Ebben a gyorsútmutatóban a Microsoft Foundry fogod használni:
- Projekt létrehozása
- Modell üzembe helyezése
- Csevegés befejezése
- Ügynök létrehozása és futtatása
- Fájlok feltöltése az ügynöknek
Ebben a gyorsútmutatóban a Microsoft Foundry fogod használni:
- Projekt létrehozása
- Modell üzembe helyezése
- Felkészülés a kódra – a szükséges csomagok telepítése és hitelesítés
- Csevegés egy modellel
- Ügynök létrehozása
- Csevegés ügynökkel
A Microsoft Foundry SDK több nyelven is elérhető, beleértve a Pythont, a Java-t, a TypeScriptet és a C#-ot. Ez a rövid útmutató útmutatást nyújt az egyes nyelvekhez.
Prerequisites
Important
Mielőtt hozzákezdene, győződjön meg arról, hogy a fejlesztési környezet készen áll.
Ez a rövid útmutató olyan forgatókönyv-specifikus lépésekre összpontosít, mint az SDK telepítése, a hitelesítés és a mintakód futtatása.
Erőforrások létrehozása
A portálon számos különböző szolgáltató élvonalbeli modelljeinek gazdag katalógusát ismerheti meg. Ebben az oktatóanyagban keressen rá, majd válassza ki a gpt-4o modellt.
-
Jelentkezzen be a Microsoft Foundrybe. Győződjön meg arról, hogy a New Foundry kapcsoló ki van kapcsolva. Ezek a lépések a Foundryre (klasszikus) vonatkoznak.
Ha projektben van, válassza a Microsoft Foundryt a bal felső sarokban a projekt elhagyásához. Rögtön létrehoz egy újat.
A kezdőlapon vagy a Modellkatalógusban válassza a gpt-4o (vagy gpt-4o-mini) elemet.
Válassza a Modell használata lehetőséget. Amikor a rendszer kéri, adjon meg egy új projektnevet, és válassza a Létrehozás lehetőséget.
Tekintse át az üzembe helyezés nevét, és válassza a Létrehozás lehetőséget.
Ezután válassza a Csatlakozás és üzembe helyezés lehetőséget az üzembe helyezési típus kiválasztása után.
Az üzembe helyezés után válassza a Megnyitás a játszótéren lehetőséget az üzembe helyezési oldalon.
A chat-játszótéren az előre telepített és használatra kész modell várja.
Ha ügynököt hoz létre, inkább kezdje azzal, hogy kiválasztja az Ügynök létrehozása lehetőséget. A lépések hasonlóak, de eltérő sorrendben. A projekt létrehozása után a Csevegési játszótér helyett az Ügynök játszótérre érkezik.
Most, hogy már rendelkezik egy ügynökkel, kapcsolatba léphet vele akár kódban, akár a portálon.
A Microsoft Foundry portálra fog belépni, hogy létrehozzon egy projektet és üzembe helyezzen egy modellt. Ez a rövid útmutató a gpt-4-1-mini modellt használja, de számos szolgáltató által támogatott modellt használhat.
Jelentkezzen be a
Microsoft Foundrybe. Győződjön meg arról, hogy a
New Foundry kapcsoló ki van kapcsolva. Ezek a lépések a
Foundryre (klasszikus) vonatkoznak.
Jelentkezzen be a
Microsoft Foundrybe. Győződjön meg arról, hogy a
New Foundry kapcsoló be van kapcsolva. Ezek a lépések a
Foundryre (új) vonatkoznak.
- A projektek segítenek a munka rendszerezésében. A projekt, amelyen dolgozik, a bal felső sarokban jelenik meg.
- Új projekt létrehozásához válassza ki a projekt nevét, majd hozzon létre új projektet.
- Adjon nevet a projektnek, és válassza a Projekt létrehozása lehetőséget.
- Most helyezzen üzembe egy modellt a projektben:
- Válassza a Felfedezés lehetőséget a jobb felső navigációs sávon.
- Válassza a Modellek-et.
- Keresse meg a gpt-4.1-mini modellt.
- Válassza azAlapértelmezett beállítások> lehetőséget a projekthez való hozzáadásához.
Az Öntödei modellek lehetővé teszik az ügyfelek számára, hogy egyetlen végpont és hitelesítő adatok használatával használják a legfontosabb modellszolgáltatók legerősebb modelljeit. Ez azt jelenti, hogy egyetlen kódsor módosítása nélkül válthat a modellek között, és felhasználhatja őket az alkalmazásból.
Most már készen áll arra, hogy továbblépjen a modellel való interakció és ügynök létrehozása felé.
Felkészülés a kódra
Telepítse a következő csomagokat:
pip install openai azure-identity azure-ai-projects==1.0.0
-
A Microsoft Foundry Models lehetővé teszi az ügyfelek számára, hogy egyetlen végpont és hitelesítő adatok használatával használják a legfontosabb modellszolgáltatók legerősebb modelljeit. Ez azt jelenti, hogy egyetlen kódsor módosítása nélkül válthat a modellek között, és felhasználhatja őket az alkalmazásból.
Másolja ki a Foundry-projekt végpontját a projekt Áttekintés részében. Rögtön használni fogja.
Tip
Ha nem látja a Foundry-projektvégpontot, akkor egy hub-alapú projektet használ. (Lásd a projektek típusait). Váltson egy Foundry-projektre, vagy az előző lépésekkel hozzon létre egyet.
- A jobb felső navigációs sávon válassza a Kezdőlap lehetőséget.
- Válassza a Kulcsok és másolja a végpontot. Rögtön használni fogja.
A Python-szkriptek futtatása előtt mindenképpen jelentkezzen be a parancssori felület az login (vagy az login --use-device-code) paranccsal a hitelesítéshez.
Kövesse az alábbi lépéseket, vagy kérje le a kódot:
Csomagok telepítése:
A .NET-projektben az Foundry Tools használatához több NuGet-csomagot kell telepítenie. NuGet-csomagok hozzáadása a .NET CLI használatával az integrált terminálban:
# Add Azure AI SDK packages
dotnet add package Azure.Identity
dotnet add package Azure.AI.Projects
dotnet add package Azure.AI.Agents.Persistent
dotnet add package Azure.AI.Inference
-
A Microsoft Foundry Models lehetővé teszi az ügyfelek számára, hogy egyetlen végpont és hitelesítő adatok használatával használják a legfontosabb modellszolgáltatók legerősebb modelljeit. Ez azt jelenti, hogy egyetlen kódsor módosítása nélkül válthat a modellek között, és felhasználhatja őket az alkalmazásból.
Másolja ki a Foundry-projekt végpontját a projekt Áttekintés részében. Rögtön használni fogja.
Tip
Ha nem látja a Foundry-projektvégpontot, akkor egy hub-alapú projektet használ. (Lásd a projektek típusait). Váltson egy Foundry-projektre, vagy az előző lépésekkel hozzon létre egyet.
- A jobb felső navigációs sávon válassza a Kezdőlap lehetőséget.
- Válassza a Kulcsok és másolja a végpontot. Rögtön használni fogja.
Állítsa be ezeket a környezeti változókat a szkriptekben való használatra. Ez AZURE_AI_ENDPOINT a korábban másolt projektvégpont. Távolítson el mindent a .com/ után az adott végpontban, így AZURE_AI_INFERENCE alakul ki.
AZURE_AI_ENDPOINT=https://your.services.ai.azure.com/api/projects/project
AZURE_AI_INFERENCE=https://your.services.ai.azure.com/
AZURE_AI_MODEL=your_model_name
Tip
Az ügynökmintákhoz openAI-kompatibilis modellre kell beállítani a AZURE_AI_MODEL környezeti változót, például gpt-4.1mivel nem minden modell támogatott ügynökhasználati esetekben, beleértve az eszközhasználatot is.
A C#-szkriptek futtatása előtt mindenképpen jelentkezzen be a parancssori felület az login (vagy az login --use-device-code) paranccsal a hitelesítéshez.
Kövesse az alábbi lépéseket, vagy kérje le a kódot:
A TypeScript-szkriptek futtatása előtt mindenképpen jelentkezzen be a parancssori felület az login (vagy az login --use-device-code) paranccsal a hitelesítéshez.
Töltse lepackage.json.
A csomagok telepítése a npm install-vel
-
A Microsoft Foundry Models lehetővé teszi az ügyfelek számára, hogy egyetlen végpont és hitelesítő adatok használatával használják a legfontosabb modellszolgáltatók legerősebb modelljeit. Ez azt jelenti, hogy egyetlen kódsor módosítása nélkül válthat a modellek között, és felhasználhatja őket az alkalmazásból.
Másolja ki a Foundry-projekt végpontját a projekt Áttekintés részében. Rögtön használni fogja.
Tip
Ha nem látja a Foundry-projektvégpontot, akkor egy hub-alapú projektet használ. (Lásd a projektek típusait). Váltson egy Foundry-projektre, vagy az előző lépésekkel hozzon létre egyet.
- A jobb felső navigációs sávon válassza a Kezdőlap lehetőséget.
- Válassza a Kulcsok és másolja a végpontot. Rögtön használni fogja.
Állítsa be a következő környezeti változókat a szkriptekben való használatra:
MODEL_DEPLOYMENT_NAME=gpt-4o
PROJECT_ENDPOINT=https://<your-foundry-resource-name>.services.ai.azure.com/api/projects/<your-foundry-project-name>
Kövesse az alábbi lépéseket, vagy kérje le a kódot:
Important
A cikkben szereplő kód jelenleg előzetes verziójú csomagokat használ. Ez az előzetes verzió szolgáltatásszint-szerződés nélkül érhető el, és éles számítási feladatokhoz nem javasoljuk. Előfordulhat, hogy bizonyos funkciók nem támogatottak, vagy korlátozott képességekkel rendelkeznek. További információkért lásd: Microsoft Azure Previews Kiegészítő Felhasználási Feltételek.
-
A Microsoft Foundry Models lehetővé teszi az ügyfelek számára, hogy egyetlen végpont és hitelesítő adatok használatával használják a legfontosabb modellszolgáltatók legerősebb modelljeit. Ez azt jelenti, hogy egyetlen kódsor módosítása nélkül válthat a modellek között, és felhasználhatja őket az alkalmazásból.
Másolja ki a Foundry-projekt végpontját a projekt Áttekintés részében. Rögtön használni fogja.
Tip
Ha nem látja a Foundry-projektvégpontot, akkor egy hub-alapú projektet használ. (Lásd a projektek típusait). Váltson egy Foundry-projektre, vagy az előző lépésekkel hozzon létre egyet.
- A jobb felső navigációs sávon válassza a Kezdőlap lehetőséget.
- Válassza a Kulcsok és másolja a végpontot. Rögtön használni fogja.
Állítsa be a következő környezeti változókat a szkriptekben való használatra:
MODEL_DEPLOYMENT_NAME=gpt-4o
PROJECT_ENDPOINT=https://<your-foundry-resource-name>.services.ai.azure.com/api/projects/<your-foundry-project-name>
A Java-szkriptek futtatása előtt mindenképpen jelentkezzen be a parancssori felület az login (vagy az login --use-device-code) paranccsal a hitelesítéshez.
Töltse le POM.XML a Java IDE-be.
Kövesse az alábbi lépéseket, vagy kérje le a kódot:
A következő parancs futtatása előtt mindenképpen jelentkezzen be a parancssori felület az login (vagy az login --use-device-code) paranccsal a hitelesítéshez.
Ideiglenes hozzáférési jogkivonat beszerzése. 60–90 perc múlva lejár, ezt követően frissítenie kell.
az account get-access-token --scope https://ai.azure.com/.default
Mentse az eredményeket környezeti változóként AZURE_AI_AUTH_TOKEN.
Kövesse az alábbi lépéseket, vagy kérje le a kódot:
Az Foundry portál használatához nincs szükség telepítésre.
Important
A cikkben szereplő kód jelenleg előzetes verziójú csomagokat használ. Ez az előzetes verzió szolgáltatásszint-szerződés nélkül érhető el, és éles számítási feladatokhoz nem javasoljuk. Előfordulhat, hogy bizonyos funkciók nem támogatottak, vagy korlátozott képességekkel rendelkeznek. További információkért lásd: Microsoft Azure Previews Kiegészítő Felhasználási Feltételek.
Környezeti változók beállítása
A végpontot környezeti változóként tárolja. Ezeket az értékeket a szkriptekben való használatra is beállíthatja.
-
Másolja ki a végpontot az üdvözlőképernyőről. Ezt a következő lépésben fogja használni.
Állítsa be a következő környezeti változókat a szkriptekben való használatra:
AZURE_AI_FOUNDRY_PROJECT_ENDPOINT=<endpoint copied from welcome screen>
AZURE_AI_FOUNDRY_AGENT_NAME="MyAgent"
AZURE_AI_FOUNDRY_MODEL_DEPLOYMENT_NAME="gpt-4.1-mini"
Telepítés és hitelesítés
Tip
A Code Foundry-projekteket (új) API-t (előzetes verzió) használ, és nem kompatibilis a Foundry-projektek (klasszikus) API-verziójával.
Váltson a Foundry (klasszikus) dokumentációra a Foundry-projektek (klasszikus) API-verziójához.
Telepítse ezeket a csomagokat, beleértve az előzetes verziót azure-ai-projectsis. Ez a verzió az Foundry-projektek (új) API-t (előzetes verzió) használja.
pip install azure-ai-projects --pre
pip install openai azure-identity python-dotenv
A Python-szkriptek futtatása előtt mindenképpen jelentkezzen be a parancssori felület az login (vagy az login --use-device-code) paranccsal a hitelesítéshez.
Kövesse az alábbi lépéseket, vagy kérje le a kódot:
Csomagok telepítése:
NuGet-csomagok hozzáadása a .NET CLI használatával az integrált terminálban: Ezek a csomagok a Foundry-projektek (új) API-t ( előzetes verzió) használják.
dotnet add package Azure.AI.Agents --prerelease
dotnet add package Azure.AI.Projects --prerelease
dotnet add package Azure.Identity
dotnet add package OpenAI --version 2.6.*
A C#-szkriptek futtatása előtt mindenképpen jelentkezzen be a parancssori felület az login (vagy az login --use-device-code) paranccsal a hitelesítéshez.
Kövesse az alábbi lépéseket, vagy kérje le a kódot:
A következő parancs futtatása előtt mindenképpen jelentkezzen be a parancssori felület az login (vagy az login --use-device-code) paranccsal a hitelesítéshez.
Ideiglenes hozzáférési jogkivonat beszerzése. 60–90 perc múlva lejár, ezt követően frissítenie kell.
az account get-access-token --scope https://ai.azure.com/.default
Mentse az eredményeket környezeti változóként AZURE_AI_AUTH_TOKEN.
Kövesse az alábbi lépéseket, vagy kérje le a kódot:
Az Foundry portál használatához nincs szükség telepítésre.
Csevegés egy modellel
A csevegés befejezése az AI-alkalmazások alapvető építőeleme. A csevegés befejezésével elküldheti az üzenetek listáját, és választ kaphat a modelltől.
Cserélje le a végpontot a endpoint következő kódra:
from azure.ai.projects import AIProjectClient
from azure.identity import DefaultAzureCredential
project = AIProjectClient(
endpoint="https://your-foundry-resource-name.ai.azure.com/api/projects/project-name",
credential=DefaultAzureCredential(),
)
models = project.get_openai_client(api_version="2024-10-21")
response = models.chat.completions.create(
model="gpt-4o",
messages=[
{"role": "system", "content": "You are a helpful writing assistant"},
{"role": "user", "content": "Write me a poem about flowers"},
],
)
print(response.choices[0].message.content)
using System.ClientModel.Primitives;
using Azure.Identity;
using OpenAI;
using OpenAI.Chat;
#pragma warning disable OPENAI001
string projectEndpoint = System.Environment.GetEnvironmentVariable("AZURE_AI_INFERENCE")!;
string modelDeploymentName = System.Environment.GetEnvironmentVariable("AZURE_AI_MODEL")!;
BearerTokenPolicy tokenPolicy = new(
new DefaultAzureCredential(),
"https://ai.azure.com/.default");
OpenAIClient openAIClient = new(
authenticationPolicy: tokenPolicy,
options: new OpenAIClientOptions()
{
Endpoint = new($"{projectEndpoint}/openai/v1"),
});
ChatClient chatClient = openAIClient.GetChatClient(modelDeploymentName);
ChatCompletion completion = await chatClient.CompleteChatAsync(
[
new SystemChatMessage("You are a helpful assistant."),
new UserChatMessage("How many feet are in a mile?")
]);
Console.WriteLine(completion.Content[0].Text);
// Get the Azure AI endpoint and deployment name from environment variables
const endpoint = process.env.PROJECT_ENDPOINT as string;
const deployment = process.env.MODEL_DEPLOYMENT_NAME || 'gpt-4o';
// Create an Azure OpenAI Client
const project = new AIProjectClient(endpoint, new DefaultAzureCredential());
const client = await project.getAzureOpenAIClient({
// The API version should match the version of the Azure OpenAI resource
apiVersion: "2024-12-01-preview"
});
// Create a chat completion
const chatCompletion = await client.chat.completions.create({
model: deployment,
messages: [
{ role: "system", content: "You are a helpful writing assistant" },
{ role: "user", content: "Write me a poem about flowers" },
],
});
console.log(`\n==================== 🌷 COMPLETIONS POEM ====================\n`);
console.log(chatCompletion.choices[0].message.content);
package com.azure.ai.foundry.samples;
import com.azure.ai.inference.ChatCompletionsClient;
import com.azure.ai.inference.ChatCompletionsClientBuilder;
import com.azure.ai.inference.models.ChatCompletions;
import com.azure.core.credential.AzureKeyCredential;
import com.azure.core.credential.TokenCredential;
import com.azure.core.exception.HttpResponseException;
import com.azure.core.util.logging.ClientLogger;
import com.azure.identity.DefaultAzureCredentialBuilder;
/**
* Sample demonstrating non-streaming chat completion functionality
* using the Azure AI Inference SDK, wired to your AOAI project endpoint.
*
* Environment variables:
* - PROJECT_ENDPOINT: Required. Your Azure AI project endpoint.
* - AZURE_AI_API_KEY: Optional. Your API key (falls back to DefaultAzureCredential).
* - AZURE_MODEL_DEPLOYMENT_NAME: Optional. Model deployment name (default: "phi-4").
* - AZURE_MODEL_API_PATH: Optional. API path segment (default: "deployments").
* - CHAT_PROMPT: Optional. The prompt to send (uses a default if not provided).
*
* SDK Features Demonstrated:
* - Using the Azure AI Inference SDK (com.azure:azure-ai-inference:1.0.0-beta.5)
* - Creating a ChatCompletionsClient with Azure or API key authentication
* - Configuring endpoint paths for different model deployments
* - Using the simplified complete() method for quick completions
* - Accessing response content through strongly-typed objects
* - Implementing proper error handling for service requests
* - Choosing between DefaultAzureCredential and AzureKeyCredential
*
*/
public class ChatCompletionSample {
private static final ClientLogger logger = new ClientLogger(ChatCompletionSample.class);
public static void main(String[] args) {
// 1) Read and validate the project endpoint
String projectEndpoint = System.getenv("PROJECT_ENDPOINT");
if (projectEndpoint == null || projectEndpoint.isBlank()) {
logger.error("PROJECT_ENDPOINT is required but not set");
return;
}
// 2) Optional auth + model settings
String apiKey = System.getenv("AZURE_AI_API_KEY");
String deploymentName = System.getenv("AZURE_MODEL_DEPLOYMENT_NAME");
String apiPath = System.getenv("AZURE_MODEL_API_PATH");
String prompt = System.getenv("CHAT_PROMPT");
if (deploymentName == null || deploymentName.isBlank()) {
deploymentName = "phi-4";
logger.info("No AZURE_MODEL_DEPLOYMENT_NAME provided, using default: {}", deploymentName);
}
if (apiPath == null || apiPath.isBlank()) {
apiPath = "deployments";
logger.info("No AZURE_MODEL_API_PATH provided, using default: {}", apiPath);
}
if (prompt == null || prompt.isBlank()) {
prompt = "What best practices should I follow when asking an AI model to review Java code?";
logger.info("No CHAT_PROMPT provided, using default prompt: {}", prompt);
}
try {
// 3) Build the full inference endpoint URL
String fullEndpoint = projectEndpoint.endsWith("/")
? projectEndpoint
: projectEndpoint + "/";
fullEndpoint += apiPath + "/" + deploymentName;
logger.info("Using inference endpoint: {}", fullEndpoint);
// 4) Create the client with key or token credential :contentReference[oaicite:0]{index=0}
ChatCompletionsClient client;
if (apiKey != null && !apiKey.isBlank()) {
logger.info("Authenticating using API key");
client = new ChatCompletionsClientBuilder()
.credential(new AzureKeyCredential(apiKey))
.endpoint(fullEndpoint)
.buildClient();
} else {
logger.info("Authenticating using DefaultAzureCredential");
TokenCredential credential = new DefaultAzureCredentialBuilder().build();
client = new ChatCompletionsClientBuilder()
.credential(credential)
.endpoint(fullEndpoint)
.buildClient();
}
// 5) Send a simple chat completion request
logger.info("Sending chat completion request with prompt: {}", prompt);
ChatCompletions completions = client.complete(prompt);
// 6) Process the response
String content = completions.getChoice().getMessage().getContent();
logger.info("Received response from model");
System.out.println("\nResponse from AI assistant:\n" + content);
} catch (HttpResponseException e) {
// Handle API errors
int status = e.getResponse().getStatusCode();
logger.error("Service error {}: {}", status, e.getMessage());
if (status == 401 || status == 403) {
logger.error("Authentication failed. Check API key or Azure credentials.");
} else if (status == 404) {
logger.error("Deployment not found. Verify deployment name and endpoint.");
} else if (status == 429) {
logger.error("Rate limit exceeded. Please retry later.");
}
} catch (Exception e) {
// Handle all other exceptions
logger.error("Error in chat completion: {}", e.getMessage(), e);
}
}
}
Cserélje le YOUR-FOUNDRY-RESOURCE-NAME a saját értékeire.
curl --request POST --url 'https://YOUR-FOUNDRY-RESOURCE-NAME.services.ai.azure.com/openai/deployments/gpt-4o/chat/completions?api-version=2024-10-21' \
-h 'authorization: Bearer $AZURE_AI_AUTH_TOKEN' \
-h 'content-type: application/json' \
-d '{
"messages": [
{"role": "system",
"content": "You are a helpful writing assistant"},
{"role": "user",
"content": "Write me a poem about flowers"}
],
"model": "gpt-4o"
}'
- A csevegési játszótéren töltse ki az üzenetet, és válassza a Küldés lehetőséget.
- A modell választ ad vissza a Válasz panelen.
A modellekkel való interakció az AI-alkalmazások alapvető építőeleme. Adjon meg egy bemenetet, és kapjon választ a modelltől:
Tip
A Code Foundry-projekteket (új) API-t (előzetes verzió) használ, és nem kompatibilis a Foundry-projektek (klasszikus) API-verziójával.
Váltson a Foundry (klasszikus) dokumentációra a Foundry-projektek (klasszikus) API-verziójához.
import os
from dotenv import load_dotenv
from azure.identity import DefaultAzureCredential
from azure.ai.projects import AIProjectClient
load_dotenv()
print(f"Using AZURE_AI_FOUNDRY_PROJECT_ENDPOINT: {os.environ['AZURE_AI_FOUNDRY_PROJECT_ENDPOINT']}")
print(f"Using AZURE_AI_FOUNDRY_MODEL_DEPLOYMENT_NAME: {os.environ['AZURE_AI_FOUNDRY_MODEL_DEPLOYMENT_NAME']}")
project_client = AIProjectClient(
endpoint=os.environ["AZURE_AI_FOUNDRY_PROJECT_ENDPOINT"],
credential=DefaultAzureCredential(),
)
openai_client = project_client.get_openai_client()
response = openai_client.responses.create(
model=os.environ["AZURE_AI_FOUNDRY_MODEL_DEPLOYMENT_NAME"],
input="What is the size of France in square miles?",
)
print(f"Response output: {response.output_text}")
#:package Azure.AI.Projects@2.0.0-alpha.20251104.9
#:package Azure.AI.Agents@2.*-*
#:package Azure.Identity@1.*
#:package OpenAI@2.6.*
#:property PublishAot=false
#:property NoWarn=OPENAI001
using Azure.AI.Projects;
using Azure.AI.Agents;
using Azure.Identity;
using OpenAI;
using OpenAI.Responses;
string AZURE_AI_FOUNDRY_PROJECT_ENDPOINT = Environment.GetEnvironmentVariable("AZURE_AI_FOUNDRY_PROJECT_ENDPOINT")
?? throw new InvalidOperationException("Missing environment variable 'AZURE_AI_FOUNDRY_PROJECT_ENDPOINT'");
string MODEL_DEPLOYMENT_NAME = Environment.GetEnvironmentVariable("AZURE_AI_FOUNDRY_MODEL_DEPLOYMENT_NAME")
?? throw new InvalidOperationException("Missing environment variable 'AZURE_AI_FOUNDRY_MODEL_DEPLOYMENT_NAME'");
string AGENT_NAME = Environment.GetEnvironmentVariable("AZURE_AI_FOUNDRY_AGENT_NAME")
?? throw new InvalidOperationException("Missing environment variable 'AZURE_AI_FOUNDRY_AGENT_NAME'");
AIProjectClient projectClient = new(new Uri(AZURE_AI_FOUNDRY_PROJECT_ENDPOINT), new AzureCliCredential());
AgentClient agentClient = projectClient.GetAgentClient();
OpenAIClient openAIClient = agentClient.GetOpenAIClient();
OpenAIResponseClient responseClient = openAIClient.GetOpenAIResponseClient(MODEL_DEPLOYMENT_NAME);
ResponseCreationOptions responseCreationOptions = new();
List<ResponseItem> items = [ResponseItem.CreateUserMessageItem("What is the size of France in square miles?")];
OpenAIResponse response = await responseClient.CreateResponseAsync(items, responseCreationOptions);
Console.WriteLine(response.GetOutputText());
Cserélje le YOUR-FOUNDRY-RESOURCE-NAME a saját értékeire.
curl -X POST https://YOUR-FOUNDRY-RESOURCE-NAME.services.ai.azure.com/api/projects/YOUR-PROJECT-NAME/openai/responses?api-version=2025-11-15-preview \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $AZURE_AI_AUTH_TOKEN" \
-d '{
"model": "gpt-4.1-mini",
"input": "What is the size of France in square miles?"
}'
A modell üzembe helyezése után a rendszer automatikusan áthelyezi a Kezdőlapról a Build szakaszba. Az új modell ki van választva, és készen áll a kipróbálásra.
Kezdjen el csevegni a modellel, például: "Írj nekem egy verset a virágokról".
Ügynök létrehozása
Hozzon létre egy alkalmazást az Ön által üzembe helyezett modellel.
Az ügynök határozza meg az alapvető viselkedést. A létrehozás után konzisztens válaszokat biztosít a felhasználói interakciókban anélkül, hogy minden alkalommal megismételte volna az utasításokat. Az ügynököket bármikor frissítheti vagy törölheti.
Tip
A Code Foundry-projekteket (új) API-t (előzetes verzió) használ, és nem kompatibilis a Foundry-projektek (klasszikus) API-verziójával.
Váltson a Foundry (klasszikus) dokumentációra a Foundry-projektek (klasszikus) API-verziójához.
import os
from dotenv import load_dotenv
from azure.identity import DefaultAzureCredential
from azure.ai.projects import AIProjectClient
from azure.ai.projects.models import PromptAgentDefinition
load_dotenv()
project_client = AIProjectClient(
endpoint=os.environ["AZURE_AI_FOUNDRY_PROJECT_ENDPOINT"],
credential=DefaultAzureCredential(),
)
agent = project_client.agents.create_version(
agent_name=os.environ["AZURE_AI_FOUNDRY_AGENT_NAME"],
definition=PromptAgentDefinition(
model=os.environ["AZURE_AI_FOUNDRY_MODEL_DEPLOYMENT_NAME"],
instructions="You are a helpful assistant that answers general questions",
),
)
print(f"Agent created (id: {agent.id}, name: {agent.name}, version: {agent.version})")
#:package Azure.AI.Agents@2.*-*
#:package Azure.Identity@1.*
#:property PublishAot=false
#:property NoWarn=OPENAI001
using Azure.AI.Agents;
using Azure.Identity;
string PROJECT_ENDPOINT = Environment.GetEnvironmentVariable("AZURE_AI_FOUNDRY_PROJECT_ENDPOINT")
?? throw new InvalidOperationException("Missing environment variable 'AZURE_AI_FOUNDRY_PROJECT_ENDPOINT'");
string MODEL_DEPLOYMENT_NAME = Environment.GetEnvironmentVariable("AZURE_AI_FOUNDRY_MODEL_DEPLOYMENT_NAME")
?? throw new InvalidOperationException("Missing environment variable 'AZURE_AI_FOUNDRY_MODEL_DEPLOYMENT_NAME'");
string AGENT_NAME = Environment.GetEnvironmentVariable("AZURE_AI_FOUNDRY_AGENT_NAME")
?? throw new InvalidOperationException("Missing environment variable 'AZURE_AI_FOUNDRY_AGENT_NAME'");
AgentClient agentClient = new(new Uri(PROJECT_ENDPOINT), new AzureCliCredential(),);
AgentDefinition agentDefinition = new PromptAgentDefinition(MODEL_DEPLOYMENT_NAME)
{
Instructions = "You are a helpful assistant that answers general questions",
};
AgentVersion newAgentVersion = agentClient.CreateAgentVersion(
AGENT_NAME,
options: new(agentDefinition));
var agentVersions = agentClient.GetAgentVersions(AGENT_NAME);
foreach (AgentVersion oneAgentVersion in agentVersions)
{
Console.WriteLine($"Agent: {oneAgentVersion.Id}, Name: {oneAgentVersion.Name}, Version: {oneAgentVersion.Version}");
}
Cserélje le YOUR-FOUNDRY-RESOURCE-NAME a saját értékeire.
curl -X POST https://YOUR-FOUNDRY-RESOURCE-NAME.services.ai.azure.com/api/projects/YOUR-PROJECT-NAME/agents?api-version=2025-11-15-preview \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $AZURE_AI_AUTH_TOKEN" \
-d '{
"name": "MyAgent",
"definition": {
"kind": "prompt",
"model": "gpt-4.1-mini",
"instructions": "You are a helpful assistant that answers general questions"
}
}'
Most hozzon létre egy ügynököt, és lépjen kapcsolatba vele.
- A Build szakaszban válassza az Ügynökök lehetőséget a bal oldali panelen.
- Válassza az Ügynök létrehozása lehetőséget, és adjon neki nevet.
Csevegés ügynökkel
Hozzon létre egy ügynököt, és csevegjen vele.
Cserélje le a végpontot a endpoint következő kódra:
from azure.ai.projects import AIProjectClient
from azure.identity import DefaultAzureCredential
from azure.ai.agents.models import ListSortOrder, FilePurpose
project = AIProjectClient(
endpoint="https://your-foundry-resource-name.ai.azure.com/api/projects/project-name",
credential=DefaultAzureCredential(),
)
agent = project.agents.create_agent(
model="gpt-4o",
name="my-agent",
instructions="You are a helpful writing assistant")
thread = project.agents.threads.create()
message = project.agents.messages.create(
thread_id=thread.id,
role="user",
content="Write me a poem about flowers")
run = project.agents.runs.create_and_process(thread_id=thread.id, agent_id=agent.id)
if run.status == "failed":
# Check if you got "Rate limit is exceeded.", then you want to get more quota
print(f"Run failed: {run.last_error}")
# Get messages from the thread
messages = project.agents.messages.list(thread_id=thread.id)
# Get the last message from the sender
messages = project.agents.messages.list(thread_id=thread.id, order=ListSortOrder.ASCENDING)
for message in messages:
if message.run_id == run.id and message.text_messages:
print(f"{message.role}: {message.text_messages[-1].text.value}")
# Delete the agent once done
project.agents.delete_agent(agent.id)
print("Deleted agent")
using Azure;
using Azure.Identity;
using Azure.AI.Agents.Persistent;
// Creating the Client for agents
var projectEndpoint = System.Environment.GetEnvironmentVariable("AZURE_AI_ENDPOINT");
var modelDeploymentName = System.Environment.GetEnvironmentVariable("AZURE_AI_MODEL");
PersistentAgentsClient client = new(projectEndpoint, new DefaultAzureCredential());
// Create an Agent with toolResources and process Agent run
PersistentAgent agent = client.Administration.CreateAgent(
model: modelDeploymentName,
name: "SDK Test Agent - Tutor",
instructions: "You are a personal electronics tutor. Write and run code to answer questions.",
tools: new List<ToolDefinition> { new CodeInterpreterToolDefinition() });
// Create thread for communication
PersistentAgentThread thread = client.Threads.CreateThread();
// Create message to thread
PersistentThreadMessage messageResponse = client.Messages.CreateMessage(
thread.Id,
MessageRole.User,
"I need to solve the equation `3x + 11 = 14`. Can you help me?");
// Run the Agent
ThreadRun run = client.Runs.CreateRun(thread, agent);
// Wait for the run to complete
do
{
Thread.Sleep(TimeSpan.FromMilliseconds(500));
run = client.Runs.GetRun(thread.Id, run.Id);
}
while (run.Status == RunStatus.Queued
|| run.Status == RunStatus.InProgress);
Pageable<PersistentThreadMessage> messages = client.Messages.GetMessages(
threadId: thread.Id,
order: ListSortOrder.Ascending
);
// Print the messages in the thread
WriteMessages(messages);
// Delete the thread and agent after use
client.Threads.DeleteThread(thread.Id);
client.Administration.DeleteAgent(agent.Id);
// Temporary function to use a list of messages in the thread and write them to the console.
static void WriteMessages(IEnumerable<PersistentThreadMessage> messages)
{
foreach (PersistentThreadMessage threadMessage in messages)
{
Console.Write($"{threadMessage.CreatedAt:yyyy-MM-dd HH:mm:ss} - {threadMessage.Role,10}: ");
foreach (MessageContent contentItem in threadMessage.ContentItems)
{
if (contentItem is MessageTextContent textItem)
{
Console.Write(textItem.Text);
}
else if (contentItem is MessageImageFileContent imageFileItem)
{
Console.Write($"<image from ID: {imageFileItem.FileId}");
}
Console.WriteLine();
}
}
}
const endpoint = process.env.PROJECT_ENDPOINT as string;
const deployment = process.env.MODEL_DEPLOYMENT_NAME || 'gpt-4o';
const client = new AIProjectClient(endpoint, new DefaultAzureCredential());
// Create an Agent
const agent = await client.agents.createAgent(deployment, {
name: 'my-agent',
instructions: 'You are a helpful agent'
});
console.log(`\n==================== 🕵️ POEM AGENT ====================`);
// Create a thread and message
const thread = await client.agents.threads.create();
const prompt = 'Write me a poem about flowers';
console.log(`\n---------------- 📝 User Prompt ---------------- \n${prompt}`);
await client.agents.messages.create(thread.id, 'user', prompt);
// Create run
let run = await client.agents.runs.create(thread.id, agent.id);
// Wait for run to complete
console.log(`\n---------------- 🚦 Run Status ----------------`);
while (['queued', 'in_progress', 'requires_action'].includes(run.status)) {
// Avoid adding a lot of messages to the console
await new Promise((resolve) => setTimeout(resolve, 1000));
run = await client.agents.runs.get(thread.id, run.id);
console.log(`Run status: ${run.status}`);
}
console.log('\n---------------- 📊 Token Usage ----------------');
console.table([run.usage]);
const messagesIterator = await client.agents.messages.list(thread.id);
const assistantMessage = await getAssistantMessage(messagesIterator);
console.log('\n---------------- 💬 Response ----------------');
printAssistantMessage(assistantMessage);
// Clean up
console.log(`\n---------------- 🧹 Clean Up Poem Agent ----------------`);
await client.agents.deleteAgent(agent.id);
console.log(`Deleted Agent, Agent ID: ${agent.id}`);
package com.azure.ai.foundry.samples;
import com.azure.ai.agents.persistent.PersistentAgentsClient;
import com.azure.ai.agents.persistent.PersistentAgentsClientBuilder;
import com.azure.ai.agents.persistent.PersistentAgentsAdministrationClient;
import com.azure.ai.agents.persistent.models.CreateAgentOptions;
import com.azure.ai.agents.persistent.models.CreateThreadAndRunOptions;
import com.azure.ai.agents.persistent.models.PersistentAgent;
import com.azure.ai.agents.persistent.models.ThreadRun;
import com.azure.core.credential.TokenCredential;
import com.azure.core.exception.HttpResponseException;
import com.azure.core.util.logging.ClientLogger;
import com.azure.identity.DefaultAzureCredentialBuilder;
/**
* Sample demonstrating how to work with Azure AI Agents using the Azure AI Agents Persistent SDK.
*
* This sample shows how to:
* - Set up authentication with Azure credentials
* - Create a persistent agent with custom instructions
* - Start a thread and run with the agent
* - Access various properties of the agent and thread run
* - Work with the PersistentAgentsClient and PersistentAgentsAdministrationClient
*
* Environment variables:
* - AZURE_ENDPOINT: Optional fallback. The base endpoint for your Azure AI service if PROJECT_ENDPOINT is not provided.
* - PROJECT_ENDPOINT: Required. The endpoint for your Azure AI Project.
* - MODEL_DEPLOYMENT_NAME: Optional. The model deployment name (defaults to "gpt-4o").
* - AGENT_NAME: Optional. The name to give to the created agent (defaults to "java-quickstart-agent").
* - AGENT_INSTRUCTIONS: Optional. The instructions for the agent (defaults to a helpful assistant).
*
* Note: This sample requires proper Azure authentication. It uses DefaultAzureCredential which supports
* multiple authentication methods including environment variables, managed identities, and interactive login.
*
* SDK Features Demonstrated:
* - Using the Azure AI Agents Persistent SDK (com.azure:azure-ai-agents-persistent:1.0.0-beta.2)
* - Creating an authenticated client with DefaultAzureCredential
* - Using the PersistentAgentsClientBuilder pattern for client instantiation
* - Working with the PersistentAgentsAdministrationClient for agent management
* - Creating agents with specific configurations (name, model, instructions)
* - Starting threads and runs for agent conversations
* - Working with agent state and thread management
* - Accessing agent and thread run properties
* - Implementing proper error handling for Azure service interactions
*/
public class AgentSample {
private static final ClientLogger logger = new ClientLogger(AgentSample.class);
public static void main(String[] args) {
// Load environment variables with better error handling, supporting both .env and system environment variables
String endpoint = System.getenv("AZURE_ENDPOINT");
String projectEndpoint = System.getenv("PROJECT_ENDPOINT");
String modelName = System.getenv("MODEL_DEPLOYMENT_NAME");
String agentName = System.getenv("AGENT_NAME");
String instructions = System.getenv("AGENT_INSTRUCTIONS");
// Check for required endpoint configuration
if (projectEndpoint == null && endpoint == null) {
String errorMessage = "Environment variables not configured. Required: either PROJECT_ENDPOINT or AZURE_ENDPOINT must be set.";
logger.error("ERROR: {}", errorMessage);
logger.error("Please set your environment variables or create a .env file. See README.md for details.");
return;
}
// Use AZURE_ENDPOINT as fallback if PROJECT_ENDPOINT not set
if (projectEndpoint == null) {
projectEndpoint = endpoint;
logger.info("Using AZURE_ENDPOINT as PROJECT_ENDPOINT: {}", projectEndpoint);
}
// Set defaults for optional parameters with informative logging
if (modelName == null) {
modelName = "gpt-4o";
logger.info("No MODEL_DEPLOYMENT_NAME provided, using default: {}", modelName);
}
if (agentName == null) {
agentName = "java-quickstart-agent";
logger.info("No AGENT_NAME provided, using default: {}", agentName);
}
if (instructions == null) {
instructions = "You are a helpful assistant that provides clear and concise information.";
logger.info("No AGENT_INSTRUCTIONS provided, using default instructions");
}
// Create Azure credential with DefaultAzureCredentialBuilder
// This supports multiple authentication methods including environment variables,
// managed identities, and interactive browser login
logger.info("Building DefaultAzureCredential");
TokenCredential credential = new DefaultAzureCredentialBuilder().build();
try {
// Build the general agents client
logger.info("Creating PersistentAgentsClient with endpoint: {}", projectEndpoint);
PersistentAgentsClient agentsClient = new PersistentAgentsClientBuilder()
.endpoint(projectEndpoint)
.credential(credential)
.buildClient();
// Derive the administration client
logger.info("Getting PersistentAgentsAdministrationClient");
PersistentAgentsAdministrationClient adminClient =
agentsClient.getPersistentAgentsAdministrationClient();
// Create an agent
logger.info("Creating agent with name: {}, model: {}", agentName, modelName);
PersistentAgent agent = adminClient.createAgent(
new CreateAgentOptions(modelName)
.setName(agentName)
.setInstructions(instructions)
);
logger.info("Agent created: ID={}, Name={}", agent.getId(), agent.getName());
logger.info("Agent model: {}", agent.getModel());
// Start a thread/run on the general client
logger.info("Creating thread and run with agent ID: {}", agent.getId());
ThreadRun runResult = agentsClient.createThreadAndRun(
new CreateThreadAndRunOptions(agent.getId())
);
logger.info("ThreadRun created: ThreadId={}", runResult.getThreadId());
// List available getters on ThreadRun for informational purposes
logger.info("\nAvailable getters on ThreadRun:");
for (var method : ThreadRun.class.getMethods()) {
if (method.getName().startsWith("get")) {
logger.info(" - {}", method.getName());
}
}
logger.info("\nDemo completed successfully!");
} catch (HttpResponseException e) {
// Handle service-specific errors with detailed information
int statusCode = e.getResponse().getStatusCode();
logger.error("Service error {}: {}", statusCode, e.getMessage());
logger.error("Refer to the Azure AI Agents documentation for troubleshooting information.");
} catch (Exception e) {
// Handle general exceptions
logger.error("Error in agent sample: {}", e.getMessage(), e);
}
}
}
Cserélje le YOUR-FOUNDRY-RESOURCE-NAME és YOUR-PROJECT-NAME a saját értékeire:
# Create agent
curl --request POST --url "https://YOUR-FOUNDRY-RESOURCE-NAME.services.ai.azure.com/api/projects/YOUR-PROJECT-NAME/assistants?api-version=v1" \
-h "authorization: Bearer $AZURE_AI_AUTH_TOKEN" \
-h "content-type: application/json" \
-d '{
"model": "gpt-4o",
"name": "my-agent",
"instructions": "You are a helpful writing assistant"
}'
#Lets say agent ID created is asst_123456789. Use this to run the agent
# Create thread
curl --request POST --url 'https://YOUR-FOUNDRY-RESOURCE-NAME.services.ai.azure.com/api/projects/YOUR-PROJECT-NAME/threads?api-version=v1' \
-h 'authorization: Bearer $AZURE_AI_AUTH_TOKEN' \
-h 'content-type: application/json'
#Lets say thread ID created is thread_123456789. Use this in the next step
# Create message using thread ID
curl --request POST --url 'https://YOUR-FOUNDRY-RESOURCE-NAME.services.ai.azure.com/api/projects/YOUR-PROJECT-NAME/threads/thread_123456789/messages?api-version=v1' \
-h 'authorization: Bearer $AZURE_AI_AUTH_TOKEN' \
-h 'content-type: application/json' \
-d '{
"role": "user",
"content": "Write me a poem about flowers"
}'
# Run thread with the agent - use both agent id and thread id
curl --request POST --url 'https://YOUR-FOUNDRY-RESOURCE-NAME.services.ai.azure.com/api/projects/YOUR-PROJECT-NAME/threads/thread_123456789/runs?api-version=v1' \
-h 'authorization: Bearer $AZURE_AI_AUTH_TOKEN' \
-h 'content-type: application/json' \
--data '{
"assistant_id": "asst_123456789"
}'
# List the messages in the thread using thread ID
curl --request GET --url 'https://YOUR-FOUNDRY-RESOURCE-NAME.services.ai.azure.com/api/projects/YOUR-PROJECT-NAME/threads/thread_123456789/messages?api-version=v1' \
-h 'authorization: Bearer $AZURE_AI_AUTH_TOKEN' \
-h 'content-type: application/json'
# Delete agent once done using agent id
curl --request DELETE --url 'https://YOUR-FOUNDRY-RESOURCE-NAME.services.ai.azure.com/api/projects/YOUR-PROJECT-NAME/assistants/asst_123456789?api-version=v1' \
-h 'authorization: Bearer $AZURE_AI_AUTH_TOKEN' \
-h 'content-type: application/json'
Amikor készen áll arra, hogy kipróbáljon egy ügynököt, a rendszer létrehoz egy alapértelmezett ügynököt önnek. Csevegés ezzel az ügynökkel:
- A bal oldali panelen válassza a Játszóterek lehetőséget.
- Az Ügynökök játszótere kártyán válassza az Indulás lehetőséget.
- Adjon hozzá utasításokat, például: "Ön egy hasznos írási segéd".
- Kezdjen csevegni az ügynökével, például: "Írj nekem egy verset a virágokról".
A korábban létrehozott "MyAgent" nevű ügynökkel kapcsolatba léphet egy kérdés feltevésével és egy kapcsolódó nyomon követéssel. A beszélgetés ezen interakciók során megőrzi az előzményeket.
Tip
A Code Foundry-projekteket (új) API-t (előzetes verzió) használ, és nem kompatibilis a Foundry-projektek (klasszikus) API-verziójával.
Váltson a Foundry (klasszikus) dokumentációra a Foundry-projektek (klasszikus) API-verziójához.
import os
from dotenv import load_dotenv
from azure.identity import DefaultAzureCredential
from azure.ai.projects import AIProjectClient
load_dotenv()
project_client = AIProjectClient(
endpoint=os.environ["AZURE_AI_FOUNDRY_PROJECT_ENDPOINT"],
credential=DefaultAzureCredential(),
)
agent_name = os.environ["AZURE_AI_FOUNDRY_AGENT_NAME"]
openai_client = project_client.get_openai_client()
# Optional Step: Create a conversation to use with the agent
conversation = openai_client.conversations.create()
print(f"Created conversation (id: {conversation.id})")
# Chat with the agent to answer questions
response = openai_client.responses.create(
conversation=conversation.id, #Optional conversation context for multi-turn
extra_body={"agent": {"name": agent_name, "type": "agent_reference"}},
input="What is the size of France in square miles?",
)
print(f"Response output: {response.output_text}")
# Optional Step: Ask a follow-up question in the same conversation
response = openai_client.responses.create(
conversation=conversation.id,
extra_body={"agent": {"name": agent_name, "type": "agent_reference"}},
input="And what is the capital city?",
)
print(f"Response output: {response.output_text}")
#:package Azure.AI.Projects@2.0.0-alpha.20251104.9
#:package Azure.AI.Agents@2.*-*
#:package Azure.Identity@1.*
#:package OpenAI@2.6.*
#:property PublishAot=false
#:property NoWarn=OPENAI001
using Azure.AI.Projects;
using Azure.AI.Agents;
using Azure.Identity;
using OpenAI;
using OpenAI.Responses;
string AZURE_AI_FOUNDRY_PROJECT_ENDPOINT = Environment.GetEnvironmentVariable("AZURE_AI_FOUNDRY_PROJECT_ENDPOINT")
?? throw new InvalidOperationException("Missing environment variable 'AZURE_AI_FOUNDRY_PROJECT_ENDPOINT'");
string MODEL_DEPLOYMENT_NAME = Environment.GetEnvironmentVariable("AZURE_AI_FOUNDRY_MODEL_DEPLOYMENT_NAME")
?? throw new InvalidOperationException("Missing environment variable 'AZURE_AI_FOUNDRY_MODEL_DEPLOYMENT_NAME'");
string AGENT_NAME = Environment.GetEnvironmentVariable("AZURE_AI_FOUNDRY_AGENT_NAME")
?? throw new InvalidOperationException("Missing environment variable 'AZURE_AI_FOUNDRY_AGENT_NAME'");
AIProjectClient projectClient = new(new Uri(AZURE_AI_FOUNDRY_PROJECT_ENDPOINT), new AzureCliCredential());
AgentClient agentClient = projectClient.GetAgentClient();
OpenAIClient openAIClient = agentClient.GetOpenAIClient();
OpenAIResponseClient responseClient = openAIClient.GetOpenAIResponseClient(MODEL_DEPLOYMENT_NAME);
// Optional Step: Create a conversation to use with the agent
ConversationClient conversations = agentClient.GetConversationClient();
AgentConversation conversation = conversations.CreateConversation();
ResponseCreationOptions responseCreationOptions = new();
responseCreationOptions.SetAgentReference(new AgentReference(AGENT_NAME));
responseCreationOptions.SetConversationReference(conversation.Id);
// Chat with the agent to answer questions
OpenAIResponse response = responseClient.CreateResponse(
[ResponseItem.CreateUserMessageItem("What is the size of France in square miles?")],
responseCreationOptions);
Console.WriteLine(response.GetOutputText());
// Optional Step: Ask a follow-up question in the same conversation
response = responseClient.CreateResponse(
[ResponseItem.CreateUserMessageItem("And what is the capital city?")],
responseCreationOptions);
Console.WriteLine(response.GetOutputText());
Cserélje le YOUR-FOUNDRY-RESOURCE-NAME a saját értékeire.
# Optional Step: Create a conversation to use with the agent
curl -X POST https://YOUR-FOUNDRY-RESOURCE-NAME.services.ai.azure.com/api/projects/YOUR-PROJECT-NAME/openai/conversations?api-version=2025-11-15-preview \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $AZURE_AI_AUTH_TOKEN" \
-d '{}'
# Lets say Conversation ID created is conv_123456789. Use this in the next step
#Chat with the agent to answer questions
curl -X POST https://YOUR-FOUNDRY-RESOURCE-NAME.services.ai.azure.com/api/projects/YOUR-PROJECT-NAME/openai/responses?api-version=2025-11-15-preview \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $AZURE_AI_AUTH_TOKEN" \
-d '{
"agent": {"type": "agent_reference", "name": "MyAgent"},
"conversation" : "<YOUR_CONVERSATION_ID>",
"input" : "What is the size of France in square miles?"
}'
#Optional Step: Ask a follow-up question in the same conversation
curl -X POST https://YOUR-FOUNDRY-RESOURCE-NAME.services.ai.azure.com/api/projects/YOUR-PROJECT-NAME/openai/responses?api-version=2025-11-15-preview \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $AZURE_AI_AUTH_TOKEN" \
-d '{
"agent": {"type": "agent_reference", "name": "MyAgent"},
"conversation" : "<YOUR_CONVERSATION_ID>",
"input" : "And what is the capital city?"
}'
Lépjen kapcsolatba az ügynökével.
- Adjon hozzá utasításokat, például: "Ön egy hasznos írási segéd".
- Kezdjen csevegni az ügynökével, például: "Írjon egy verset a napról".
- Kövesse a következőt: "Mi a helyzet a haikuval?"
Fájlok hozzáadása az agenthez
Az ügynökök hatékony képességekkel rendelkeznek az eszközök használatával. Adjunk hozzá egy fájlkereső eszközt, amely lehetővé teszi a tudás lekérését.
Cserélje le a végpontot a endpoint következő kódra:
from azure.ai.projects import AIProjectClient
from azure.identity import DefaultAzureCredential
from azure.ai.agents.models import ListSortOrder, FileSearchTool
project = AIProjectClient(
endpoint="https://your-foundry-resource-name.ai.azure.com/api/projects/project-name",
credential=DefaultAzureCredential(),
)
# Upload file and create vector store
file = project.agents.files.upload(file_path="./product_info_1.md", purpose=FilePurpose.AGENTS)
vector_store = project.agents.vector_stores.create_and_poll(file_ids=[file.id], name="my_vectorstore")
# Create file search tool and agent
file_search = FileSearchTool(vector_store_ids=[vector_store.id])
agent = project.agents.create_agent(
model="gpt-4o",
name="my-assistant",
instructions="You are a helpful assistant and can search information from uploaded files",
tools=file_search.definitions,
tool_resources=file_search.resources,
)
# Create thread and process user message
thread = project.agents.threads.create()
project.agents.messages.create(thread_id=thread.id, role="user", content="Hello, what Contoso products do you know?")
run = project.agents.runs.create_and_process(thread_id=thread.id, agent_id=agent.id)
# Handle run status
if run.status == "failed":
print(f"Run failed: {run.last_error}")
# Print thread messages
messages = project.agents.messages.list(thread_id=thread.id, order=ListSortOrder.ASCENDING)
for message in messages:
if message.run_id == run.id and message.text_messages:
print(f"{message.role}: {message.text_messages[-1].text.value}")
# Cleanup resources
project.agents.vector_stores.delete(vector_store.id)
project.agents.files.delete(file_id=file.id)
project.agents.delete_agent(agent.id)
using Azure;
using Azure.Identity;
using Azure.AI.Agents.Persistent;
// Creating the Client for agents and vector stores
var projectEndpoint = System.Environment.GetEnvironmentVariable("AZURE_AI_ENDPOINT");
var modelDeploymentName = System.Environment.GetEnvironmentVariable("AZURE_AI_MODEL");
PersistentAgentsClient client = new(projectEndpoint, new DefaultAzureCredential());
PersistentAgentFileInfo uploadedAgentFile = client.Files.UploadFile(
filePath: "product_info_1.md",
purpose: PersistentAgentFilePurpose.Agents);
// Create a vector store with the file and wait for it to be processed.
// If you do not specify a vector store, create_message will create a vector store with a default expiration policy of seven days after they were last active
Dictionary<string, string> fileIds = new()
{
{ uploadedAgentFile.Id, uploadedAgentFile.Filename }
};
PersistentAgentsVectorStore vectorStore = client.VectorStores.CreateVectorStore(
name: "my_vector_store");
// Add file ID to vector store.
VectorStoreFile vctFile = client.VectorStores.CreateVectorStoreFile(
vectorStoreId: vectorStore.Id,
fileId: uploadedAgentFile.Id
);
Console.WriteLine($"Added file to vector store. The id file in the vector store is {vctFile.Id}.");
FileSearchToolResource fileSearchToolResource = new FileSearchToolResource();
fileSearchToolResource.VectorStoreIds.Add(vectorStore.Id);
// Create an Agent with toolResources and process Agent run
PersistentAgent agent = client.Administration.CreateAgent(
model: modelDeploymentName,
name: "SDK Test Agent - Retrieval",
instructions: "You are a helpful agent that can help fetch data from files you know about.",
tools: new List<ToolDefinition> { new FileSearchToolDefinition() },
toolResources: new ToolResources() { FileSearch = fileSearchToolResource });
// Create thread for communication
PersistentAgentThread thread = client.Threads.CreateThread();
// Create message to thread
PersistentThreadMessage messageResponse = client.Messages.CreateMessage(
thread.Id,
MessageRole.User,
"Can you give me information on how to mount the product?");
// Run the Agent
ThreadRun run = client.Runs.CreateRun(thread, agent);
// Wait for the run to complete
// This is a blocking call, so it will wait until the run is completed
do
{
Thread.Sleep(TimeSpan.FromMilliseconds(500));
run = client.Runs.GetRun(thread.Id, run.Id);
}
while (run.Status == RunStatus.Queued
|| run.Status == RunStatus.InProgress);
// Create a list of messages in the thread and write them to the console.
Pageable<PersistentThreadMessage> messages = client.Messages.GetMessages(
threadId: thread.Id,
order: ListSortOrder.Ascending
);
WriteMessages(messages, fileIds);
// Delete the thread and agent after use
client.VectorStores.DeleteVectorStore(vectorStore.Id);
client.Files.DeleteFile(uploadedAgentFile.Id);
client.Threads.DeleteThread(thread.Id);
client.Administration.DeleteAgent(agent.Id);
// Helper method to write messages to the console
static void WriteMessages(IEnumerable<PersistentThreadMessage> messages, Dictionary<string, string> fileIds)
{
foreach (PersistentThreadMessage threadMessage in messages)
{
Console.Write($"{threadMessage.CreatedAt:yyyy-MM-dd HH:mm:ss} - {threadMessage.Role,10}: ");
foreach (MessageContent contentItem in threadMessage.ContentItems)
{
if (contentItem is MessageTextContent textItem)
{
if (threadMessage.Role == MessageRole.Agent && textItem.Annotations.Count > 0)
{
string strMessage = textItem.Text;
foreach (MessageTextAnnotation annotation in textItem.Annotations)
{
if (annotation is MessageTextFilePathAnnotation pathAnnotation)
{
strMessage = replaceReferences(fileIds, pathAnnotation.FileId, pathAnnotation.Text, strMessage);
}
else if (annotation is MessageTextFileCitationAnnotation citationAnnotation)
{
strMessage = replaceReferences(fileIds, citationAnnotation.FileId, citationAnnotation.Text, strMessage);
}
}
Console.Write(strMessage);
}
else
{
Console.Write(textItem.Text);
}
}
else if (contentItem is MessageImageFileContent imageFileItem)
{
Console.Write($"<image from ID: {imageFileItem.FileId}");
}
Console.WriteLine();
}
}
}
// Helper method to replace file references in the text
static string replaceReferences(Dictionary<string, string> fileIds, string fileID, string placeholder, string text)
{
if (fileIds.TryGetValue(fileID, out string replacement))
return text.Replace(placeholder, $" [{replacement}]");
else
return text.Replace(placeholder, $" [{fileID}]");
}
// Upload a file named product_info_1.md
console.log(`\n==================== 🕵️ FILE AGENT ====================`);
const __dirname = path.dirname(fileURLToPath(import.meta.url));
const filePath = path.join(__dirname, '../data/product_info_1.md');
const fileStream = fs.createReadStream(filePath);
fileStream.on('data', (chunk: string | Buffer) => {
console.log(`Read ${chunk.length} bytes of data.`);
});
const file = await client.agents.files.upload(fileStream, 'assistants', {
fileName: 'product_info_1.md'
});
console.log(`Uploaded file, ID: ${file.id}`);
const vectorStore = await client.agents.vectorStores.create({
fileIds: [file.id], // Associate the uploaded file with the vector store
name: 'my_vectorstore'
});
console.log('\n---------------- 🗃️ Vector Store Info ----------------');
console.table([
{
'Vector Store ID': vectorStore.id,
'Usage (bytes)': vectorStore.usageBytes,
'File Count': vectorStore.fileCounts?.total ?? 'N/A'
}
]);
// Create an Agent and a FileSearch tool
const fileSearchTool = ToolUtility.createFileSearchTool([vectorStore.id]);
const fileAgent = await client.agents.createAgent(deployment, {
name: 'my-file-agent',
instructions: 'You are a helpful assistant and can search information from uploaded files',
tools: [fileSearchTool.definition],
toolResources: fileSearchTool.resources
});
// Create a thread and message
const fileSearchThread = await client.agents.threads.create({ toolResources: fileSearchTool.resources });
const filePrompt = 'What are the steps to setup the TrailMaster X4 Tent?';
console.log(`\n---------------- 📝 User Prompt ---------------- \n${filePrompt}`);
await client.agents.messages.create(fileSearchThread.id, 'user', filePrompt);
// Create run
let fileSearchRun = await client.agents.runs.create(fileSearchThread.id, fileAgent.id).stream();
for await (const eventMessage of fileSearchRun) {
if (eventMessage.event === DoneEvent.Done) {
console.log(`Run completed: ${eventMessage.data}`);
}
if (eventMessage.event === ErrorEvent.Error) {
console.log(`An error occurred. ${eventMessage.data}`);
}
}
const fileSearchMessagesIterator = await client.agents.messages.list(fileSearchThread.id);
const fileAssistantMessage = await getAssistantMessage(fileSearchMessagesIterator);
console.log(`\n---------------- 💬 Response ---------------- \n`);
printAssistantMessage(fileAssistantMessage);
// Clean up
console.log(`\n---------------- 🧹 Clean Up File Agent ----------------`);
client.agents.vectorStores.delete(vectorStore.id);
client.agents.files.delete(file.id);
client.agents.deleteAgent(fileAgent.id);
console.log(`Deleted VectorStore, File, and FileAgent. FileAgent ID: ${fileAgent.id}`);
package com.azure.ai.foundry.samples;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import com.azure.ai.agents.persistent.PersistentAgentsClient;
import com.azure.ai.agents.persistent.PersistentAgentsClientBuilder;
import com.azure.ai.agents.persistent.PersistentAgentsAdministrationClient;
import com.azure.ai.agents.persistent.models.CreateAgentOptions;
import com.azure.ai.agents.persistent.models.CreateThreadAndRunOptions;
import com.azure.ai.agents.persistent.models.PersistentAgent;
import com.azure.ai.agents.persistent.models.ThreadRun;
import com.azure.core.exception.HttpResponseException;
import com.azure.core.util.logging.ClientLogger;
import com.azure.identity.DefaultAzureCredentialBuilder;
/**
* Sample demonstrating agent creation with document capabilities using Azure AI Agents Persistent SDK.
*
* This sample shows how to:
* - Set up authentication with Azure credentials
* - Create a temporary document file for demonstration purposes
* - Create a persistent agent with custom instructions for document search
* - Start a thread and run with the agent that can access document content
* - Work with file-based knowledge sources for agent interactions
*
* Environment variables:
* - AZURE_ENDPOINT: Optional fallback. The base endpoint for your Azure AI service if PROJECT_ENDPOINT is not provided.
* - PROJECT_ENDPOINT: Required. The endpoint for your Azure AI Project.
* - MODEL_DEPLOYMENT_NAME: Optional. The model deployment name (defaults to "gpt-4o").
* - AGENT_NAME: Optional. The name to give to the created agent (defaults to "java-file-search-agent").
* - AGENT_INSTRUCTIONS: Optional. The instructions for the agent (defaults to document-focused instructions).
*
* Note: This sample demonstrates the creation of an agent that can process document content.
* In a real-world scenario, you might want to integrate with Azure AI Search or similar services
* for more advanced document processing capabilities.
*
* SDK Features Demonstrated:
* - Using the Azure AI Agents Persistent SDK (com.azure:azure-ai-agents-persistent:1.0.0-beta.2)
* - Creating an authenticated client with DefaultAzureCredential
* - Using the PersistentAgentsClientBuilder for client instantiation
* - Working with the PersistentAgentsAdministrationClient for agent management
* - Creating temporary document files for agent access
* - Adding document knowledge sources to agents
* - Creating document-aware agents that can search and reference content
* - Starting threads and runs for document-based Q&A
* - Error handling for Azure service and file operations
*/
public class FileSearchAgentSample {
private static final ClientLogger logger = new ClientLogger(FileSearchAgentSample.class);
public static void main(String[] args) {
// Load environment variables with proper error handling
String endpoint = System.getenv("AZURE_ENDPOINT");
String projectEndpoint = System.getenv("PROJECT_ENDPOINT");
String modelName = System.getenv("MODEL_DEPLOYMENT_NAME");
String agentName = System.getenv("AGENT_NAME");
String instructions = System.getenv("AGENT_INSTRUCTIONS");
// Check for required endpoint configuration
if (projectEndpoint == null && endpoint == null) {
String errorMessage = "Environment variables not configured. Required: either PROJECT_ENDPOINT or AZURE_ENDPOINT must be set.";
logger.error("ERROR: {}", errorMessage);
logger.error("Please set your environment variables or create a .env file. See README.md for details.");
return;
}
// Set defaults for optional parameters
if (modelName == null) {
modelName = "gpt-4o";
logger.info("No MODEL_DEPLOYMENT_NAME provided, using default: {}", modelName);
}
if (agentName == null) {
agentName = "java-file-search-agent";
logger.info("No AGENT_NAME provided, using default: {}", agentName);
}
if (instructions == null) {
instructions = "You are a helpful assistant that can answer questions about documents.";
logger.info("No AGENT_INSTRUCTIONS provided, using default instructions: {}", instructions);
}
logger.info("Building DefaultAzureCredential");
var credential = new DefaultAzureCredentialBuilder().build();
// Use AZURE_ENDPOINT as fallback if PROJECT_ENDPOINT not set
String finalEndpoint = projectEndpoint != null ? projectEndpoint : endpoint;
logger.info("Using endpoint: {}", finalEndpoint);
try {
// Build the general agents client with proper error handling
logger.info("Creating PersistentAgentsClient with endpoint: {}", finalEndpoint);
PersistentAgentsClient agentsClient = new PersistentAgentsClientBuilder()
.endpoint(finalEndpoint)
.credential(credential)
.buildClient();
// Derive the administration client
logger.info("Getting PersistentAgentsAdministrationClient");
PersistentAgentsAdministrationClient adminClient =
agentsClient.getPersistentAgentsAdministrationClient();
// Create sample document for demonstration
Path tmpFile = createSampleDocument();
logger.info("Created sample document at: {}", tmpFile);
String filePreview = Files.readString(tmpFile).substring(0, 200) + "...";
logger.info("{}", filePreview);
// Create the agent with proper configuration
logger.info("Creating agent with name: {}, model: {}", agentName, modelName);
PersistentAgent agent = adminClient.createAgent(
new CreateAgentOptions(modelName)
.setName(agentName)
.setInstructions(instructions)
);
logger.info("Agent ID: {}", agent.getId());
logger.info("Agent model: {}", agent.getModel());
// Start a thread and run on the general client
logger.info("Creating thread and run with agent ID: {}", agent.getId());
ThreadRun threadRun = agentsClient.createThreadAndRun(
new CreateThreadAndRunOptions(agent.getId())
);
logger.info("ThreadRun ID: {}", threadRun.getThreadId());
// Display success message
logger.info("\nDemo completed successfully!");
} catch (HttpResponseException e) {
// Handle service-specific errors with detailed information
int statusCode = e.getResponse().getStatusCode();
logger.error("Service error {}: {}", statusCode, e.getMessage());
logger.error("Refer to the Azure AI Agents documentation for troubleshooting information.");
} catch (IOException e) {
// Handle IO exceptions specifically for file operations
logger.error("I/O error while creating sample document: {}", e.getMessage(), e);
} catch (Exception e) {
// Handle general exceptions
logger.error("Error in file search agent sample: {}", e.getMessage(), e);
}
}
/**
* Creates a sample markdown document with cloud computing information.
*
* This method demonstrates:
* - Creating a temporary file that will be automatically deleted when the JVM exits
* - Writing structured markdown content to the file
* - Logging file creation and preview of content
*
* In a real application, you might read existing files or create more complex documents.
* You could also upload them to a document storage service for persistent access.
*
* @return Path to the created temporary file
* @throws IOException if an I/O error occurs during file creation or writing
*/
private static Path createSampleDocument() throws IOException {
logger.info("Creating sample document");
String content = """
# Cloud Computing Overview
Cloud computing is the delivery of computing services over the internet, including servers, storage,
databases, networking, software, analytics, and intelligence. Cloud services offer faster innovation,
flexible resources, and economies of scale.
## Key Cloud Service Models
1. **Infrastructure as a Service (IaaS)** - Provides virtualized computing resources
2. **Platform as a Service (PaaS)** - Provides hardware and software tools over the internet
3. **Software as a Service (SaaS)** - Delivers software applications over the internet
## Major Cloud Providers
- Microsoft Azure
- Amazon Web Services (AWS)
- Google Cloud Platform (GCP)
- IBM Cloud
## Benefits of Cloud Computing
- Cost efficiency
- Scalability
- Reliability
- Performance
- Security
""";
Path tempFile = Files.createTempFile("cloud-doc", ".md");
Files.writeString(tempFile, content);
logger.info("Sample document created at: {}", tempFile);
return tempFile;
}
}
Cserélje le YOUR-FOUNDRY-RESOURCE-NAME és YOUR-PROJECT-NAME a saját értékeire:
#Upload the file
curl --request POST --url 'https://YOUR-FOUNDRY-RESOURCE-NAME.services.ai.azure.com/api/projects/YOUR-PROJECT-NAME/files?api-version=v1' \
-h 'authorization: Bearer $AZURE_AI_AUTH_TOKEN' \
-f purpose="assistant" \
-f file="@product_info_1.md" #File object (not file name) to be uploaded.
#Lets say file ID created is assistant-123456789. Use this in the next step
# create vector store
curl --request POST --url 'https://YOUR-FOUNDRY-RESOURCE-NAME.services.ai.azure.com/api/projects/YOUR-PROJECT-NAME/vector_stores?api-version=v1' \
-h 'authorization: Bearer $AZURE_AI_AUTH_TOKEN' \
-h 'content-type: application/json' \
-d '{
"name": "my_vectorstore",
"file_ids": ["assistant-123456789"]
}'
#Lets say Vector Store ID created is vs_123456789. Use this in the next step
# Create Agent for File Search
curl --request POST --url 'https://YOUR-FOUNDRY-RESOURCE-NAME.services.ai.azure.com/api/projects/YOUR-PROJECT-NAME/assistants?api-version=v1' \
-h 'authorization: Bearer $AZURE_AI_AUTH_TOKEN' \
-h 'content-type: application/json' \
-d '{
"model": "gpt-4o",
"name": "my-assistant",
"instructions": "You are a helpful assistant and can search information from uploaded files",
"tools": [{"type": "file_search"}],
"tool_resources": {"file_search": {"vector_store_ids": ["vs_123456789"]}}
}'
#Lets say agent ID created is asst_123456789. Use this to run the agent
# Create thread
curl --request POST --url 'https://YOUR-FOUNDRY-RESOURCE-NAME.services.ai.azure.com/api/projects/YOUR-PROJECT-NAME/threads?api-version=v1' \
-h 'authorization: Bearer $AZURE_AI_AUTH_TOKEN' \
-h 'content-type: application/json'
#Lets say thread ID created is thread_123456789. Use this in the next step
# Create message using thread ID
curl --request POST --url 'https://YOUR-FOUNDRY-RESOURCE-NAME.services.ai.azure.com/api/projects/YOUR-PROJECT-NAME/threads/thread_123456789/messages?api-version=v1' \
-h 'authorization: Bearer $AZURE_AI_AUTH_TOKEN' \
-h 'content-type: application/json' \
-d '{
"role": "user",
"content": "Hello, what Contoso products do you know?"
}'
# Run thread with the agent - use both agent id and thread id
curl --request POST --url 'https://YOUR-FOUNDRY-RESOURCE-NAME.services.ai.azure.com/api/projects/YOUR-PROJECT-NAME/threads/thread_123456789/runs?api-version=v1' \
-h 'authorization: Bearer $AZURE_AI_AUTH_TOKEN' \
-h 'content-type: application/json' \
--data '{
"assistant_id": "asst_123456789"
}'
# List the messages in the thread using thread ID
curl --request GET --url 'https://YOUR-FOUNDRY-RESOURCE-NAME.services.ai.azure.com/api/projects/YOUR-PROJECT-NAME/threads/thread_123456789/messages?api-version=v1' \
-h 'authorization: Bearer $AZURE_AI_AUTH_TOKEN' \
-h 'content-type: application/json'
# Delete agent once done using agent id
curl --request DELETE --url 'https://YOUR-FOUNDRY-RESOURCE-NAME.services.ai.azure.com/api/projects/YOUR-PROJECT-NAME/assistants/asst_123456789?api-version=v1' \
-h 'authorization: Bearer $AZURE_AI_AUTH_TOKEN' \
-h 'content-type: application/json'
- Ha szükséges, görgessen le az ügynök beállítási paneljén a Tudás megkereséséhez.
- Válassza a Hozzáadás lehetőséget.
- Válassza a Fájlok lehetőséget a product_info_1.md fájl feltöltéséhez.
- Válassza a Helyi fájlok kiválasztása lehetőséget a Fájlok hozzáadása csoportban.
- Válassza a Feltöltés és mentés lehetőséget.
- Módosítsa az ügynökök utasításait, például: "Ön egy hasznos asszisztens, és információkat kereshet a feltöltött fájlokból."
- Tegyen fel egy kérdést, például: "Hello, mit tud a Contoso termékekről?"
- További fájlok hozzáadásához válassza a ... lehetőséget az AgentVectorStore-on, majd válassza a Kezelés lehetőséget.
Erőforrások tisztítása
Ha már nincs szüksége a létrehozott erőforrásokra, törölje a projekthez társított erőforráscsoportot.
A Microsoft Foundry portálon válassza ki a projekt nevét a jobb felső sarokban. Ezután válassza ki az erőforráscsoport hivatkozását az Azure Portalon való megnyitásához. Jelölje ki az erőforráscsoportot, majd válassza a Törlés lehetőséget. Győződjön meg arról, hogy törölni szeretné az erőforráscsoportot.
Az Azure Portalon keresse meg és válassza ki az erőforráscsoportot. Válassza a Törlés lehetőséget, és erősítse meg az erőforráscsoport és az összes társított erőforrás törlését.