Megjegyzés
Az oldalhoz való hozzáféréshez engedély szükséges. Megpróbálhat bejelentkezni vagy módosítani a címtárat.
Az oldalhoz való hozzáféréshez engedély szükséges. Megpróbálhatja módosítani a címtárat.
Ez az oktatóanyag bemutatja, hogyan tölthet be és alakíthat át adatokat az Apache Spark Python (PySpark) DataFrame API, az Apache Spark Scala DataFrame API és a SparkR SparkDataFrame API használatával az Azure Databricksben.
Az oktatóanyag végére megismerheti a DataFrame-et, és megismerkedhet a következő feladatokkal:
Python
- Változók definiálása és nyilvános adatok másolása Unity Catalog-kötetbe
- DataFrame létrehozása Pythonnal
- Adatok betöltése DataFrame-fájlba CSV-fájlból
- DataFrame megtekintése és használata
- A DataFrame mentése
- SQL-lekérdezések futtatása a PySparkban
Lásd még az Apache Spark PySpark API-referenciát.
Scala
- Változók definiálása és nyilvános adatok másolása Unity Catalog-kötetbe
- DataFrame létrehozása a Scalával
- Adatok betöltése DataFrame-fájlba CSV-fájlból
- DataFrame megtekintése és használata
- A DataFrame mentése
- SQL-lekérdezések futtatása az Apache Sparkban
Lásd még az Apache Spark Scala API-referenciát.
R
- Változók definiálása és nyilvános adatok másolása Unity Catalog-kötetbe
- SparkR SparkDataFrame-ek létrehozása
- Adatok betöltése DataFrame-fájlba CSV-fájlból
- DataFrame megtekintése és használata
- A DataFrame mentése
- SQL-lekérdezések futtatása a SparkR-ben
Lásd még : Apache SparkR API-referencia.
Mi az a DataFrame?
A DataFrame egy kétdimenziós címkézett adatstruktúra, amely különböző típusú oszlopokat tartalmaz. A DataFrame-ekre, például számolótáblákra, SQL-táblákra vagy sorozatobjektumok szótárára is gondolhat. Az Apache Spark DataFrame-ek számos függvényt biztosítanak (oszlopok kiválasztása, szűrés, illesztés, összesítés), amelyek lehetővé teszik a gyakori adatelemzési problémák hatékony megoldását.
Az Apache Spark DataFrame-ek rugalmas elosztott adathalmazokra (RDD-kre) épülő absztrakciók. A Spark DataFrames és a Spark SQL egységes tervezési és optimalizálási motort használ, amely lehetővé teszi, hogy az Azure Databricks (Python, SQL, Scala és R) összes támogatott nyelvén szinte azonos teljesítményt nyújtsunk.
Követelmények
A következő oktatóanyag elvégzéséhez meg kell felelnie a következő követelményeknek:
Az oktatóanyagban szereplő példák használatához a munkaterületen engedélyezve kell legyen a Unity Catalogus.
Az oktatóanyagban szereplő példák egy Unity-katalógust kötetet a mintaadatok tárolására. A példák használatához hozzon létre egy kötetet, és használja a kötet katalógusát, sémáját és kötetneveit a példák által használt kötetútvonal beállításához.
A Unity Katalógusban a következő engedélyekkel kell rendelkeznie:
-
READ VOLUMEvagyWRITE VOLUMEALL PRIVILEGESaz oktatóanyaghoz használt kötethez. -
USE SCHEMAvagyALL PRIVILEGESaz oktatóanyaghoz használt sémához. -
USE CATALOGvagyALL PRIVILEGESaz oktatóanyaghoz használt katalógushoz.
Az engedélyek beállításához tekintse meg a Databricks-rendszergazdai vagy a Unity Catalog-jogosultságokat és a biztonságos objektumokat.
-
Tipp.
A cikkhez tartozó kész jegyzetfüzetekért tekintse meg a DataFrame oktatóanyag-jegyzetfüzeteit.
1. lépés: Változók definiálása és CSV-fájl betöltése
Ez a lépés meghatározza az oktatóanyagban használt változókat, majd betölt egy CSV-fájlt, amely a health.data.ny.gov babanévadatait tartalmazza a Unity Catalog-kötetbe.
Nyisson meg egy új jegyzetfüzetet az
ikonra kattintva. Az Azure Databricks-jegyzetfüzetek közötti navigálásról a A jegyzetfüzet megjelenésének testreszabásacímű témakörben olvashat.Másolja és illessze be a következő kódot az új üres jegyzetfüzetcellába. Cserélje le a
<catalog-name>,<schema-name>és<volume-name>elemeket a Unity Catalog kötetének katalógus-, séma- és kötetneveire. Cserélje le<table_name>egy tetszőleges táblanévre. Az oktatóanyag későbbi részében babanévadatokat fog betölteni ebbe a táblába.Python
catalog = "<catalog_name>" schema = "<schema_name>" volume = "<volume_name>" download_url = "https://health.data.ny.gov/api/views/jxy9-yhdk/rows.csv" file_name = "rows.csv" table_name = "<table_name>" path_volume = "/Volumes/" + catalog + "/" + schema + "/" + volume path_table = catalog + "." + schema print(path_table) # Show the complete path print(path_volume) # Show the complete pathScala
val catalog = "<catalog_name>" val schema = "<schema_name>" val volume = "<volume_name>" val downloadUrl = "https://health.data.ny.gov/api/views/jxy9-yhdk/rows.csv" val fileName = "rows.csv" val tableName = "<table_name>" val pathVolume = s"/Volumes/$catalog/$schema/$volume" val pathTable = s"$catalog.$schema" print(pathVolume) // Show the complete path print(pathTable) // Show the complete pathR
catalog <- "<catalog_name>" schema <- "<schema_name>" volume <- "<volume_name>" download_url <- "https://health.data.ny.gov/api/views/jxy9-yhdk/rows.csv" file_name <- "rows.csv" table_name <- "<table_name>" path_volume <- paste("/Volumes/", catalog, "/", schema, "/", volume, sep = "") path_table <- paste(catalog, ".", schema, sep = "") print(path_volume) # Show the complete path print(path_table) # Show the complete pathNyomja le
Shift+Entera cellát, és hozzon létre egy új üres cellát.Másolja és illessze be a következő kódot az új üres jegyzetfüzetcellába. Ez a kód a
rows.csvfájlt a health.data.ny.gov címről a Unity Catalog kötetébe másolja a Databricks dbutils paranccsal.Python
dbutils.fs.cp(f"{download_url}", f"{path_volume}/{file_name}")Scala
dbutils.fs.cp(downloadUrl, s"$pathVolume/$fileName")R
dbutils.fs.cp(download_url, paste(path_volume, "/", file_name, sep = ""))Nyomja le
Shift+Entera cellát, majd lépjen a következő cellára.
2. lépés: DataFrame létrehozása
Ez a lépés létrehoz egy tesztadatokkal elnevezett df1 DataFrame-et, majd megjeleníti annak tartalmát.
Másolja és illessze be a következő kódot az új üres jegyzetfüzetcellába. Ez a kód létrehozza a DataFrame-et tesztadatokkal, majd megjeleníti a DataFrame tartalmát és sémáját.
Python
data = [[2021, "test", "Albany", "M", 42]] columns = ["Year", "First_Name", "County", "Sex", "Count"] # highlight-next-line df1 = spark.createDataFrame(data, schema="Year int, First_Name STRING, County STRING, Sex STRING, Count int") display(df1) # The display() method is specific to Databricks notebooks and provides a richer visualization. # df1.show() The show() method is a part of the Apache Spark DataFrame API and provides basic visualization.Scala
val data = Seq((2021, "test", "Albany", "M", 42)) val columns = Seq("Year", "First_Name", "County", "Sex", "Count") // highlight-next-line val df1 = data.toDF(columns: _*) display(df1) // The display() method is specific to Databricks notebooks and provides a richer visualization. // df1.show() The show() method is a part of the Apache Spark DataFrame API and provides basic visualization.R
# Load the SparkR package that is already preinstalled on the cluster. library(SparkR) data <- data.frame( Year = as.integer(c(2021)), First_Name = c("test"), County = c("Albany"), Sex = c("M"), Count = as.integer(c(42)) ) # highlight-next-line df1 <- createDataFrame(data) display(df1) # The display() method is specific to Databricks notebooks and provides a richer visualization. # head(df1) The head() method is a part of the Apache SparkR DataFrame API and provides basic visualization.Nyomja le
Shift+Entera cellát, majd lépjen a következő cellára.
3. lépés: Adatok betöltése adatkeretbe CSV-fájlból
Ez a lépés létrehoz egy df_csv nevű DataFrame-et a korábban az Ön Unity Catalog-kötetébe betöltött CSV-fájlból. Lásd: spark.read.csv.
Másolja és illessze be a következő kódot az új üres jegyzetfüzetcellába. Ez a kód betölti a babanév adatait a DataFrame-be
df_csva CSV-fájlból, majd megjeleníti a DataFrame tartalmát.Python
df_csv = spark.read.csv(f"{path_volume}/{file_name}", header=True, inferSchema=True, sep=",") display(df_csv)Scala
val dfCsv = spark.read .option("header", "true") .option("inferSchema", "true") .option("delimiter", ",") .csv(s"$pathVolume/$fileName") display(dfCsv)R
df_csv <- read.df(paste(path_volume, "/", file_name, sep=""), source="csv", header = TRUE, inferSchema = TRUE, delimiter = ",") display(df_csv)Nyomja le
Shift+Entera cellát, majd lépjen a következő cellára.
Számos támogatott fájlformátumból tölthet be adatokat.
4. lépés: A DataFrame megtekintése és használata
Tekintse meg és használja a DataFrames babaneveit az alábbi módszerekkel.
A DataFrame-séma nyomtatása
Megtudhatja, hogyan jelenítheti meg az Apache Spark DataFrame sémáját. Az Apache Spark a séma kifejezést használja a DataFrame oszlopainak nevére és adattípusára való hivatkozáshoz.
Feljegyzés
Az Azure Databricks a kifejezésséma használatával is leírja a katalógusban regisztrált táblák gyűjteményét.
Másolja és illessze be a következő kódot egy üres jegyzetfüzetcellába. Ez a kód a DataFrame-ek sémáját mutatja be a
.printSchema()metódussal a két DataFrame sémáinak megtekintéséhez – a két DataFrame egyesítésére való felkészüléshez.Python
df_csv.printSchema() df1.printSchema()Scala
dfCsv.printSchema() df1.printSchema()R
printSchema(df_csv) printSchema(df1)Nyomja le
Shift+Entera cellát, majd lépjen a következő cellára.
Adatkeret oszlopának átnevezése
Megtudhatja, hogyan nevezhet át egy oszlopot egy DataFrame-ben.
Másolja és illessze be a következő kódot egy üres jegyzetfüzetcellába. Ez a kód átnevez egy oszlopot a
df1_csvDataFrame-ben, hogy megfeleljen adf1DataFrame megfelelő oszlopának. Ez a kód az Apache SparkwithColumnRenamed()metódust használja.Python
df_csv = df_csv.withColumnRenamed("First Name", "First_Name") df_csv.printSchemaScala
val dfCsvRenamed = dfCsv.withColumnRenamed("First Name", "First_Name") // when modifying a DataFrame in Scala, you must assign it to a new variable dfCsvRenamed.printSchema()R
df_csv <- withColumnRenamed(df_csv, "First Name", "First_Name") printSchema(df_csv)Nyomja le
Shift+Entera cellát, majd lépjen a következő cellára.
Adatkeretek egyesítése
Megtudhatja, hogyan hozhat létre egy új DataFrame-et, amely hozzáadja az egyik DataFrame sorait a másikhoz.
Másolja és illessze be a következő kódot egy üres jegyzetfüzetcellába. Ez a kód az Apache Spark
union()metódussal egyesíti az első DataFramedftartalmát a CSV-fájlból betöltött babaneveket tartalmazó DataFrame-leldf_csv.Python
df = df1.union(df_csv) display(df)Scala
val df = df1.union(dfCsvRenamed) display(df)R
display(df <- union(df1, df_csv))Nyomja le
Shift+Entera cellát, majd lépjen a következő cellára.
Sorok szűrése DataFrame-ben
Az adatkészlet legnépszerűbb babaneveit sorok szűrésével fedezheti fel az Apache Spark .filter() vagy .where() metódusok használatával. Szűréssel kiválaszthatja a dataframe-ben visszaadni vagy módosítani kívánt sorok egy részhalmazát. Nincs különbség a teljesítményben vagy a szintaxisban, ahogy az alábbi példákban látható.
.filter() metódus használata
Másolja és illessze be a következő kódot egy üres jegyzetfüzetcellába. Ez a kód az Apache Spark
.filter()metódussal jeleníti meg azokat a sorokat a DataFrame-ben, amelyek száma meghaladja az 50-et.Python
display(df.filter(df["Count"] > 50))Scala
display(df.filter(df("Count") > 50))R
display(filteredDF <- filter(df, df$Count > 50))Nyomja le
Shift+Entera cellát, majd lépjen a következő cellára.
.where() metódus használata
Másolja és illessze be a következő kódot egy üres jegyzetfüzetcellába. Ez a kód az Apache Spark
.where()metódussal jeleníti meg azokat a sorokat a DataFrame-ben, amelyek száma meghaladja az 50-et.Python
display(df.where(df["Count"] > 50))Scala
display(df.where(df("Count") > 50))R
display(filtered_df <- where(df, df$Count > 50))Nyomja le
Shift+Entera cellát, majd lépjen a következő cellára.
Oszlopok kijelölése DataFrame-ből és sorrend gyakoriság szerint
Ismerje meg, hogyan adhatja meg a visszaadni kívánt DataFrame oszlopait a select() módszerrel, hogy megtudja a babanév gyakoriságát. Az eredményeket az Apache Spark orderby és desc a függvények segítségével rendezheti.
Az Apache Spark pyspark.sql modulja támogatja az SQL-függvényeket. Az oktatóanyagban használt függvények közé tartozik az Apache Spark orderBy(), desc(), és expr() függvény. Ezeknek a függvényeknek a használatát úgy engedélyezheti, hogy szükség szerint importálja őket a munkamenetbe.
Másolja és illessze be a következő kódot egy üres jegyzetfüzetcellába. Ez a kód importálja a függvényt
desc(), majd az Apache Sparkselect()metódust és az Apache SparkotorderBy()ésdesc()függvényeket használja a leggyakoribb nevek és azok számának csökkenő sorrendben való megjelenítéséhez.Python
from pyspark.sql.functions import desc display(df.select("First_Name", "Count").orderBy(desc("Count")))Scala
import org.apache.spark.sql.functions.desc display(df.select("First_Name", "Count").orderBy(desc("Count")))R
display(arrange(select(df, df$First_Name, df$Count), desc(df$Count)))Nyomja le
Shift+Entera cellát, majd lépjen a következő cellára.
Adatkeret-részhalmaz létrehozása
Megtudhatja, hogyan hozhat létre adatkeret-részhalmazt egy meglévő DataFrame-ből.
Másolja és illessze be a következő kódot egy üres jegyzetfüzetcellába. Ez a kód az Apache Spark
filtermetódus használatával hoz létre egy új DataFrame-et, amely év, darabszám és nem szerint korlátozza az adatokat. Az Apache Sparkselect()metódust használja az oszlopok korlátozására. Emellett az Apache SparkorderBy()ésdesc()a függvények használatával rendezi az új DataFrame-et szám szerint.Python
subsetDF = df.filter((df["Year"] == 2009) & (df["Count"] > 100) & (df["Sex"] == "F")).select("First_Name", "County", "Count").orderBy(desc("Count")) display(subsetDF)Scala
val subsetDF = df.filter((df("Year") === 2009) && (df("Count") > 100) && (df("Sex") === "F")).select("First_Name", "County", "Count").orderBy(desc("Count")) display(subsetDF)R
subsetDF <- select(filter(df, (df$Count > 100) & (df$year == 2009) & df["Sex"] == "F")), "First_Name", "County", "Count") display(subsetDF)Nyomja le
Shift+Entera cellát, majd lépjen a következő cellára.
5. lépés: A DataFrame mentése
Megtudhatja, hogyan menthet DataFrame-eket. A DataFrame-et mentheti egy táblába, vagy fájlba vagy több fájlba is írhatja a DataFrame-et.
A DataFrame mentése táblázatba
Az Azure Databricks alapértelmezés szerint az összes tábla Delta Lake-formátumát használja. A DataFrame mentéséhez CREATE táblajogokkal kell rendelkeznie a katalógusban és a sémában.
Másolja és illessze be a következő kódot egy üres jegyzetfüzetcellába. Ez a kód az oktatóanyag elején definiált változó használatával menti a DataFrame tartalmát egy táblába.
Python
df.write.mode("overwrite").saveAsTable(f"{path_table}.{table_name}")Scala
df.write.mode("overwrite").saveAsTable(s"$pathTable" + "." + s"$tableName")R
saveAsTable(df, paste(path_table, ".", table_name), mode = "overwrite")Nyomja le
Shift+Entera cellát, majd lépjen a következő cellára.
A legtöbb Apache Spark-alkalmazás nagy adatkészleteken és elosztott módon működik. Az Apache Spark egyetlen fájl helyett fájlkönyvtárat ír ki. A Delta Lake felosztja a Parquet-mappákat és -fájlokat. Sok adatrendszer képes beolvasni ezeket a fájlkönyvtárakat. Az Azure Databricks azt javasolja, hogy a legtöbb alkalmazáshoz használja a táblákat fájlelérési utakon keresztül.
A DataFrame mentése JSON-fájlokba
Másolja és illessze be a következő kódot egy üres jegyzetfüzetcellába. Ez a kód jSON-fájlok könyvtárába menti a DataFrame-et.
Python
df.write.format("json").mode("overwrite").save("/tmp/json_data")Scala
df.write.format("json").mode("overwrite").save("/tmp/json_data")R
write.df(df, path = "/tmp/json_data", source = "json", mode = "overwrite")Nyomja le
Shift+Entera cellát, majd lépjen a következő cellára.
A DataFrame beolvasása egy JSON-fájlból
Megtudhatja, hogyan olvashatja be a JSON-adatokat egy könyvtárból egy DataFrame-be az Apache Spark spark.read.format() metódus használatával.
Másolja és illessze be a következő kódot egy üres jegyzetfüzetcellába. Ez a kód megjeleníti az előző példában mentett JSON-fájlokat.
Python
display(spark.read.format("json").json("/tmp/json_data"))Scala
display(spark.read.format("json").json("/tmp/json_data"))R
display(read.json("/tmp/json_data"))Nyomja le
Shift+Entera cellát, majd lépjen a következő cellára.
További feladatok: SQL-lekérdezések futtatása a PySparkban, a Scalában és az R-ben
Az Apache Spark DataFrame-ek az alábbi lehetőségeket biztosítják az SQL és a PySpark, a Scala és az R kombinálásához. Az alábbi kódot az oktatóanyaghoz létrehozott jegyzetfüzetben futtathatja.
Adjon meg egy oszlopot SQL-lekérdezésként
Ismerje meg, hogyan használhatja az Apache Spark selectExpr() metódust. Ez a metódus egy változata, amely elfogadja az select() SQL-kifejezéseket, és egy frissített DataFrame-et ad vissza. Ez a módszer lehetővé teszi egy SQL-kifejezés, például uppera .
Másolja és illessze be a következő kódot egy üres jegyzetfüzetcellába. Ez a kód az Apache Spark
selectExpr()metódust és az SQLupperkifejezést használja a sztringoszlop nagybetűssé alakításához (és az oszlop átnevezéséhez).Python
display(df.selectExpr("Count", "upper(County) as big_name"))Scala
display(df.selectExpr("Count", "upper(County) as big_name"))R
display(df_selected <- selectExpr(df, "Count", "upper(County) as big_name"))Nyomja le
Shift+Entera cellát, majd lépjen a következő cellára.
A expr() használata a SQL-szintaxis alkalmazásához egy oszlophoz
Megtudhatja, hogyan importálhatja és használhatja az Apache Spark expr() függvényt az SQL-szintaxis használatára bárhol, ahol egy oszlop meg lesz adva.
Másolja és illessze be a következő kódot egy üres jegyzetfüzetcellába. Ez a kód importálja a
expr()függvényt, majd az Apache Sparkexpr()függvényt és az SQLlowerkifejezést használja egy sztringoszlop kisbetűssé alakításához (és átnevezi az oszlopot).Python
from pyspark.sql.functions import expr display(df.select("Count", expr("lower(County) as little_name")))Scala
import org.apache.spark.sql.functions.{col, expr} // Scala requires us to import the col() function as well as the expr() function display(df.select(col("Count"), expr("lower(County) as little_name")))R
display(df_selected <- selectExpr(df, "Count", "lower(County) as little_name")) # expr() function is not supported in R, selectExpr in SparkR replicates this functionalityNyomja le
Shift+Entera cellát, majd lépjen a következő cellára.
Tetszőleges SQL-lekérdezés futtatása spark.sql() függvénnyel
Ismerje meg, hogyan futtathat tetszőleges SQL-lekérdezéseket az Apache Spark spark.sql() függvény használatával.
Másolja és illessze be a következő kódot egy üres jegyzetfüzetcellába. Ez a kód az Apache Spark
spark.sql()függvénnyel kérdez le egy SQL-táblát SQL-szintaxis használatával.Python
display(spark.sql(f"SELECT * FROM {path_table}.{table_name}"))Scala
display(spark.sql(s"SELECT * FROM $pathTable.$tableName"))R
display(sql(paste("SELECT * FROM", path_table, ".", table_name)))Nyomja le
Shift+Entera cellát, majd lépjen a következő cellára.
DataFrame-oktatóanyag-jegyzetfüzetek
Az alábbi jegyzetfüzetek az oktatóanyagból származó példákat tartalmazzák.