaps : seq<'T> -> bool
member this.Overlaps : seq<'T> -> bool
Public Function Overlaps (other As IEnumerable(Of T)) As Boolean
Parámetros
- other
- IEnumerable<T>
Colección que se va a comparar con el objeto HashSet<T> actual.
Devoluciones
Es true
si el objeto HashSet<T> y other
comparten al menos un elemento común; de lo contrario, es false
.
Implementaciones
Excepciones
other
es null
.
Ejemplos
En el ejemplo siguiente se crean dos objetos dispares HashSet<T> y se comparan entre sí. En este ejemplo, allNumbers
y lowNumbers
se muestran para compartir elementos comunes mediante el Overlaps método .
HashSet<int> lowNumbers = new HashSet<int>();
HashSet<int> allNumbers = new HashSet<int>();
for (int i = 1; i < 5; i++)
{
lowNumbers.Add(i);
}
for (int i = 0; i < 10; i++)
{
allNumbers.Add(i);
}
Console.Write("lowNumbers contains {0} elements: ", lowNumbers.Count);
DisplaySet(lowNumbers);
Console.Write("allNumbers contains {0} elements: ", allNumbers.Count);
DisplaySet(allNumbers);
Console.WriteLine("lowNumbers overlaps allNumbers: {0}",
lowNumbers.Overlaps(allNumbers));
Console.WriteLine("allNumbers and lowNumbers are equal sets: {0}",
allNumbers.SetEquals(lowNumbers));
// Show the results of sub/superset testing
Console.WriteLine("lowNumbers is a subset of allNumbers: {0}",
lowNumbers.IsSubsetOf(allNumbers));
Console.WriteLine("allNumbers is a superset of lowNumbers: {0}",
allNumbers.IsSupersetOf(lowNumbers));
Console.WriteLine("lowNumbers is a proper subset of allNumbers: {0}",
lowNumbers.IsProperSubsetOf(allNumbers));
Console.WriteLine("allNumbers is a proper superset of lowNumbers: {0}",
allNumbers.IsProperSupersetOf(lowNumbers));
// Modify allNumbers to remove numbers that are not in lowNumbers.
allNumbers.IntersectWith(lowNumbers);
Console.Write("allNumbers contains {0} elements: ", allNumbers.Count);
DisplaySet(allNumbers);
Console.WriteLine("allNumbers and lowNumbers are equal sets: {0}",
allNumbers.SetEquals(lowNumbers));
// Show the results of sub/superset testing with the modified set.
Console.WriteLine("lowNumbers is a subset of allNumbers: {0}",
lowNumbers.IsSubsetOf(allNumbers));
Console.WriteLine("allNumbers is a superset of lowNumbers: {0}",
allNumbers.IsSupersetOf(lowNumbers));
Console.WriteLine("lowNumbers is a proper subset of allNumbers: {0}",
lowNumbers.IsProperSubsetOf(allNumbers));
Console.WriteLine("allNumbers is a proper superset of lowNumbers: {0}",
allNumbers.IsProperSupersetOf(lowNumbers));
void DisplaySet(HashSet<int> set)
{
Console.Write("{");
foreach (int i in set)
{
Console.Write(" {0}", i);
}
Console.WriteLine(" }");
}
/* This code example produces output similar to the following:
* lowNumbers contains 4 elements: { 1 2 3 4 }
* allNumbers contains 10 elements: { 0 1 2 3 4 5 6 7 8 9 }
* lowNumbers overlaps allNumbers: True
* allNumbers and lowNumbers are equal sets: False
* lowNumbers is a subset of allNumbers: True
* allNumbers is a superset of lowNumbers: True
* lowNumbers is a proper subset of allNumbers: True
* allNumbers is a proper superset of lowNumbers: True
* allNumbers contains 4 elements: { 1 2 3 4 }
* allNumbers and lowNumbers are equal sets: True
* lowNumbers is a subset of allNumbers: True
* allNumbers is a superset of lowNumbers: True
* lowNumbers is a proper subset of allNumbers: False
* allNumbers is a proper superset of lowNumbers: False
*/
Shared Sub Main()
Dim lowNumbers As HashSet(Of Integer) = New HashSet(Of Integer)()
Dim allNumbers As HashSet(Of Integer) = New HashSet(Of Integer)()
For i As Integer = 1 To 4
lowNumbers.Add(i)
Next i
For i As Integer = 0 To 9
allNumbers.Add(i)
Next i
Console.Write("lowNumbers contains {0} elements: ", lowNumbers.Count)
DisplaySet(lowNumbers)
Console.Write("allNumbers contains {0} elements: ", allNumbers.Count)
DisplaySet(allNumbers)
Console.WriteLine("lowNumbers overlaps allNumbers: {0}", _
lowNumbers.Overlaps(allNumbers))
Console.WriteLine("allNumbers and lowNumbers are equal sets: {0}", _
allNumbers.SetEquals(lowNumbers))
' Show the results of sub/superset testing
Console.WriteLine("lowNumbers is a subset of allNumbers: {0}", _
lowNumbers.IsSubsetOf(allNumbers))
Console.WriteLine("allNumbers is a superset of lowNumbers: {0}", _
allNumbers.IsSupersetOf(lowNumbers))
Console.WriteLine("lowNumbers is a proper subset of allNumbers: {0}", _
lowNumbers.IsProperSubsetOf(allNumbers))
Console.WriteLine("allNumbers is a proper superset of lowNumbers: {0}", _
allNumbers.IsProperSupersetOf(lowNumbers))
' Modify allNumbers to remove numbers that are not in lowNumbers.
allNumbers.IntersectWith(lowNumbers)
Console.Write("allNumbers contains {0} elements: ", allNumbers.Count)
DisplaySet(allNumbers)
Console.WriteLine("allNumbers and lowNumbers are equal sets: {0}", _
allNumbers.SetEquals(lowNumbers))
' Show the results of sub/superset testing with the modified set.
Console.WriteLine("lowNumbers is a subset of allNumbers: {0}", _
lowNumbers.IsSubsetOf(allNumbers))
Console.WriteLine("allNumbers is a superset of lowNumbers: {0}", _
allNumbers.IsSupersetOf(lowNumbers))
Console.WriteLine("lowNumbers is a proper subset of allNumbers: {0}", _
lowNumbers.IsProperSubsetOf(allNumbers))
Console.WriteLine("allNumbers is a proper superset of lowNumbers: {0}", _
allNumbers.IsProperSupersetOf(lowNumbers))
End Sub
' This code example produces output similar to the following:
' lowNumbers contains 4 elements: { 1 2 3 4 }
' allNumbers contains 10 elements: { 0 1 2 3 4 5 6 7 8 9 }
' lowNumbers overlaps allNumbers: True
' allNumbers and lowNumbers are equal sets: False
' lowNumbers is a subset of allNumbers: True
' allNumbers is a superset of lowNumbers: True
' lowNumbers is a proper subset of allNumbers: True
' allNumbers is a proper superset of lowNumbers: True
' allNumbers contains 4 elements: { 1 2 3 4 }
' allNumbers and lowNumbers are equal sets: True
' lowNumbers is a subset of allNumbers: True
' allNumbers is a superset of lowNumbers: True
' lowNumbers is a proper subset of allNumbers: False
' allNumbers is a proper superset of lowNumbers: False
Comentarios
Este método es una operación O(n
), donde n
es el número de elementos de other
.