NormalizationCatalog.NormalizeSupervisedBinning Méthode
Définition
Important
Certaines informations portent sur la préversion du produit qui est susceptible d’être en grande partie modifiée avant sa publication. Microsoft exclut toute garantie, expresse ou implicite, concernant les informations fournies ici.
Surcharges
NormalizeSupervisedBinning(TransformsCatalog, InputOutputColumnPair[], String, Int64, Boolean, Int32, Int32) |
Créez un NormalizingEstimator, qui normalise en affectant les données dans des bacs en fonction de la corrélation avec la |
NormalizeSupervisedBinning(TransformsCatalog, String, String, String, Int64, Boolean, Int32, Int32) |
Créez un NormalizingEstimator, qui normalise en affectant les données dans des bacs en fonction de la corrélation avec la |
NormalizeSupervisedBinning(TransformsCatalog, InputOutputColumnPair[], String, Int64, Boolean, Int32, Int32)
Créez un NormalizingEstimator, qui normalise en affectant les données dans des bacs en fonction de la corrélation avec la labelColumnName
colonne.
public static Microsoft.ML.Transforms.NormalizingEstimator NormalizeSupervisedBinning (this Microsoft.ML.TransformsCatalog catalog, Microsoft.ML.InputOutputColumnPair[] columns, string labelColumnName = "Label", long maximumExampleCount = 1000000000, bool fixZero = true, int maximumBinCount = 1024, int mininimumExamplesPerBin = 10);
static member NormalizeSupervisedBinning : Microsoft.ML.TransformsCatalog * Microsoft.ML.InputOutputColumnPair[] * string * int64 * bool * int * int -> Microsoft.ML.Transforms.NormalizingEstimator
<Extension()>
Public Function NormalizeSupervisedBinning (catalog As TransformsCatalog, columns As InputOutputColumnPair(), Optional labelColumnName As String = "Label", Optional maximumExampleCount As Long = 1000000000, Optional fixZero As Boolean = true, Optional maximumBinCount As Integer = 1024, Optional mininimumExamplesPerBin As Integer = 10) As NormalizingEstimator
Paramètres
- catalog
- TransformsCatalog
Catalogue de transformation
- columns
- InputOutputColumnPair[]
Paires de colonnes d’entrée et de sortie. Les colonnes d’entrée doivent être de type Singlede données, Double ou un vecteur de taille connue de ces types. Le type de données de la colonne de sortie est identique à la colonne d’entrée associée.
- labelColumnName
- String
Nom de la colonne d’étiquette pour le binning supervisé.
- maximumExampleCount
- Int64
Nombre maximal d’exemples utilisés pour entraîner le normaliseur.
- fixZero
- Boolean
Indique s’il faut mapper zéro à zéro, en conservant une éparse.
- maximumBinCount
- Int32
Nombre maximal de bacs (puissance de 2 recommandée).
- mininimumExamplesPerBin
- Int32
Nombre minimal d’exemples par bac.
Retours
S’applique à
NormalizeSupervisedBinning(TransformsCatalog, String, String, String, Int64, Boolean, Int32, Int32)
Créez un NormalizingEstimator, qui normalise en affectant les données dans des bacs en fonction de la corrélation avec la labelColumnName
colonne.
public static Microsoft.ML.Transforms.NormalizingEstimator NormalizeSupervisedBinning (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName = default, string labelColumnName = "Label", long maximumExampleCount = 1000000000, bool fixZero = true, int maximumBinCount = 1024, int mininimumExamplesPerBin = 10);
static member NormalizeSupervisedBinning : Microsoft.ML.TransformsCatalog * string * string * string * int64 * bool * int * int -> Microsoft.ML.Transforms.NormalizingEstimator
<Extension()>
Public Function NormalizeSupervisedBinning (catalog As TransformsCatalog, outputColumnName As String, Optional inputColumnName As String = Nothing, Optional labelColumnName As String = "Label", Optional maximumExampleCount As Long = 1000000000, Optional fixZero As Boolean = true, Optional maximumBinCount As Integer = 1024, Optional mininimumExamplesPerBin As Integer = 10) As NormalizingEstimator
Paramètres
- catalog
- TransformsCatalog
Catalogue de transformation
- outputColumnName
- String
Nom de la colonne résultant de la transformation de inputColumnName
.
Le type de données de cette colonne est identique à la colonne d’entrée.
- inputColumnName
- String
Nom de la colonne à transformer. Si elle est définie sur null
, la valeur du outputColumnName
fichier sera utilisée comme source.
Le type de données de cette colonne doit être Single, Double ou un vecteur de taille connue de ces types.
- labelColumnName
- String
Nom de la colonne d’étiquette pour le binning supervisé.
- maximumExampleCount
- Int64
Nombre maximal d’exemples utilisés pour entraîner le normaliseur.
- fixZero
- Boolean
Indique s’il faut mapper zéro à zéro, en conservant une éparse.
- maximumBinCount
- Int32
Nombre maximal de bacs (puissance de 2 recommandée).
- mininimumExamplesPerBin
- Int32
Nombre minimal d’exemples par bac.
Retours
Exemples
using System;
using System.Collections.Generic;
using System.Collections.Immutable;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using static Microsoft.ML.Transforms.NormalizingTransformer;
namespace Samples.Dynamic
{
public class NormalizeSupervisedBinning
{
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var mlContext = new MLContext();
var samples = new List<DataPoint>()
{
new DataPoint(){ Features = new float[4] { 8, 1, 3, 0},
Bin ="Bin1" },
new DataPoint(){ Features = new float[4] { 6, 2, 2, 1},
Bin ="Bin2" },
new DataPoint(){ Features = new float[4] { 5, 3, 0, 2},
Bin ="Bin2" },
new DataPoint(){ Features = new float[4] { 4,-8, 1, 3},
Bin ="Bin3" },
new DataPoint(){ Features = new float[4] { 2,-5,-1, 4},
Bin ="Bin3" }
};
// Convert training data to IDataView, the general data type used in
// ML.NET.
var data = mlContext.Data.LoadFromEnumerable(samples);
// Let's transform "Bin" column from string to key.
data = mlContext.Transforms.Conversion.MapValueToKey("Bin").Fit(data)
.Transform(data);
// NormalizeSupervisedBinning normalizes the data by constructing bins
// based on correlation with the label column and produce output based
// on to which bin original value belong.
var normalize = mlContext.Transforms.NormalizeSupervisedBinning(
"Features", labelColumnName: "Bin", mininimumExamplesPerBin: 1,
fixZero: false);
// NormalizeSupervisedBinning normalizes the data by constructing bins
// based on correlation with the label column and produce output based
// on to which bin original value belong but make sure zero values would
// remain zero after normalization. Helps preserve sparsity.
var normalizeFixZero = mlContext.Transforms.NormalizeSupervisedBinning(
"Features", labelColumnName: "Bin", mininimumExamplesPerBin: 1,
fixZero: true);
// Now we can transform the data and look at the output to confirm the
// behavior of the estimator. This operation doesn't actually evaluate
// data until we read the data below.
var normalizeTransform = normalize.Fit(data);
var transformedData = normalizeTransform.Transform(data);
var normalizeFixZeroTransform = normalizeFixZero.Fit(data);
var fixZeroData = normalizeFixZeroTransform.Transform(data);
var column = transformedData.GetColumn<float[]>("Features").ToArray();
foreach (var row in column)
Console.WriteLine(string.Join(", ", row.Select(x => x.ToString(
"f4"))));
// Expected output:
// 1.0000, 0.5000, 1.0000, 0.0000
// 0.5000, 1.0000, 0.0000, 0.5000
// 0.5000, 1.0000, 0.0000, 0.5000
// 0.0000, 0.0000, 0.0000, 1.0000
// 0.0000, 0.0000, 0.0000, 1.0000
var columnFixZero = fixZeroData.GetColumn<float[]>("Features")
.ToArray();
foreach (var row in columnFixZero)
Console.WriteLine(string.Join(", ", row.Select(x => x.ToString(
"f4"))));
// Expected output:
// 1.0000, 0.0000, 1.0000, 0.0000
// 0.5000, 0.5000, 0.0000, 0.5000
// 0.5000, 0.5000, 0.0000, 0.5000
// 0.0000,-0.5000, 0.0000, 1.0000
// 0.0000,-0.5000, 0.0000, 1.0000
// Let's get transformation parameters. Since we work with only one
// column we need to pass 0 as parameter for
// GetNormalizerModelParameters.
// If we have multiple columns transformations we need to pass index of
// InputOutputColumnPair.
var transformParams = normalizeTransform.GetNormalizerModelParameters(0)
as BinNormalizerModelParameters<ImmutableArray<float>>;
Console.WriteLine($"The 1-index value in resulting array would be " +
$"produce by:");
Console.WriteLine("y = (Index(x) / " + transformParams.Density[0] +
") - " + (transformParams.Offset.Length == 0 ? 0 : transformParams
.Offset[0]));
Console.WriteLine("Where Index(x) is the index of the bin to which " +
"x belongs");
Console.WriteLine("Bins upper borders are: " + string.Join(" ",
transformParams.UpperBounds[0]));
// Expected output:
// The 1-index value in resulting array would be produce by:
// y = (Index(x) / 2) - 0
// Where Index(x) is the index of the bin to which x belongs
// Bins upper bounds are: 4.5 7 ∞
var fixZeroParams = normalizeFixZeroTransform
.GetNormalizerModelParameters(0) as BinNormalizerModelParameters<
ImmutableArray<float>>;
Console.WriteLine($"The 1-index value in resulting array would be " +
$"produce by:");
Console.WriteLine(" y = (Index(x) / " + fixZeroParams.Density[1] +
") - " + (fixZeroParams.Offset.Length == 0 ? 0 : fixZeroParams
.Offset[1]));
Console.WriteLine("Where Index(x) is the index of the bin to which x " +
"belongs");
Console.WriteLine("Bins upper borders are: " + string.Join(" ",
fixZeroParams.UpperBounds[1]));
// Expected output:
// The 1-index value in resulting array would be produce by:
// y = (Index(x) / 2) - 0.5
// Where Index(x) is the index of the bin to which x belongs
// Bins upper bounds are: -2 1.5 ∞
}
private class DataPoint
{
[VectorType(4)]
public float[] Features { get; set; }
public string Bin { get; set; }
}
}
}