AnomalyDetectorClient.DetectUnivariateEntireSeries Méthode
Définition
Important
Certaines informations portent sur la préversion du produit qui est susceptible d’être en grande partie modifiée avant sa publication. Microsoft exclut toute garantie, expresse ou implicite, concernant les informations fournies ici.
Surcharges
DetectUnivariateEntireSeries(UnivariateDetectionOptions, CancellationToken) |
Détectez les anomalies pour l’ensemble de la série par lot. |
DetectUnivariateEntireSeries(RequestContent, RequestContext) |
[Méthode de protocole] Détectez les anomalies pour l’ensemble de la série par lot.
|
DetectUnivariateEntireSeries(UnivariateDetectionOptions, CancellationToken)
- Source:
- AnomalyDetectorClient.cs
Détectez les anomalies pour l’ensemble de la série par lot.
public virtual Azure.Response<Azure.AI.AnomalyDetector.UnivariateEntireDetectionResult> DetectUnivariateEntireSeries (Azure.AI.AnomalyDetector.UnivariateDetectionOptions options, System.Threading.CancellationToken cancellationToken = default);
abstract member DetectUnivariateEntireSeries : Azure.AI.AnomalyDetector.UnivariateDetectionOptions * System.Threading.CancellationToken -> Azure.Response<Azure.AI.AnomalyDetector.UnivariateEntireDetectionResult>
override this.DetectUnivariateEntireSeries : Azure.AI.AnomalyDetector.UnivariateDetectionOptions * System.Threading.CancellationToken -> Azure.Response<Azure.AI.AnomalyDetector.UnivariateEntireDetectionResult>
Public Overridable Function DetectUnivariateEntireSeries (options As UnivariateDetectionOptions, Optional cancellationToken As CancellationToken = Nothing) As Response(Of UnivariateEntireDetectionResult)
Paramètres
- options
- UnivariateDetectionOptions
Méthode de détection d’anomalie univariée.
- cancellationToken
- CancellationToken
Jeton d’annulation à utiliser.
Retours
Exceptions
options
a la valeur null.
Exemples
Cet exemple montre comment appeler DetectUnivariateEntireSeries avec les paramètres requis.
var credential = new AzureKeyCredential("<key>");
var endpoint = new Uri("<https://my-service.azure.com>");
var client = new AnomalyDetectorClient(endpoint, credential);
var options = new UnivariateDetectionOptions(new TimeSeriesPoint[]
{
new TimeSeriesPoint(3.14f)
{
Timestamp = DateTimeOffset.UtcNow,
}
})
{
Granularity = TimeGranularity.Yearly,
CustomInterval = 1234,
Period = 1234,
MaxAnomalyRatio = 3.14f,
Sensitivity = 1234,
ImputeMode = ImputeMode.Auto,
ImputeFixedValue = 3.14f,
};
var result = client.DetectUnivariateEntireSeries(options);
Remarques
Cette opération génère un modèle avec une série entière. Chaque point est détecté avec le même modèle. Avec cette méthode, les points avant et après un certain point sont utilisés pour déterminer s’il s’agit d’une anomalie. L’ensemble de la détection peut donner à l’utilisateur un état global de la série chronologique.
S’applique à
DetectUnivariateEntireSeries(RequestContent, RequestContext)
- Source:
- AnomalyDetectorClient.cs
[Méthode de protocole] Détectez les anomalies pour l’ensemble de la série par lot.
- Cette méthode de protocole permet la création explicite de la demande et le traitement de la réponse pour les scénarios avancés.
- Essayez d’abord la surcharge de commodité plus simple DetectUnivariateEntireSeries(UnivariateDetectionOptions, CancellationToken) avec des modèles fortement typés.
public virtual Azure.Response DetectUnivariateEntireSeries (Azure.Core.RequestContent content, Azure.RequestContext context = default);
abstract member DetectUnivariateEntireSeries : Azure.Core.RequestContent * Azure.RequestContext -> Azure.Response
override this.DetectUnivariateEntireSeries : Azure.Core.RequestContent * Azure.RequestContext -> Azure.Response
Public Overridable Function DetectUnivariateEntireSeries (content As RequestContent, Optional context As RequestContext = Nothing) As Response
Paramètres
- content
- RequestContent
Contenu à envoyer en tant que corps de la demande.
- context
- RequestContext
Contexte de la demande, qui peut remplacer les comportements par défaut du pipeline client par appel.
Retours
Réponse retournée par le service.
Exceptions
content
a la valeur null.
Le service a retourné un code de status non réussi.
Exemples
Cet exemple montre comment appeler DetectUnivariateEntireSeries avec le contenu de requête requis et comment analyser le résultat.
var credential = new AzureKeyCredential("<key>");
var endpoint = new Uri("<https://my-service.azure.com>");
var client = new AnomalyDetectorClient(endpoint, credential);
var data = new {
series = new[] {
new {
value = 123.45f,
}
},
};
Response response = client.DetectUnivariateEntireSeries(RequestContent.Create(data));
JsonElement result = JsonDocument.Parse(response.ContentStream).RootElement;
Console.WriteLine(result.GetProperty("period").ToString());
Console.WriteLine(result.GetProperty("expectedValues")[0].ToString());
Console.WriteLine(result.GetProperty("upperMargins")[0].ToString());
Console.WriteLine(result.GetProperty("lowerMargins")[0].ToString());
Console.WriteLine(result.GetProperty("isAnomaly")[0].ToString());
Console.WriteLine(result.GetProperty("isNegativeAnomaly")[0].ToString());
Console.WriteLine(result.GetProperty("isPositiveAnomaly")[0].ToString());
Cet exemple montre comment appeler DetectUnivariateEntireSeries avec tout le contenu de la demande et comment analyser le résultat.
var credential = new AzureKeyCredential("<key>");
var endpoint = new Uri("<https://my-service.azure.com>");
var client = new AnomalyDetectorClient(endpoint, credential);
var data = new {
series = new[] {
new {
timestamp = "2022-05-10T14:57:31.2311892-04:00",
value = 123.45f,
}
},
granularity = "yearly",
customInterval = 1234,
period = 1234,
maxAnomalyRatio = 123.45f,
sensitivity = 1234,
imputeMode = "auto",
imputeFixedValue = 123.45f,
};
Response response = client.DetectUnivariateEntireSeries(RequestContent.Create(data), new RequestContext());
JsonElement result = JsonDocument.Parse(response.ContentStream).RootElement;
Console.WriteLine(result.GetProperty("period").ToString());
Console.WriteLine(result.GetProperty("expectedValues")[0].ToString());
Console.WriteLine(result.GetProperty("upperMargins")[0].ToString());
Console.WriteLine(result.GetProperty("lowerMargins")[0].ToString());
Console.WriteLine(result.GetProperty("isAnomaly")[0].ToString());
Console.WriteLine(result.GetProperty("isNegativeAnomaly")[0].ToString());
Console.WriteLine(result.GetProperty("isPositiveAnomaly")[0].ToString());
Console.WriteLine(result.GetProperty("severity")[0].ToString());
Remarques
Cette opération génère un modèle avec une série entière, chaque point est détecté avec le même modèle. Avec cette méthode, les points avant et après un certain point sont utilisés pour déterminer s’il s’agit d’une anomalie. L’ensemble de la détection peut donner à l’utilisateur une status globale de la série chronologique.
Vous trouverez ci-dessous le schéma JSON pour les charges utiles de requête et de réponse.
Corps de la demande :
Schéma pour UnivariateDetectionOptions
:
{
series: [
{
timestamp: string (date & time), # Optional.
value: number, # Required.
}
], # Required.
granularity: "yearly" | "monthly" | "weekly" | "daily" | "hourly" | "minutely" | "secondly" | "microsecond" | "none", # Optional.
customInterval: number, # Optional.
period: number, # Optional.
maxAnomalyRatio: number, # Optional.
sensitivity: number, # Optional.
imputeMode: "auto" | "previous" | "linear" | "fixed" | "zero" | "notFill", # Optional.
imputeFixedValue: number, # Optional.
}
Corps de réponse :
Schéma pour UnivariateEntireDetectionResult
:
{
period: number, # Required.
expectedValues: [number], # Required.
upperMargins: [number], # Required.
lowerMargins: [number], # Required.
isAnomaly: [boolean], # Required.
isNegativeAnomaly: [boolean], # Required.
isPositiveAnomaly: [boolean], # Required.
severity: [number], # Optional.
}
S’applique à
Azure SDK for .NET