Muokkaa

Jaa


Dynamic Indexing using HLSL 5.1

The D3D12DynamicIndexing sample demonstrates some of the new HLSL features available in Shader Model 5.1 - particularly dynamic indexing and unbounded arrays - to render the same mesh multiple times, each time rendering it with a dynamically selected material. With dynamic indexing, shaders can now index into an array without knowing the value of the index at compile time. When combined with unbounded arrays, this adds another level of indirection and flexibility for shader authors and art pipelines.

Set up the pixel shader

Let's first look at the shader itself, which for this sample is a pixel shader.

Texture2D        g_txDiffuse : register(t0);
Texture2D        g_txMats[]  : register(t1);
SamplerState     g_sampler   : register(s0);

struct PSSceneIn
{
    float4 pos : SV_Position;
    float2 tex : TEXCOORD0;
};

struct MaterialConstants
{
    uint matIndex;  // Dynamically set index for looking up from g_txMats[].
};
ConstantBuffer<MaterialConstants> materialConstants : register(b0, space0);

float4 PSSceneMain(PSSceneIn input) : SV_Target
{
    float3 diffuse = g_txDiffuse.Sample(g_sampler, input.tex).rgb;
    float3 mat = g_txMats[materialConstants.matIndex].Sample(g_sampler, input.tex).rgb;
    return float4(diffuse * mat, 1.0f);
}

The unbounded array feature is illustrated by the g_txMats[] array as it does not specify an array size. Dynamic indexing is used to index into g_txMats[] with matIndex, which is defined as a root constant. The shader has no knowledge of the size or the array or the value of the index at compile-time. Both attributes are defined in the root signature of the pipeline state object used with the shader.

To take advantage of the dynamic indexing features in HLSL requires that the shader be compiled with SM 5.1. Additionally, to make use of unbounded arrays, the /enable_unbounded_descriptor_tables flag must also be used. The following command line options are used to compile this shader with the Effect-Compiler Tool (FXC):

fxc /Zi /E"PSSceneMain" /Od /Fo"dynamic_indexing_pixel.cso" /ps"_5_1" /nologo /enable_unbounded_descriptor_tables

Set up the root signature

Now, let's look at the root signature definition, particularly, how we define the size of the unbounded array and link a root constant to matIndex. For the pixel shader, we define three things: a descriptor table for SRVs (our Texture2Ds), a descriptor table for Samplers and a single root constant. The descriptor table for our SRVs contains CityMaterialCount + 1 entries. CityMaterialCount is a constant that defines the length of g_txMats[] and the + 1 is for g_txDiffuse. The descriptor table for our Samplers contains only one entry and we only define one 32-bit root constant value via InitAsConstants(…)., in the LoadAssets method.

 // Create the root signature.
    {
        CD3DX12_DESCRIPTOR_RANGE ranges[3];
        ranges[0].Init(D3D12_DESCRIPTOR_RANGE_TYPE_SRV, 1 + CityMaterialCount, 0);  // Diffuse texture + array of materials.
        ranges[1].Init(D3D12_DESCRIPTOR_RANGE_TYPE_SAMPLER, 1, 0);
        ranges[2].Init(D3D12_DESCRIPTOR_RANGE_TYPE_CBV, 1, 0);

        CD3DX12_ROOT_PARAMETER rootParameters[4];
        rootParameters[0].InitAsDescriptorTable(1, &ranges[0], D3D12_SHADER_VISIBILITY_PIXEL);
        rootParameters[1].InitAsDescriptorTable(1, &ranges[1], D3D12_SHADER_VISIBILITY_PIXEL);
        rootParameters[2].InitAsDescriptorTable(1, &ranges[2], D3D12_SHADER_VISIBILITY_VERTEX);
        rootParameters[3].InitAsConstants(1, 0, 0, D3D12_SHADER_VISIBILITY_PIXEL);

        CD3DX12_ROOT_SIGNATURE_DESC rootSignatureDesc;
        rootSignatureDesc.Init(_countof(rootParameters), rootParameters, 0, nullptr, D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT);

        ComPtr<ID3DBlob> signature;
        ComPtr<ID3DBlob> error;
        ThrowIfFailed(D3D12SerializeRootSignature(&rootSignatureDesc, D3D_ROOT_SIGNATURE_VERSION_1, &signature, &error));
        ThrowIfFailed(m_device->CreateRootSignature(0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(&m_rootSignature)));
    }
Call flow Parameters
CD3DX12_DESCRIPTOR_RANGE D3D12_DESCRIPTOR_RANGE_TYPE
CD3DX12_ROOT_PARAMETER D3D12_SHADER_VISIBILITY
CD3DX12_ROOT_SIGNATURE_DESC D3D12_ROOT_SIGNATURE_FLAGS
ID3DBlob
D3D12SerializeRootSignature D3D_ROOT_SIGNATURE_VERSION
CreateRootSignature

 

Create the textures

The contents of g_txMats[] are procedurally generated textures created in LoadAssets. Each city rendered in the scene shares the same diffuse texture but each also has its own procedurally generated texture. The array of textures span the rainbow spectrum to easily visualize the indexing technique.

 // Create the textures and sampler.
    {
        // Procedurally generate an array of textures to use as city materials.
        {
            // All of these materials use the same texture desc.
            D3D12_RESOURCE_DESC textureDesc = {};
            textureDesc.MipLevels = 1;
            textureDesc.Format = DXGI_FORMAT_R8G8B8A8_UNORM;
            textureDesc.Width = CityMaterialTextureWidth;
            textureDesc.Height = CityMaterialTextureHeight;
            textureDesc.Flags = D3D12_RESOURCE_FLAG_NONE;
            textureDesc.DepthOrArraySize = 1;
            textureDesc.SampleDesc.Count = 1;
            textureDesc.SampleDesc.Quality = 0;
            textureDesc.Dimension = D3D12_RESOURCE_DIMENSION_TEXTURE2D;

            // The textures evenly span the color rainbow so that each city gets
            // a different material.
            float materialGradStep = (1.0f / static_cast<float>(CityMaterialCount));

            // Generate texture data.
            vector<vector<unsigned char>> cityTextureData;
            cityTextureData.resize(CityMaterialCount);
            for (int i = 0; i < CityMaterialCount; ++i)
            {
                CD3DX12_HEAP_PROPERTIES heapProps(D3D12_HEAP_TYPE_DEFAULT);
                ThrowIfFailed(m_device->CreateCommittedResource(
                    &heapProps,
                    D3D12_HEAP_FLAG_NONE,
                    &textureDesc,
                    D3D12_RESOURCE_STATE_COPY_DEST,
                    nullptr,
                    IID_PPV_ARGS(&m_cityMaterialTextures[i])));

                // Fill the texture.
                float t = i * materialGradStep;
                cityTextureData[i].resize(CityMaterialTextureWidth * CityMaterialTextureHeight * CityMaterialTextureChannelCount);
                for (int x = 0; x < CityMaterialTextureWidth; ++x)
                {
                    for (int y = 0; y < CityMaterialTextureHeight; ++y)
                    {
                        // Compute the appropriate index into the buffer based on the x/y coordinates.
                        int pixelIndex = (y * CityMaterialTextureChannelCount * CityMaterialTextureWidth) + (x * CityMaterialTextureChannelCount);

                        // Determine this row's position along the rainbow gradient.
                        float tPrime = t + ((static_cast<float>(y) / static_cast<float>(CityMaterialTextureHeight)) * materialGradStep);

                        // Compute the RGB value for this position along the rainbow
                        // and pack the pixel value.
                        XMVECTOR hsl = XMVectorSet(tPrime, 0.5f, 0.5f, 1.0f);
                        XMVECTOR rgb = XMColorHSLToRGB(hsl);
                        cityTextureData[i][pixelIndex + 0] = static_cast<unsigned char>((255 * XMVectorGetX(rgb)));
                        cityTextureData[i][pixelIndex + 1] = static_cast<unsigned char>((255 * XMVectorGetY(rgb)));
                        cityTextureData[i][pixelIndex + 2] = static_cast<unsigned char>((255 * XMVectorGetZ(rgb)));
                        cityTextureData[i][pixelIndex + 3] = 255;
                    }
                }
            }
        }
Call flow Parameters
D3D12_RESOURCE_DESC
DXGI_FORMAT
D3D12_RESOURCE_FLAGS
[D3D12_RESOURCE_DIMENSION](/windows/desktop/api/d3d12/ne-d3d12-d3d12_resource_dimension)
CreateCommittedResource
CD3DX12_HEAP_PROPERTIES
D3D12_HEAP_TYPE
[D3D12_HEAP_FLAG](/windows/desktop/api/d3d12/ne-d3d12-d3d12_heap_flags)
CD3DX12_RESOURCE_DESC
[D3D12_RESOURCE_STATES](/windows/desktop/api/d3d12/ne-d3d12-d3d12_resource_states)
XMVECTOR
XMVectorSet
[XMColorHSLToRGB](/windows/desktop/api/directxmath/nf-directxmath-xmcolorhsltorgb)

 

Upload the texture data

Texture data is uploaded to the GPU via an upload heap and SRVs are created for each and stored in an SRV descriptor heap.

         // Upload texture data to the default heap resources.
            {
                const UINT subresourceCount = textureDesc.DepthOrArraySize * textureDesc.MipLevels;
                const UINT64 uploadBufferStep = GetRequiredIntermediateSize(m_cityMaterialTextures[0].Get(), 0, subresourceCount); // All of our textures are the same size in this case.
                const UINT64 uploadBufferSize = uploadBufferStep * CityMaterialCount;
                CD3DX12_HEAP_PROPERTIES uploadHeap(D3D12_HEAP_TYPE_UPLOAD);
                auto uploadDesc = CD3DX12_RESOURCE_DESC::Buffer(uploadBufferSize);
                ThrowIfFailed(m_device->CreateCommittedResource(
                    &uploadHeap,
                    D3D12_HEAP_FLAG_NONE,
                    &uploadDesc,
                    D3D12_RESOURCE_STATE_GENERIC_READ,
                    nullptr,
                    IID_PPV_ARGS(&materialsUploadHeap)));

                for (int i = 0; i < CityMaterialCount; ++i)
                {
                    // Copy data to the intermediate upload heap and then schedule 
                    // a copy from the upload heap to the appropriate texture.
                    D3D12_SUBRESOURCE_DATA textureData = {};
                    textureData.pData = &cityTextureData[i][0];
                    textureData.RowPitch = static_cast<LONG_PTR>((CityMaterialTextureChannelCount * textureDesc.Width));
                    textureData.SlicePitch = textureData.RowPitch * textureDesc.Height;

                    UpdateSubresources(m_commandList.Get(), m_cityMaterialTextures[i].Get(), materialsUploadHeap.Get(), i * uploadBufferStep, 0, subresourceCount, &textureData);
                    auto barrier = CD3DX12_RESOURCE_BARRIER::Transition(m_cityMaterialTextures[i].Get(), D3D12_RESOURCE_STATE_COPY_DEST, D3D12_RESOURCE_STATE_PIXEL_SHADER_RESOURCE);
                    m_commandList->ResourceBarrier(1, &barrier);
                }
            }
Call flow Parameters
GetRequiredIntermediateSize
CreateCommittedResource
CD3DX12_HEAP_PROPERTIES
D3D12_HEAP_TYPE
D3D12_HEAP_FLAG
CD3DX12_RESOURCE_DESC
D3D12_RESOURCE_STATES
D3D12_SUBRESOURCE_DATA
UpdateSubresources
ResourceBarrier
CD3DX12_RESOURCE_BARRIER
D3D12_RESOURCE_STATES

 

Load the diffuse texture

The diffuse texture, g_txDiffuse, is uploaded in a similar manner and also gets its own SRV, but the texture data is already defined in occcity.bin.

// Load the occcity diffuse texture with baked-in ambient lighting.
        // This texture will be blended with a texture from the materials
        // array in the pixel shader.
        {
            D3D12_RESOURCE_DESC textureDesc = {};
            textureDesc.MipLevels = SampleAssets::Textures[0].MipLevels;
            textureDesc.Format = SampleAssets::Textures[0].Format;
            textureDesc.Width = SampleAssets::Textures[0].Width;
            textureDesc.Height = SampleAssets::Textures[0].Height;
            textureDesc.Flags = D3D12_RESOURCE_FLAG_NONE;
            textureDesc.DepthOrArraySize = 1;
            textureDesc.SampleDesc.Count = 1;
            textureDesc.SampleDesc.Quality = 0;
            textureDesc.Dimension = D3D12_RESOURCE_DIMENSION_TEXTURE2D;

            CD3DX12_HEAP_PROPERTIES heapProps(D3D12_HEAP_TYPE_DEFAULT);
            ThrowIfFailed(m_device->CreateCommittedResource(
                &heapProps,
                D3D12_HEAP_FLAG_NONE,
                &textureDesc,
                D3D12_RESOURCE_STATE_COPY_DEST,
                nullptr,
                IID_PPV_ARGS(&m_cityDiffuseTexture)));

            const UINT subresourceCount = textureDesc.DepthOrArraySize * textureDesc.MipLevels;
            const UINT64 uploadBufferSize = GetRequiredIntermediateSize(m_cityDiffuseTexture.Get(), 0, subresourceCount);
            CD3DX12_HEAP_PROPERTIES uploadHeap(D3D12_HEAP_TYPE_UPLOAD);
            auto uploadDesc = CD3DX12_RESOURCE_DESC::Buffer(uploadBufferSize);
            ThrowIfFailed(m_device->CreateCommittedResource(
                &uploadHeap,
                D3D12_HEAP_FLAG_NONE,
                &uploadDesc,
                D3D12_RESOURCE_STATE_GENERIC_READ,
                nullptr,
                IID_PPV_ARGS(&textureUploadHeap)));

            // Copy data to the intermediate upload heap and then schedule 
            // a copy from the upload heap to the diffuse texture.
            D3D12_SUBRESOURCE_DATA textureData = {};
            textureData.pData = pMeshData + SampleAssets::Textures[0].Data[0].Offset;
            textureData.RowPitch = SampleAssets::Textures[0].Data[0].Pitch;
            textureData.SlicePitch = SampleAssets::Textures[0].Data[0].Size;

            UpdateSubresources(m_commandList.Get(), m_cityDiffuseTexture.Get(), textureUploadHeap.Get(), 0, 0, subresourceCount, &textureData);
            auto barrier = CD3DX12_RESOURCE_BARRIER::Transition(m_cityDiffuseTexture.Get(), D3D12_RESOURCE_STATE_COPY_DEST, D3D12_RESOURCE_STATE_PIXEL_SHADER_RESOURCE);
            m_commandList->ResourceBarrier(1, &barrier);
        }
Call flow Parameters
D3D12_RESOURCE_DESC
D3D12_RESOURCE_FLAGS
D3D12_RESOURCE_DIMENSION
CreateCommittedResource
CD3DX12_HEAP_PROPERTIES
D3D12_HEAP_TYPE
D3D12_HEAP_FLAG
CD3DX12_RESOURCE_DESC
D3D12_RESOURCE_STATES
GetRequiredIntermediateSize
CreateCommittedResource
CD3DX12_HEAP_PROPERTIES
D3D12_HEAP_TYPE
D3D12_HEAP_FLAG
CD3DX12_RESOURCE_DESC
D3D12_RESOURCE_STATES
D3D12_SUBRESOURCE_DATA
ResourceBarrier
CD3DX12_RESOURCE_BARRIER
D3D12_RESOURCE_STATES

 

Create a sampler

Finally for LoadAssets, a single sampler is created to sample from either the diffuse texture or the texture array.

 // Describe and create a sampler.
        D3D12_SAMPLER_DESC samplerDesc = {};
        samplerDesc.Filter = D3D12_FILTER_MIN_MAG_MIP_LINEAR;
        samplerDesc.AddressU = D3D12_TEXTURE_ADDRESS_MODE_WRAP;
        samplerDesc.AddressV = D3D12_TEXTURE_ADDRESS_MODE_WRAP;
        samplerDesc.AddressW = D3D12_TEXTURE_ADDRESS_MODE_WRAP;
        samplerDesc.MinLOD = 0;
        samplerDesc.MaxLOD = D3D12_FLOAT32_MAX;
        samplerDesc.MipLODBias = 0.0f;
        samplerDesc.MaxAnisotropy = 1;
        samplerDesc.ComparisonFunc = D3D12_COMPARISON_FUNC_ALWAYS;
        m_device->CreateSampler(&samplerDesc, m_samplerHeap->GetCPUDescriptorHandleForHeapStart());

        // Create SRV for the city's diffuse texture.
        CD3DX12_CPU_DESCRIPTOR_HANDLE srvHandle(m_cbvSrvHeap->GetCPUDescriptorHandleForHeapStart(), 0, m_cbvSrvDescriptorSize);
        D3D12_SHADER_RESOURCE_VIEW_DESC diffuseSrvDesc = {};
        diffuseSrvDesc.Shader4ComponentMapping = D3D12_DEFAULT_SHADER_4_COMPONENT_MAPPING;
        diffuseSrvDesc.Format = SampleAssets::Textures->Format;
        diffuseSrvDesc.ViewDimension = D3D12_SRV_DIMENSION_TEXTURE2D;
        diffuseSrvDesc.Texture2D.MipLevels = 1;
        m_device->CreateShaderResourceView(m_cityDiffuseTexture.Get(), &diffuseSrvDesc, srvHandle);
        srvHandle.Offset(m_cbvSrvDescriptorSize);

        // Create SRVs for each city material.
        for (int i = 0; i < CityMaterialCount; ++i)
        {
            D3D12_SHADER_RESOURCE_VIEW_DESC materialSrvDesc = {};
            materialSrvDesc.Shader4ComponentMapping = D3D12_DEFAULT_SHADER_4_COMPONENT_MAPPING;
            materialSrvDesc.Format = DXGI_FORMAT_R8G8B8A8_UNORM;
            materialSrvDesc.ViewDimension = D3D12_SRV_DIMENSION_TEXTURE2D;
            materialSrvDesc.Texture2D.MipLevels = 1;
            m_device->CreateShaderResourceView(m_cityMaterialTextures[i].Get(), &materialSrvDesc, srvHandle);

            srvHandle.Offset(m_cbvSrvDescriptorSize);
        }   
Call flow Parameters
D3D12_SAMPLER_DESC
D3D12_FILTER

D3D12_FLOAT32_MAX (Constants)
D3D12_COMPARISON_FUNC
CreateSampler
CD3DX12_CPU_DESCRIPTOR_HANDLE GetCPUDescriptorHandleForHeapStart
D3D12_SHADER_RESOURCE_VIEW_DESC
D3D12_DEFAULT_SHADER_4_COMPONENT_MAPPING
D3D12_SRV_DIMENSION
CreateShaderResourceView
D3D12_SHADER_RESOURCE_VIEW_DESC
D3D12_DEFAULT_SHADER_4_COMPONENT_MAPPING
DXGI_FORMAT
D3D12_SRV_DIMENSION
CreateShaderResourceView

 

Dynamically change the root parameter index

If we were to render the scene now, all of the cities would appear the same, because we have not set the value of our root constant, matIndex. Each pixel shader would index into the 0th slot of g_txMats and the scene would look like this:

all cities appear the same color

The value of the root constant is set in FrameResource::PopulateCommandLists. In the double for loop where a draw command is recorded for each city, we record a call to SetGraphicsRoot32BitConstants specifying our root parameter index in regards to the root signature – in this case 3 – the value of the dynamic index and an offset – in this case 0. Since the length of g_txMats is equal to the number of cities we render, the value of the index is incrementally set for each city.

 for (UINT i = 0; i < m_cityRowCount; i++)
    {
        for (UINT j = 0; j < m_cityColumnCount; j++)
        {
            pCommandList->SetPipelineState(pPso);

            // Set the city's root constant for dynamically indexing into the material array.
            pCommandList->SetGraphicsRoot32BitConstant(3, (i * m_cityColumnCount) + j, 0);

            // Set this city's CBV table and move to the next descriptor.
            pCommandList->SetGraphicsRootDescriptorTable(2, cbvSrvHandle);
            cbvSrvHandle.Offset(cbvSrvDescriptorSize);

            pCommandList->DrawIndexedInstanced(numIndices, 1, 0, 0, 0);
        }
    }
Call flow Parameters
SetPipelineState
SetGraphicsRoot32BitConstant
SetGraphicsRootDescriptorTable
DrawIndexedInstanced

Run the sample

Now when we render the scene, each city will have a different value for matIndex and will thus look up a different texture from g_txMats[] making the scene look like this:

all cities appear in different colors

D3D12 Code Walk-Throughs

Effect-Compiler Tool

HLSL Shader Model 5.1 Features for Direct3D 12

Resource Binding in HLSL

Shader Model 5.1

Specifying Root Signatures in HLSL