Partage via


BigInteger.Max(BigInteger, BigInteger) Méthode

Définition

Retourne la plus grande des deux valeurs BigInteger.

public:
 static System::Numerics::BigInteger Max(System::Numerics::BigInteger left, System::Numerics::BigInteger right);
public:
 static System::Numerics::BigInteger Max(System::Numerics::BigInteger left, System::Numerics::BigInteger right) = System::Numerics::INumber<System::Numerics::BigInteger>::Max;
public static System.Numerics.BigInteger Max (System.Numerics.BigInteger left, System.Numerics.BigInteger right);
static member Max : System.Numerics.BigInteger * System.Numerics.BigInteger -> System.Numerics.BigInteger
Public Shared Function Max (left As BigInteger, right As BigInteger) As BigInteger

Paramètres

left
BigInteger

Première valeur à comparer.

right
BigInteger

Deuxième valeur à comparer.

Retours

Paramètre left ou right (selon celui qui est le plus grand).

Implémente

Exemples

L’exemple suivant utilise la Max méthode pour sélectionner le plus grand nombre dans un tableau de BigInteger valeurs.

using System;
using System.Numerics;

public class Example
{
   public static void Main()
   {
      BigInteger[] numbers = { Int64.MaxValue * BigInteger.MinusOne,
                               BigInteger.MinusOne,
                               10359321239000,
                               BigInteger.Pow(103988, 2),
                               BigInteger.Multiply(Int32.MaxValue, Int16.MaxValue),
                               BigInteger.Add(BigInteger.Pow(Int64.MaxValue, 2),
                               BigInteger.Pow(Int32.MaxValue, 2)) };
      if (numbers.Length < 2)
      {
         Console.WriteLine("Cannot determine which is the larger of {0} numbers.",
                            numbers.Length);
         return;
      }

      BigInteger largest = numbers[numbers.GetLowerBound(0)];

      for (int ctr = numbers.GetLowerBound(0) + 1; ctr <= numbers.GetUpperBound(0); ctr++)
         largest = BigInteger.Max(largest, numbers[ctr]);

      Console.WriteLine("The values:");
      foreach (BigInteger number in numbers)
         Console.WriteLine("{0,55:N0}", number);

      Console.WriteLine("\nThe largest number of the series is:");
      Console.WriteLine("   {0:N0}", largest);
   }
}
// The example displays the following output:
//       The values:
//                                    -9,223,372,036,854,775,807
//                                                            -1
//                                            10,359,321,239,000
//                                                10,813,504,144
//                                            70,366,596,661,249
//            85,070,591,730,234,615,852,008,593,798,364,921,858
//
//       The largest number of the series is:
//          85,070,591,730,234,615,852,008,593,798,364,921,858
open System
open System.Numerics

let numbers =
    [| bigint Int64.MaxValue * BigInteger.MinusOne
       BigInteger.MinusOne
       10359321239000I
       BigInteger.Pow(103988I, 2)
       BigInteger.Multiply(Int32.MaxValue, Int16.MaxValue)
       BigInteger.Add(BigInteger.Pow(Int64.MaxValue, 2), BigInteger.Pow(Int32.MaxValue, 2)) |]

if numbers.Length < 2 then
    printfn $"Cannot determine which is the larger of {numbers.Length} numbers."
else
    let mutable largest = numbers[0]

    for ctr = 1 to numbers.Length - 1 do
        largest <- BigInteger.Max(largest, numbers[ctr])

    printfn "The values:"

    for number in numbers do
        printfn $"{number, 55:N0}"

    printfn "\nThe largest number of the series is:"
    printfn $"   {largest:N0}"
// The example displays the following output:
//       The values:
//                                    -9,223,372,036,854,775,807
//                                                            -1
//                                            10,359,321,239,000
//                                                10,813,504,144
//                                            70,366,596,661,249
//            85,070,591,730,234,615,852,008,593,798,364,921,858
//
//       The largest number of the series is:
//          85,070,591,730,234,615,852,008,593,798,364,921,858
Imports System.Numerics

Module Example
   Public Sub Main()
      Dim numbers() As BigInteger = { Int64.MaxValue * BigInteger.MinusOne, 
                                      BigInteger.MinusOne, 
                                      10359321239000, 
                                      BigInteger.Pow(103988, 2),
                                      BigInteger.Multiply(Int32.MaxValue, Int16.MaxValue), 
                                      BigInteger.Add(BigInteger.Pow(Int64.MaxValue, 2), 
                                                     BigInteger.Pow(Int32.MaxValue, 2)) }
      If numbers.Length < 2 Then 
         Console.WriteLine("Cannot determine which is the larger of {0} numbers.",
                            numbers.Length)
         Exit Sub
      End If
           
      Dim largest As BigInteger = numbers(numbers.GetLowerBound(0))
      
      For ctr As Integer = numbers.GetLowerBound(0) + 1 To numbers.GetUpperBound(0)
         largest = BigInteger.Max(largest, numbers(ctr))
      Next
      Console.WriteLine("The values:")
      For Each number As BigInteger In numbers
         Console.WriteLine("{0,55:N0}", number)
      Next   
      Console.WriteLine()
      Console.WriteLine("The largest number of the series is:")
      Console.WriteLine("   {0:N0}", largest)   
   End Sub
End Module
' The example displays the following output:
'       The values:
'                                    -9,223,372,036,854,775,807
'                                                            -1
'                                            10,359,321,239,000
'                                                10,813,504,144
'                                            70,366,596,661,249
'            85,070,591,730,234,615,852,008,593,798,364,921,858
'       
'       The largest number of the series is:
'          85,070,591,730,234,615,852,008,593,798,364,921,858

Remarques

Cette méthode correspond à la méthode pour les Math.Max types numériques primitifs.

S’applique à

Voir aussi