HashSet<T>.Overlaps(IEnumerable<T>) Méthode
Définition
Important
Certaines informations portent sur la préversion du produit qui est susceptible d’être en grande partie modifiée avant sa publication. Microsoft exclut toute garantie, expresse ou implicite, concernant les informations fournies ici.
Détermine si l’objet HashSet<T> actif et une collection spécifiée partagent des éléments communs.
public:
virtual bool Overlaps(System::Collections::Generic::IEnumerable<T> ^ other);
public:
bool Overlaps(System::Collections::Generic::IEnumerable<T> ^ other);
public bool Overlaps (System.Collections.Generic.IEnumerable<T> other);
abstract member Overlaps : seq<'T> -> bool
override this.Overlaps : seq<'T> -> bool
member this.Overlaps : seq<'T> -> bool
Public Function Overlaps (other As IEnumerable(Of T)) As Boolean
Paramètres
- other
- IEnumerable<T>
Collection à comparer à l'objet HashSet<T> actif.
Retours
true
si l'objet HashSet<T> et l'élément other
partagent au moins un élément commun ; sinon, false
.
Implémente
Exceptions
other
a la valeur null
.
Exemples
L’exemple suivant crée deux objets disparates HashSet<T> et les compare entre eux. Dans cet exemple, allNumbers
et lowNumbers
sont montrés pour partager des éléments communs à l’aide de la Overlaps méthode .
HashSet<int> lowNumbers = new HashSet<int>();
HashSet<int> allNumbers = new HashSet<int>();
for (int i = 1; i < 5; i++)
{
lowNumbers.Add(i);
}
for (int i = 0; i < 10; i++)
{
allNumbers.Add(i);
}
Console.Write("lowNumbers contains {0} elements: ", lowNumbers.Count);
DisplaySet(lowNumbers);
Console.Write("allNumbers contains {0} elements: ", allNumbers.Count);
DisplaySet(allNumbers);
Console.WriteLine("lowNumbers overlaps allNumbers: {0}",
lowNumbers.Overlaps(allNumbers));
Console.WriteLine("allNumbers and lowNumbers are equal sets: {0}",
allNumbers.SetEquals(lowNumbers));
// Show the results of sub/superset testing
Console.WriteLine("lowNumbers is a subset of allNumbers: {0}",
lowNumbers.IsSubsetOf(allNumbers));
Console.WriteLine("allNumbers is a superset of lowNumbers: {0}",
allNumbers.IsSupersetOf(lowNumbers));
Console.WriteLine("lowNumbers is a proper subset of allNumbers: {0}",
lowNumbers.IsProperSubsetOf(allNumbers));
Console.WriteLine("allNumbers is a proper superset of lowNumbers: {0}",
allNumbers.IsProperSupersetOf(lowNumbers));
// Modify allNumbers to remove numbers that are not in lowNumbers.
allNumbers.IntersectWith(lowNumbers);
Console.Write("allNumbers contains {0} elements: ", allNumbers.Count);
DisplaySet(allNumbers);
Console.WriteLine("allNumbers and lowNumbers are equal sets: {0}",
allNumbers.SetEquals(lowNumbers));
// Show the results of sub/superset testing with the modified set.
Console.WriteLine("lowNumbers is a subset of allNumbers: {0}",
lowNumbers.IsSubsetOf(allNumbers));
Console.WriteLine("allNumbers is a superset of lowNumbers: {0}",
allNumbers.IsSupersetOf(lowNumbers));
Console.WriteLine("lowNumbers is a proper subset of allNumbers: {0}",
lowNumbers.IsProperSubsetOf(allNumbers));
Console.WriteLine("allNumbers is a proper superset of lowNumbers: {0}",
allNumbers.IsProperSupersetOf(lowNumbers));
void DisplaySet(HashSet<int> set)
{
Console.Write("{");
foreach (int i in set)
{
Console.Write(" {0}", i);
}
Console.WriteLine(" }");
}
/* This code example produces output similar to the following:
* lowNumbers contains 4 elements: { 1 2 3 4 }
* allNumbers contains 10 elements: { 0 1 2 3 4 5 6 7 8 9 }
* lowNumbers overlaps allNumbers: True
* allNumbers and lowNumbers are equal sets: False
* lowNumbers is a subset of allNumbers: True
* allNumbers is a superset of lowNumbers: True
* lowNumbers is a proper subset of allNumbers: True
* allNumbers is a proper superset of lowNumbers: True
* allNumbers contains 4 elements: { 1 2 3 4 }
* allNumbers and lowNumbers are equal sets: True
* lowNumbers is a subset of allNumbers: True
* allNumbers is a superset of lowNumbers: True
* lowNumbers is a proper subset of allNumbers: False
* allNumbers is a proper superset of lowNumbers: False
*/
Shared Sub Main()
Dim lowNumbers As HashSet(Of Integer) = New HashSet(Of Integer)()
Dim allNumbers As HashSet(Of Integer) = New HashSet(Of Integer)()
For i As Integer = 1 To 4
lowNumbers.Add(i)
Next i
For i As Integer = 0 To 9
allNumbers.Add(i)
Next i
Console.Write("lowNumbers contains {0} elements: ", lowNumbers.Count)
DisplaySet(lowNumbers)
Console.Write("allNumbers contains {0} elements: ", allNumbers.Count)
DisplaySet(allNumbers)
Console.WriteLine("lowNumbers overlaps allNumbers: {0}", _
lowNumbers.Overlaps(allNumbers))
Console.WriteLine("allNumbers and lowNumbers are equal sets: {0}", _
allNumbers.SetEquals(lowNumbers))
' Show the results of sub/superset testing
Console.WriteLine("lowNumbers is a subset of allNumbers: {0}", _
lowNumbers.IsSubsetOf(allNumbers))
Console.WriteLine("allNumbers is a superset of lowNumbers: {0}", _
allNumbers.IsSupersetOf(lowNumbers))
Console.WriteLine("lowNumbers is a proper subset of allNumbers: {0}", _
lowNumbers.IsProperSubsetOf(allNumbers))
Console.WriteLine("allNumbers is a proper superset of lowNumbers: {0}", _
allNumbers.IsProperSupersetOf(lowNumbers))
' Modify allNumbers to remove numbers that are not in lowNumbers.
allNumbers.IntersectWith(lowNumbers)
Console.Write("allNumbers contains {0} elements: ", allNumbers.Count)
DisplaySet(allNumbers)
Console.WriteLine("allNumbers and lowNumbers are equal sets: {0}", _
allNumbers.SetEquals(lowNumbers))
' Show the results of sub/superset testing with the modified set.
Console.WriteLine("lowNumbers is a subset of allNumbers: {0}", _
lowNumbers.IsSubsetOf(allNumbers))
Console.WriteLine("allNumbers is a superset of lowNumbers: {0}", _
allNumbers.IsSupersetOf(lowNumbers))
Console.WriteLine("lowNumbers is a proper subset of allNumbers: {0}", _
lowNumbers.IsProperSubsetOf(allNumbers))
Console.WriteLine("allNumbers is a proper superset of lowNumbers: {0}", _
allNumbers.IsProperSupersetOf(lowNumbers))
End Sub
' This code example produces output similar to the following:
' lowNumbers contains 4 elements: { 1 2 3 4 }
' allNumbers contains 10 elements: { 0 1 2 3 4 5 6 7 8 9 }
' lowNumbers overlaps allNumbers: True
' allNumbers and lowNumbers are equal sets: False
' lowNumbers is a subset of allNumbers: True
' allNumbers is a superset of lowNumbers: True
' lowNumbers is a proper subset of allNumbers: True
' allNumbers is a proper superset of lowNumbers: True
' allNumbers contains 4 elements: { 1 2 3 4 }
' allNumbers and lowNumbers are equal sets: True
' lowNumbers is a subset of allNumbers: True
' allNumbers is a superset of lowNumbers: True
' lowNumbers is a proper subset of allNumbers: False
' allNumbers is a proper superset of lowNumbers: False
Remarques
Cette méthode est une opération O(n
), où n
est le nombre d’éléments dans other
.