Kaganapan
Mar 17, 9 PM - Mar 21, 10 AM
Sumali sa serye ng meetup upang bumuo ng mga scalable AI solusyon batay sa mga kaso ng paggamit ng tunay na mundo sa mga kapwa developer at eksperto.
Magparehistro naHindi na suportado ang browser na ito.
Mag-upgrade sa Microsoft Edge para samantalahin ang mga pinakabagong tampok, update sa seguridad, at teknikal na suporta.
The following table lists the metrics available for the Microsoft.DataFactory/datafactories resource type.
Table headings
Metric - The metric display name as it appears in the Azure portal.
Name in Rest API - Metric name as referred to in the REST API.
Unit - Unit of measure.
Aggregation - The default aggregation type. Valid values: Average, Minimum, Maximum, Total, Count.
Dimensions - Dimensions available for the metric.
Time Grains - Intervals at which the metric is sampled. For example, PT1M
indicates that the metric is sampled every minute, PT30M
every 30 minutes, PT1H
every hour, and so on.
DS Export- Whether the metric is exportable to Azure Monitor Logs via Diagnostic Settings.
For information on exporting metrics, see - Metrics export using data collection rules and Create diagnostic settings in Azure Monitor.
For information on metric retention, see Azure Monitor Metrics overview.
Metric | Name in REST API | Unit | Aggregation | Dimensions | Time Grains | DS Export |
---|---|---|---|---|---|---|
Failed Runs Failed Runs |
FailedRuns |
Count | Total (Sum) | pipelineName , activityName |
PT1H | Yes |
Successful Runs Successful Runs |
SuccessfulRuns |
Count | Total (Sum) | pipelineName , activityName |
PT1H | Yes |
Kaganapan
Mar 17, 9 PM - Mar 21, 10 AM
Sumali sa serye ng meetup upang bumuo ng mga scalable AI solusyon batay sa mga kaso ng paggamit ng tunay na mundo sa mga kapwa developer at eksperto.
Magparehistro naPagsasanay
Module
Orchestrate processes and data movement with Microsoft Fabric - Training
Use Data Factory pipelines in Microsoft Fabric
Sertipikasyon
Microsoft Certified: Fabric Data Engineer Associate - Certifications
As a Fabric Data Engineer, you should have subject matter expertise with data loading patterns, data architectures, and orchestration processes.
Dokumentasyon
Supported metrics - Microsoft.DataFactory/factories - Azure Monitor
Reference for Microsoft.DataFactory/factories metrics in Azure Monitor.
Supported log categories - Microsoft.DataFactory/factories - Azure Monitor
Reference for Microsoft.DataFactory/factories in Azure Monitor Logs.
Monitoring data reference for Azure Data Factory - Azure Data Factory
This article contains important reference material you need when you monitor Azure Data Factory.