AnomalyDetectorClient.DetectUnivariateEntireSeriesAsync Méthode
Définition
Important
Certaines informations portent sur la préversion du produit qui est susceptible d’être en grande partie modifiée avant sa publication. Microsoft exclut toute garantie, expresse ou implicite, concernant les informations fournies ici.
Surcharges
DetectUnivariateEntireSeriesAsync(RequestContent, RequestContext) |
[Méthode de protocole] Détectez les anomalies pour l’ensemble de la série en lot.
|
DetectUnivariateEntireSeriesAsync(UnivariateDetectionOptions, CancellationToken) |
Détectez les anomalies pour l’ensemble de la série en lot. |
DetectUnivariateEntireSeriesAsync(RequestContent, RequestContext)
- Source:
- AnomalyDetectorClient.cs
[Méthode de protocole] Détectez les anomalies pour l’ensemble de la série en lot.
- Cette méthode de protocole permet la création explicite de la demande et le traitement de la réponse pour les scénarios avancés.
- Essayez d’abord la surcharge de commodité plus simple DetectUnivariateEntireSeriesAsync(UnivariateDetectionOptions, CancellationToken) avec des modèles fortement typés.
public virtual System.Threading.Tasks.Task<Azure.Response> DetectUnivariateEntireSeriesAsync (Azure.Core.RequestContent content, Azure.RequestContext context = default);
abstract member DetectUnivariateEntireSeriesAsync : Azure.Core.RequestContent * Azure.RequestContext -> System.Threading.Tasks.Task<Azure.Response>
override this.DetectUnivariateEntireSeriesAsync : Azure.Core.RequestContent * Azure.RequestContext -> System.Threading.Tasks.Task<Azure.Response>
Public Overridable Function DetectUnivariateEntireSeriesAsync (content As RequestContent, Optional context As RequestContext = Nothing) As Task(Of Response)
Paramètres
- content
- RequestContent
Contenu à envoyer en tant que corps de la demande.
- context
- RequestContext
Contexte de demande, qui peut remplacer les comportements par défaut du pipeline client par appel.
Retours
Réponse retournée par le service.
Exceptions
content
a la valeur null.
Le service a retourné un code de status non réussi.
Exemples
Cet exemple montre comment appeler DetectUnivariateEntireSeriesAsync avec le contenu de requête requis et comment analyser le résultat.
var credential = new AzureKeyCredential("<key>");
var endpoint = new Uri("<https://my-service.azure.com>");
var client = new AnomalyDetectorClient(endpoint, credential);
var data = new {
series = new[] {
new {
value = 123.45f,
}
},
};
Response response = await client.DetectUnivariateEntireSeriesAsync(RequestContent.Create(data));
JsonElement result = JsonDocument.Parse(response.ContentStream).RootElement;
Console.WriteLine(result.GetProperty("period").ToString());
Console.WriteLine(result.GetProperty("expectedValues")[0].ToString());
Console.WriteLine(result.GetProperty("upperMargins")[0].ToString());
Console.WriteLine(result.GetProperty("lowerMargins")[0].ToString());
Console.WriteLine(result.GetProperty("isAnomaly")[0].ToString());
Console.WriteLine(result.GetProperty("isNegativeAnomaly")[0].ToString());
Console.WriteLine(result.GetProperty("isPositiveAnomaly")[0].ToString());
Cet exemple montre comment appeler DetectUnivariateEntireSeriesAsync avec tout le contenu de la requête et comment analyser le résultat.
var credential = new AzureKeyCredential("<key>");
var endpoint = new Uri("<https://my-service.azure.com>");
var client = new AnomalyDetectorClient(endpoint, credential);
var data = new {
series = new[] {
new {
timestamp = "2022-05-10T14:57:31.2311892-04:00",
value = 123.45f,
}
},
granularity = "yearly",
customInterval = 1234,
period = 1234,
maxAnomalyRatio = 123.45f,
sensitivity = 1234,
imputeMode = "auto",
imputeFixedValue = 123.45f,
};
Response response = await client.DetectUnivariateEntireSeriesAsync(RequestContent.Create(data), new RequestContext());
JsonElement result = JsonDocument.Parse(response.ContentStream).RootElement;
Console.WriteLine(result.GetProperty("period").ToString());
Console.WriteLine(result.GetProperty("expectedValues")[0].ToString());
Console.WriteLine(result.GetProperty("upperMargins")[0].ToString());
Console.WriteLine(result.GetProperty("lowerMargins")[0].ToString());
Console.WriteLine(result.GetProperty("isAnomaly")[0].ToString());
Console.WriteLine(result.GetProperty("isNegativeAnomaly")[0].ToString());
Console.WriteLine(result.GetProperty("isPositiveAnomaly")[0].ToString());
Console.WriteLine(result.GetProperty("severity")[0].ToString());
Remarques
Cette opération génère un modèle avec une série entière, chaque point est détecté avec le même modèle. Avec cette méthode, les points avant et après un certain point sont utilisés pour déterminer s’il s’agit d’une anomalie. L’ensemble de la détection peut donner à l’utilisateur une status globale de la série chronologique.
Vous trouverez ci-dessous le schéma JSON pour les charges utiles de demande et de réponse.
Corps de la demande :
Schéma pour UnivariateDetectionOptions
:
{
series: [
{
timestamp: string (date & time), # Optional.
value: number, # Required.
}
], # Required.
granularity: "yearly" | "monthly" | "weekly" | "daily" | "hourly" | "minutely" | "secondly" | "microsecond" | "none", # Optional.
customInterval: number, # Optional.
period: number, # Optional.
maxAnomalyRatio: number, # Optional.
sensitivity: number, # Optional.
imputeMode: "auto" | "previous" | "linear" | "fixed" | "zero" | "notFill", # Optional.
imputeFixedValue: number, # Optional.
}
Corps de réponse :
Schéma pour UnivariateEntireDetectionResult
:
{
period: number, # Required.
expectedValues: [number], # Required.
upperMargins: [number], # Required.
lowerMargins: [number], # Required.
isAnomaly: [boolean], # Required.
isNegativeAnomaly: [boolean], # Required.
isPositiveAnomaly: [boolean], # Required.
severity: [number], # Optional.
}
S’applique à
DetectUnivariateEntireSeriesAsync(UnivariateDetectionOptions, CancellationToken)
- Source:
- AnomalyDetectorClient.cs
Détectez les anomalies pour l’ensemble de la série en lot.
public virtual System.Threading.Tasks.Task<Azure.Response<Azure.AI.AnomalyDetector.UnivariateEntireDetectionResult>> DetectUnivariateEntireSeriesAsync (Azure.AI.AnomalyDetector.UnivariateDetectionOptions options, System.Threading.CancellationToken cancellationToken = default);
abstract member DetectUnivariateEntireSeriesAsync : Azure.AI.AnomalyDetector.UnivariateDetectionOptions * System.Threading.CancellationToken -> System.Threading.Tasks.Task<Azure.Response<Azure.AI.AnomalyDetector.UnivariateEntireDetectionResult>>
override this.DetectUnivariateEntireSeriesAsync : Azure.AI.AnomalyDetector.UnivariateDetectionOptions * System.Threading.CancellationToken -> System.Threading.Tasks.Task<Azure.Response<Azure.AI.AnomalyDetector.UnivariateEntireDetectionResult>>
Public Overridable Function DetectUnivariateEntireSeriesAsync (options As UnivariateDetectionOptions, Optional cancellationToken As CancellationToken = Nothing) As Task(Of Response(Of UnivariateEntireDetectionResult))
Paramètres
- options
- UnivariateDetectionOptions
Méthode de détection d’anomalie univariée.
- cancellationToken
- CancellationToken
Jeton d’annulation à utiliser.
Retours
Exceptions
options
a la valeur null.
Exemples
Cet exemple montre comment appeler DetectUnivariateEntireSeriesAsync avec les paramètres requis.
var credential = new AzureKeyCredential("<key>");
var endpoint = new Uri("<https://my-service.azure.com>");
var client = new AnomalyDetectorClient(endpoint, credential);
var options = new UnivariateDetectionOptions(new TimeSeriesPoint[]
{
new TimeSeriesPoint(3.14f)
{
Timestamp = DateTimeOffset.UtcNow,
}
})
{
Granularity = TimeGranularity.Yearly,
CustomInterval = 1234,
Period = 1234,
MaxAnomalyRatio = 3.14f,
Sensitivity = 1234,
ImputeMode = ImputeMode.Auto,
ImputeFixedValue = 3.14f,
};
var result = await client.DetectUnivariateEntireSeriesAsync(options);
Remarques
Cette opération génère un modèle avec une série entière. Chaque point est détecté avec le même modèle. Avec cette méthode, les points avant et après un certain point sont utilisés pour déterminer s’il s’agit d’une anomalie. L’ensemble de la détection peut donner à l’utilisateur un état global de la série chronologique.
S’applique à
Azure SDK for .NET