Megosztás a következőn keresztül:


SQL Server lekérdezése az Azure Databricks használatával

Ez a cikk bemutatja, hogyan csatlakoztathatja az Azure Databrickset a Microsoft SQL Serverhez adatok olvasásához és írásához.

Fontos

A cikkben ismertetett konfigurációk kísérleti jellegűek. A kísérleti funkciókat a Databricks jelenleg is biztosítja, és a Databricks nem támogatja az ügyfél technikai támogatásával. A lekérdezések összevonásának teljes körű támogatásához inkább a Lakehouse Federationt kell használnia, amely lehetővé teszi az Azure Databricks-felhasználók számára, hogy kihasználhassák a Unity Catalog szintaxisát és adatszabályozási eszközeit.

Sql Server-kapcsolat konfigurálása

A Databricks Runtime 11.3 LTS és újabb verziókban a sqlserver kulcsszóval a mellékelt illesztőprogramot használhatja az SQL Serverhez való csatlakozáshoz. A DataFrames használatakor használja a következő szintaxist:

Python

remote_table = (spark.read
  .format("sqlserver")
  .option("host", "hostName")
  .option("port", "port") # optional, can use default port 1433 if omitted
  .option("user", "username")
  .option("password", "password")
  .option("database", "databaseName")
  .option("dbtable", "schemaName.tableName") # (if schemaName not provided, default to "dbo")
  .load()
)

Scala

val remote_table = spark.read
  .format("sqlserver")
  .option("host", "hostName")
  .option("port", "port") // optional, can use default port 1433 if omitted
  .option("user", "username")
  .option("password", "password")
  .option("database", "databaseName")
  .option("dbtable", "schemaName.tableName") // (if schemaName not provided, default to "dbo")
  .load()

Az SQL használatakor adja meg sqlserver a záradékot, és adja meg a USING beállításokat egy tábla létrehozásakor, ahogyan az alábbi példában látható:

DROP TABLE IF EXISTS sqlserver_table;
CREATE TABLE sqlserver_table
USING sqlserver
OPTIONS (
  dbtable '<schema-name.table-name>',
  host '<host-name>',
  port '1433',
  database '<database-name>',
  user '<username>',
  password '<password>'
);

Az örökölt JDBC-illesztő használata

A Databricks Runtime 10.4 LTS-ben és alább meg kell adnia az illesztőprogramot és a konfigurációkat a JDBC-beállítások használatával. Az alábbi példa lekérdezi az SQL Servert a JDBC-illesztőprogramjával. Az olvasással, írással, a párhuzamosság konfigurálásával és a lekérdezésleküldéssel kapcsolatos további részletekért tekintse meg a JDBC-t használó adatbázisok lekérdezését ismertető cikket.

Python

driver = "com.microsoft.sqlserver.jdbc.SQLServerDriver"

database_host = "<database-host-url>"
database_port = "1433" # update if you use a non-default port
database_name = "<database-name>"
table = "<table-name>"
user = "<username>"
password = "<password>"

url = f"jdbc:sqlserver://{database_host}:{database_port};database={database_name}"

remote_table = (spark.read
  .format("jdbc")
  .option("driver", driver)
  .option("url", url)
  .option("dbtable", table)
  .option("user", user)
  .option("password", password)
  .load()
)

Scala

val driver = "com.microsoft.sqlserver.jdbc.SQLServerDriver"

val database_host = "<database-host-url>"
val database_port = "1433" // update if you use a non-default port
val database_name = "<database-name>"
val table = "<table-name>"
val user = "<username>"
val password = "<password>"

val url = s"jdbc:sqlserver://{database_host}:{database_port};database={database_name}"

val remote_table = spark.read
  .format("jdbc")
  .option("driver", driver)
  .option("url", url)
  .option("dbtable", table)
  .option("user", user)
  .option("password", password)
  .load()