Redigeeri

Jagamisviis:


Thread.GetNamedDataSlot(String) Method

Definition

Looks up a named data slot. For better performance, use fields that are marked with the ThreadStaticAttribute attribute instead.

public:
 static LocalDataStoreSlot ^ GetNamedDataSlot(System::String ^ name);
public static LocalDataStoreSlot GetNamedDataSlot (string name);
static member GetNamedDataSlot : string -> LocalDataStoreSlot
Public Shared Function GetNamedDataSlot (name As String) As LocalDataStoreSlot

Parameters

name
String

The name of the local data slot.

Returns

A LocalDataStoreSlot allocated for this thread.

Examples

This section contains two code examples. The first example shows how to use a field that is marked with the ThreadStaticAttribute attribute to hold thread-specific information. The second example shows how to use a data slot to do the same thing.

First Example

The following example shows how to use a field that is marked with ThreadStaticAttribute to hold thread-specific information. This technique provides better performance than the technique that is shown in the second example.

using namespace System;
using namespace System::Threading;

ref class ThreadData
{
private:
   [ThreadStatic]
   static int threadSpecificData;

public:
   static void ThreadStaticDemo()
   {
      // Store the managed thread id for each thread in the static
      // variable.
      threadSpecificData = Thread::CurrentThread->ManagedThreadId;
      
      // Allow other threads time to execute the same code, to show
      // that the static data is unique to each thread.
      Thread::Sleep( 1000 );

      // Display the static data.
      Console::WriteLine( "Data for managed thread {0}: {1}", 
         Thread::CurrentThread->ManagedThreadId, threadSpecificData );
   }
};

int main()
{
   for ( int i = 0; i < 3; i++ )
   {
      Thread^ newThread = 
          gcnew Thread( gcnew ThreadStart( ThreadData::ThreadStaticDemo )); 
      newThread->Start();
   }
}

/* This code example produces output similar to the following:

Data for managed thread 4: 4
Data for managed thread 5: 5
Data for managed thread 3: 3
 */
using System;
using System.Threading;

class Test
{
    static void Main()
    {
        for(int i = 0; i < 3; i++)
        {
            Thread newThread = new Thread(ThreadData.ThreadStaticDemo);
            newThread.Start();
        }
    }
}

class ThreadData
{
    [ThreadStatic]
    static int threadSpecificData;

    public static void ThreadStaticDemo()
    {
        // Store the managed thread id for each thread in the static
        // variable.
        threadSpecificData = Thread.CurrentThread.ManagedThreadId;
      
        // Allow other threads time to execute the same code, to show
        // that the static data is unique to each thread.
        Thread.Sleep( 1000 );

        // Display the static data.
        Console.WriteLine( "Data for managed thread {0}: {1}", 
            Thread.CurrentThread.ManagedThreadId, threadSpecificData );
    }
}

/* This code example produces output similar to the following:

Data for managed thread 4: 4
Data for managed thread 5: 5
Data for managed thread 3: 3
 */
open System
open System.Threading

type ThreadData() =
    // Create a static variable to hold the data for each thread.
    [<ThreadStatic; DefaultValue>]
    static val mutable private threadSpecificData : int

    static member ThreadStaticDemo() =
        // Store the managed thread id for each thread in the static
        // variable.
        ThreadData.threadSpecificData <- Thread.CurrentThread.ManagedThreadId
        
        // Allow other threads time to execute the same code, to show
        // that the static data is unique to each thread.
        Thread.Sleep 1000

        // Display the static data.
        printfn $"Data for managed thread {Thread.CurrentThread.ManagedThreadId}: {ThreadData.threadSpecificData}" 

for i = 0 to 2 do 
    let newThread = Thread ThreadData.ThreadStaticDemo
    newThread.Start()

// This code example produces output similar to the following:
//       Data for managed thread 4: 4
//       Data for managed thread 5: 5
//       Data for managed thread 3: 3
Imports System.Threading

Class Test

    <MTAThread> _
    Shared Sub Main()

        For i As Integer = 1 To 3
            Dim newThread As New Thread(AddressOf ThreadData.ThreadStaticDemo)
            newThread.Start()
        Next i

    End Sub

End Class

Class ThreadData

    <ThreadStatic> _
    Shared threadSpecificData As Integer

    Shared Sub ThreadStaticDemo()

        ' Store the managed thread id for each thread in the static
        ' variable.
        threadSpecificData = Thread.CurrentThread.ManagedThreadId
      
        ' Allow other threads time to execute the same code, to show
        ' that the static data is unique to each thread.
        Thread.Sleep( 1000 )

        ' Display the static data.
        Console.WriteLine( "Data for managed thread {0}: {1}", _
            Thread.CurrentThread.ManagedThreadId, threadSpecificData )

    End Sub

End Class

' This code example produces output similar to the following:
'
'Data for managed thread 4: 4
'Data for managed thread 5: 5
'Data for managed thread 3: 3

Second Example

The following example demonstrates how to use a named data slot to store thread-specific information.

using namespace System;
using namespace System::Threading;

ref class Slot
{
private:
    static Random^ randomGenerator = gcnew Random();

public:
    static void SlotTest()
    {
        // Set random data in each thread's data slot.
        int slotData = randomGenerator->Next(1, 200);
        int threadId = Thread::CurrentThread->ManagedThreadId;

        Thread::SetData(
            Thread::GetNamedDataSlot("Random"),
            slotData);

        // Show what was saved in the thread's data slot.
        Console::WriteLine("Data stored in thread_{0}'s data slot: {1,3}",
            threadId, slotData);

        // Allow other threads time to execute SetData to show
        // that a thread's data slot is unique to itself.
        Thread::Sleep(1000);

        int newSlotData =
            (int)Thread::GetData(Thread::GetNamedDataSlot("Random"));

        if (newSlotData == slotData)
        {
            Console::WriteLine("Data in thread_{0}'s data slot is still: {1,3}",
                threadId, newSlotData);
        }
        else
        {
            Console::WriteLine("Data in thread_{0}'s data slot changed to: {1,3}",
                threadId, newSlotData);
        }
    }
};

ref class Test
{
public:
    static void Main()
    {
        array<Thread^>^ newThreads = gcnew array<Thread^>(4);
        int i;
        for (i = 0; i < newThreads->Length; i++)
        {
            newThreads[i] =
                gcnew Thread(gcnew ThreadStart(&Slot::SlotTest));
            newThreads[i]->Start();
        }
        Thread::Sleep(2000);
        for (i = 0; i < newThreads->Length; i++)
        {
            newThreads[i]->Join();
            Console::WriteLine("Thread_{0} finished.",
                newThreads[i]->ManagedThreadId);
        }
    }
};

int main()
{
    Test::Main();
}
using System;
using System.Threading;

class Test
{
    public static void Main()
    {
        Thread[] newThreads = new Thread[4];
        int i;
        for (i = 0; i < newThreads.Length; i++)
        {
            newThreads[i] =
                new Thread(new ThreadStart(Slot.SlotTest));
            newThreads[i].Start();
        }
        Thread.Sleep(2000);
        for (i = 0; i < newThreads.Length; i++)
        {
            newThreads[i].Join();
            Console.WriteLine("Thread_{0} finished.",
                newThreads[i].ManagedThreadId);
        }
    }
}

class Slot
{
    private static Random randomGenerator = new Random();

    public static void SlotTest()
    {
        // Set random data in each thread's data slot.
        int slotData = randomGenerator.Next(1, 200);
        int threadId = Thread.CurrentThread.ManagedThreadId;

        Thread.SetData(
            Thread.GetNamedDataSlot("Random"),
            slotData);

        // Show what was saved in the thread's data slot.
        Console.WriteLine("Data stored in thread_{0}'s data slot: {1,3}",
            threadId, slotData);

        // Allow other threads time to execute SetData to show
        // that a thread's data slot is unique to itself.
        Thread.Sleep(1000);

        int newSlotData =
            (int)Thread.GetData(Thread.GetNamedDataSlot("Random"));

        if (newSlotData == slotData)
        {
            Console.WriteLine("Data in thread_{0}'s data slot is still: {1,3}",
                threadId, newSlotData);
        }
        else
        {
            Console.WriteLine("Data in thread_{0}'s data slot changed to: {1,3}",
                threadId, newSlotData);
        }
    }
}
open System
open System.Threading

module Slot =
    let private randomGenerator = Random()

    let slotTest () =
        // Set random data in each thread's data slot.
        let slotData = randomGenerator.Next(1, 200)
        let threadId = Thread.CurrentThread.ManagedThreadId

        Thread.SetData(Thread.GetNamedDataSlot "Random", slotData)

        // Show what was saved in the thread's data slot.
        printfn $"Data stored in thread_{threadId}'s data slot: {slotData, 3}"

        // Allow other threads time to execute SetData to show
        // that a thread's data slot is unique to itself.
        Thread.Sleep 1000

        let newSlotData = Thread.GetData(Thread.GetNamedDataSlot "Random") :?> int

        if newSlotData = slotData then
            printfn $"Data in thread_{threadId}'s data slot is still: {newSlotData, 3}"
        else
            printfn $"Data in thread_{threadId}'s data slot changed to: {newSlotData, 3}"

let newThreads =
    [| for _ = 0 to 3 do
           let thread = Thread Slot.slotTest
           thread.Start()
           thread |]

Thread.Sleep 2000

for tread in newThreads do
    tread.Join()
    printfn $"Thread_{tread.ManagedThreadId} finished."
Imports System.Threading

Class Test
    Public Shared Sub Main()
        Dim newThreads(3) As Thread
        Dim i As Integer
        For i = 0 To newThreads.Length - 1
            newThreads(i) = _
                New Thread(New ThreadStart(AddressOf Slot.SlotTest))
            newThreads(i).Start()
        Next i
        Thread.Sleep(2000)
        For i = 0 To newThreads.Length - 1
            newThreads(i).Join()
            Console.WriteLine("Thread_{0} finished.", _
                newThreads(i).ManagedThreadId)
        Next i
    End Sub
End Class

Class Slot
    Private Shared randomGenerator As New Random()

    Public Shared Sub SlotTest()
        ' Set random data in each thread's data slot.
        Dim slotData As Integer = randomGenerator.Next(1, 200)
        Dim threadId As Integer = Thread.CurrentThread.ManagedThreadId

        Thread.SetData(
            Thread.GetNamedDataSlot("Random"),
            slotData)

        ' Show what was saved in the thread's data slot.
        Console.WriteLine("Data stored in thread_{0}'s data slot: {1,3}",
            threadId, slotData)

        ' Allow other threads time to execute SetData to show
        ' that a thread's data slot is unique to itself.
        Thread.Sleep(1000)

        Dim newSlotData As Integer = _
            CType(Thread.GetData(Thread.GetNamedDataSlot("Random")), Integer)

        If newSlotData = slotData Then
            Console.WriteLine("Data in thread_{0}'s data slot is still: {1,3}",
                threadId, newSlotData)
        Else
            Console.WriteLine("Data in thread_{0}'s data slot changed to: {1,3}",
                threadId, newSlotData)
        End If
    End Sub
End Class

Remarks

Important

.NET Framework provides two mechanisms for using thread local storage (TLS): thread-relative static fields (that is, fields that are marked with the ThreadStaticAttribute attribute) and data slots. Thread-relative static fields provide much better performance than data slots, and enable compile-time type checking. For more information about using TLS, see Thread Local Storage: Thread-Relative Static Fields and Data Slots.

Threads use a local store memory mechanism to store thread-specific data. The common language runtime allocates a multi-slot data store array to each process when it is created. The thread can allocate a data slot in the data store, store and retrieve a data value in the slot, and free the slot for reuse after the thread expires. Data slots are unique per thread. No other thread (not even a child thread) can get that data.

If the named slot does not exist, a new slot is allocated. Named data slots are public and can be manipulated by anyone.

Applies to

See also