LUOTTAMUS. NORMI
Koskee: Lasketun sarakkeen lasketun taulukon mittarin visuaalinen laskutoimitus
Luottamusväli on arvoalue. Otoskeskiarvo x on tämän alueen keskellä, ja alue on x ± CONFIDENCE.NORM. Jos x on esimerkiksi postista tilattujen tuotteiden toimitusaikojen otos keskiarvo, x ± CONFIDENCE. NORM on populaation vaihteluväli. Todennäköisyys sille, että otoksen keskiarvo on kauempana μ0:sta kuin x:stä, on suurempi kuin alfa mille tahansa tämän alueen populaation keskiarvolle, μ0. todennäköisyys sille, että otoksen keskiarvo on kauempana μ0:sta kuin x:stä, on pienempi kuin alfa mille tahansa populaation keskiarvolle, μ0, joka ei ole tällä alueella. Toisin sanoen oletetaan, että luomme x-, standard_dev- ja kokoarvoilla merkitsevyystasolla alfa olevan kaksihäntäisen kokeen, joka vastaa hypoteesia, että populaation keskiarvo on μ0. Näin ei hylätä hypoteesia, jos μ0 on luottamusvälillä, ja hypoteesi hylätään, jos μ0 ei ole luottamusvälillä. Luottamusväli ei salli meidän päätellä, että todennäköisyydellä 1 - alfa seuraavan paketin toimitusaika on luottamusvälillä.
Syntaksi
CONFIDENCE.NORM(alpha,standard_dev,size)
Parametrit
Termi | Määritelmä |
---|---|
alfa | Luottamustason laskemiseen käytettävä merkitsevyystaso. Luottamustaso on 100*(1 - alfa)%, eli toisin sanoen alfa, joka on 0,05, ilmaisee 95 prosentin luottamustasoa. |
standard_dev | Populaation keskihajonta tietoalueelle, oletetaan tiedetyksi. |
standard_dev,koko | Näytteen koko. |
Palautusarvo
Arvoalue
Huomautukset
Jos jokin argumenteista ei ole numeerinen, CONFIDENCE. NORM palauttaa #VALUE! virhearvo.
Jos alfa ≤ 0: a tai alfa ≥ 1, CONFIDENCE. NORM palauttaa #NUM! virhearvo.
Jos standard_dev ≤ 0, CONFIDENCE. NORM palauttaa #NUM! virhearvo.
Jos koko ei ole kokonaisluku, se pyöristetään.
Jos koko < 1, LUOTETTAVUUS. NORM palauttaa #NUM! virhearvo.
Jos oletetaan, että alfa vastaa lukua 0,05, meidän on laskettava tavallisen normaalikäyrän alla oleva alue, joka on (1 - alfa) eli 95 prosenttia. Tämä arvo on ± 1,96. Luottamusväli on siis seuraava:
$$\overline{x} \pm 1.96 \bigg( \frac{\sigma}{\sqrt{n}} \bigg) $$
Tätä funktiota ei tueta DirectQuery-tilassa lasketuissa sarakkeissa tai rivitason suojauksen (RLS) säännöissä käytettäväksi.