Note
Ang pag-access sa pahinang ito ay nangangailangan ng pahintulot. Maaari mong subukang mag-sign in o magpalit ng mga direktoryo.
Ang pag-access sa pahinang ito ay nangangailangan ng pahintulot. Maaari mong subukang baguhin ang mga direktoryo.
The following tutorials help you understand how to use ML.NET to build custom machine learning solutions and integrate them into your .NET applications:
- Sentiment analysis: Apply a binary classification task using ML.NET.
- GitHub issue classification: Apply a multiclass classification task using ML.NET.
- Price predictor: Apply a regression task using ML.NET.
- Iris clustering: Apply a clustering task using ML.NET.
- Recommendation: Generate movie recommendations based on previous user ratings
- Image classification: Retrain an existing TensorFlow model to create a custom image classifier using ML.NET.
- Anomaly detection: Build an anomaly detection application for product sales data analysis.
- Detect objects in images: Detect objects in images using a pretrained ONNX model.
- Categorize an image from Custom Vision ONNX model: Detect objects in images using an ONNX model trained in the Microsoft Custom Vision service.
- Classify sentiment of movie reviews: Load a pretrained TensorFlow model to classify the sentiment of movie reviews.
Next steps
For more examples that use ML.NET, see the dotnet/machinelearning-samples GitHub repository.
Makipagtulungan sa amin sa GitHub
Ang pinagmulan para sa content na ito ay mahahanap sa GitHub, kung saan maaari ka ring lumikha at sumuri ng mga isyu at mga pull request. Para sa higit pang impormasyon, tingnan ang aming gabay sa contributor.