संपादित करें

इसके माध्यम से साझा किया गया


AssemblyHashAlgorithm Enum

Definition

Specifies all the hash algorithms used for hashing files and for generating the strong name.

public enum class AssemblyHashAlgorithm
public enum AssemblyHashAlgorithm
[System.Serializable]
public enum AssemblyHashAlgorithm
[System.Serializable]
[System.Runtime.InteropServices.ComVisible(true)]
public enum AssemblyHashAlgorithm
type AssemblyHashAlgorithm = 
[<System.Serializable>]
type AssemblyHashAlgorithm = 
[<System.Serializable>]
[<System.Runtime.InteropServices.ComVisible(true)>]
type AssemblyHashAlgorithm = 
Public Enum AssemblyHashAlgorithm
Inheritance
AssemblyHashAlgorithm
Attributes

Fields

Name Value Description
None 0

A mask indicating that there is no hash algorithm. If you specify None for a multi-module assembly, the common language runtime defaults to the SHA1 algorithm, since multi-module assemblies need to generate a hash. Due to collision problems with SHA1, Microsoft recommends SHA256.

MD5 32771

Retrieves the MD5 message-digest algorithm. MD5 was developed by Rivest in 1991. It is basically MD4 with safety-belts and while it is slightly slower than MD4, it helps provide more security. The algorithm consists of four distinct rounds, which has a slightly different design from that of MD4. Message-digest size, as well as padding requirements, remain the same.

SHA1 32772

A mask used to retrieve a revision of the Secure Hash Algorithm that corrects an unpublished flaw in SHA.

SHA256 32780

A mask used to retrieve a version of the Secure Hash Algorithm with a hash size of 256 bits.

SHA384 32781

A mask used to retrieve a version of the Secure Hash Algorithm with a hash size of 384 bits.

SHA512 32782

A mask used to retrieve a version of the Secure Hash Algorithm with a hash size of 512 bits.

Remarks

A hash function``H is a transformation that takes an input m and returns a fixed-size string, which is called the hash value h (that is, h = H (m)). Hash functions with just this property have a variety of general computational uses, but when employed in cryptography, the hash functions are usually chosen to have some additional properties.

The basic requirements for a cryptographic hash function are:

  • The input can be of any length.

  • The output has a fixed length.

  • H (x) is relatively easy to compute for any given x.

  • H (x) is one-way.

  • H (x) is collision-free.

The hash value represents concisely the longer message or document from which it was computed; this value is called the message digest. You can think of a message digest as a digital fingerprint of the larger document. Examples of well-known hash functions are MD2 and SHA.

Applies to