नोट
इस पृष्ठ तक पहुंच के लिए प्राधिकरण की आवश्यकता होती है। आप साइन इन करने या निर्देशिकाएँ बदलने का प्रयास कर सकते हैं।
इस पृष्ठ तक पहुंच के लिए प्राधिकरण की आवश्यकता होती है। आप निर्देशिकाएँ बदलने का प्रयास कर सकते हैं।
Use the create_streaming_table() function in a pipeline to create a target table for records output by streaming operations, including create_auto_cdc_flow(), create_auto_cdc_from_snapshot_flow(), and append_flow output records.
Note
The create_target_table() and create_streaming_live_table() functions are deprecated. Databricks recommends updating existing code to use the create_streaming_table() function.
Syntax
from pyspark import pipelines as dp
dp.create_streaming_table(
name = "<table-name>",
comment = "<comment>",
spark_conf={"<key>" : "<value", "<key" : "<value>"},
table_properties={"<key>" : "<value>", "<key>" : "<value>"},
path="<storage-location-path>",
partition_cols=["<partition-column>", "<partition-column>"],
cluster_by_auto = <bool>,
cluster_by = ["<clustering-column>", "<clustering-column>"],
schema="schema-definition",
expect_all = {"<key>" : "<value", "<key" : "<value>"},
expect_all_or_drop = {"<key>" : "<value", "<key" : "<value>"},
expect_all_or_fail = {"<key>" : "<value", "<key" : "<value>"},
row_filter = "row-filter-clause"
)
Parameters
| Parameter | Type | Description |
|---|---|---|
name |
str |
Required. The table name. |
comment |
str |
A description for the table. |
spark_conf |
dict |
A list of Spark configurations for the execution of this query |
table_properties |
dict |
A dict of table properties for the table. |
path |
str |
A storage location for table data. If not set, use the managed storage location for the schema containing the table. |
partition_cols |
list |
A list of one or more columns to use for partitioning the table. |
cluster_by_auto |
bool |
Enable automatic liquid clustering on the table. This can be combined with cluster_by and define the columns to be use as initial clustering keys, followed by monitoring and automatic key selection updates based on the workload. See Automatic liquid clustering. |
cluster_by |
list |
Enable liquid clustering on the table and define the columns to use as clustering keys. See Use liquid clustering for tables. |
schema |
str or StructType |
A schema definition for the table. Schemas can be defined as a SQL DDL string or with a Python StructType. |
expect_all, expect_all_or_drop, expect_all_or_fail |
dict |
Data quality constraints for the table. Provides the same behavior and uses the same syntax as expectation decorator functions, but implemented as a parameter. See Expectations. |
row_filter |
str |
(Public Preview) A row filter clause for the table. See Publish tables with row filters and column masks. |